
Is the Optimism in Optimistic Concurrency Warranted?

Donald E. Porter, Owen S. Hofmann, and Emmett Witchel
Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

{porterde, osh, witchel}@cs.utexas.edu

Abstract

Optimistic synchronization allows concurrent execu-
tion of critical sections while performing dynamic con-
flict detection and recovery. Optimistic synchroniza-
tion will increase performance only if critical regions
are data independent—concurrent critical sections ac-
cess disjoint data most of the time. Optimistic synchro-
nization primitives, such as transactional memory, will
improve the performance of complex systems like an op-
erating system kernel only if the kernel’s critical regions
have reasonably high rates of data independence.

This paper introduces a novel method and a tool called
synccharfor exploring the potential benefit of optimistic
synchronization by measuring data independence of po-
tentially concurrent critical sections. Experimental data
indicate that the Linux kernel has enough data inde-
pendent critical sections to benefit from optimistic con-
currency on smaller multiprocessors. Achieving further
scalability will require data structure reorganization to
increase data independence.

1 Introduction

As CPU manufacturers have shifted from scaling
clock frequency to placing multiple simple processor
cores on one chip, there has been a renewed interest in
concurrent programming. The end-user benefit of these
systems will be limited unless software developers can
effectively leverage the parallel hardware provided by
these new processors.

Concurrent programming in a shared memory sys-
tem requires primitives such as locks to synchronize
threads of execution. Locks have many known prob-
lems, including deadlock, convoying, and priority in-
version that make concurrent programming in a shared
memory model difficult. In addition, locks are acon-
servativesynchronization primitive—they always assure
mutual exclusion, regardless of whether threads actually
need to execute a critical section sequentially for correct-
ness. Consider modifying elements in a binary search
tree. If the tree is large and the modifications are evenly
distributed, most modifications can safely occur in par-

allel. A lock protecting the entire tree will needlessly
serialize modifications.

One solution for the problem of conservative locking
is to synchronize data accesses at a finer granularity–
rather than lock an entire binary search tree, lock only
the individual nodes being modified. This presents
two problems. First, data structure invariants enforce a
lower bound on the locking granularity. In some data
structures, this bound may be too high to fully real-
ize the available data parallelism. Second, breaking
coarse-grained locks into many fine-grained locks sig-
nificantly increases code complexity. As the locking
scheme becomes more complicated, long-term correct-
ness and maintainability are jeopardized.

An alternative to conservative locking isoptimistic
concurrency. In an optimistic system, concurrent ac-
cesses to shared data are allowed to proceed, dynami-
cally detecting and recovering from conflicting accesses.
A specialized form of optimistic concurrency is lock-
free data structures (including many variants like wait-
free and obstruction-free data structures) [4, 5]. Lock-
free data structures, while optimistic, are not a general
purpose solution. Lock-free data structures require that
each data structure’s implementation meets certain non-
trivial correctness conditions. There is also no general
method to atomically move data among different lock-
free data structures.

Transactional memory [6] provides hardware or soft-
ware support for designating arbitrary regions of code
to appear to execute with atomicity, isolation and con-
sistency. Transactions provide a generic mechanism for
optimistic concurrency by allowing critical sections to
execute concurrently and automatically roll-back their
effects on a data conflict. Coarse-grained transactions
are able to reduce code complexity while retaining the
concurrency of fine-grained locks.

To benefit from optimistic concurrency, however, crit-
ical sections must have a substantial amount ofdata in-
dependence—data written by one critical section must
be disjoint from data read or written by critical sections
of concurrently executing threads. If critical sections
concurrently modify the same data, or havedata con-



Critical Section 1 Critical Section 2 Critical Section 3
begin critical section; begin critical section; begin critical section;
node = root→right; node = root→left; node = root;
node→left = root→left→right; node→left = root→left→right; node→right = node→left;
end critical section; end critical section; end critical section;

r w r w r w
0x1000 0x2064 0x3032 0x1000 0x2064 0x2032 0x1000 0x1032*
0x1032* 0x3000 0x1032* 0x3000 0x1064
0x1064 0x3064 0x1064 0x3064
0x2000 0x2000

Table 1: Three critical sections that could execute on the tree in Figure 1 and their address sets. The read entries
marked with an asterisk (*) are conflicting with the write in Critical Section 3.

flicts1, optimistic concurrency control will serialize ac-
cess to critical sections. In this case optimistic control
can perform much worse than conservative locking due
to the overhead required to detect and resolve conflicts.

In this paper, we present novel techniques (Section 2)
and a tool (Section 3) for investigating the limits of opti-
mistic concurrency by measuring the data independence
of critical regions that would be protected by the same
lock. We apply the methodology and the tool to the
Linux kernel, and present results (Section 4).

2 The Limits of Optimistic Concurrency

The most general way to determine data independence
is to compare theaddress setsof the critical sections.
The address set of a critical section is the set of memory
locations read or written. If the code in critical sections
access disjoint memory locations, the effect of executing
them concurrently will be the same as executing them
serially. In addition, the address sets need not be en-
tirely disjoint; only the write set of each critical section
must be disjoint from the address set of other potentially
concurrent critical sections. In other words, it is harm-
less for multiple critical sections to read the same data
as long as that data is not concurrently written by an-
other. This criterion is known as conflict serializability
in databases, and it is widely used due to the relative ease
of detecting a conflict.

Conflict serializability is a pessimistic model, how-
ever, as two critical sections can conflict yet be safely
executed in parallel. For example, if two critical sections
conflict only on their final write, they can still safely ex-
ecute concurrently if one finishes before the other issues
the conflicting write. Some data structures and algo-
rithms make stronger guarantees that allow critical sec-
tions to write concurrently to the same locations safely,
but these are relatively rare and beyond the scope of this

1We selected the term data conflicts over data dependence to avoid
confusion with other meanings.

Figure 1: A simple binary tree.

paper. Such guarantees correspond to view serializabil-
ity; computing view serializability is NP-complete and
hence rarely used in practice [9]. This paper will use
conflict serializability exclusively.

As an example of conflict serializability, consider the
simple binary tree in Figure 1. Three different critical
sections that operate on this tree, along with their ad-
dress sets are listed in Table 1. Critical sections 1 and 2
read many of the same memory locations, but only write
to locations that are not in the other’s address sets. They
are, therefore, data independent and could safely execute
concurrently. This makes sense intuitively because they
modify different branches of the tree. Critical section 3,
however, modifies the right pointer in the root of the tree,
which cannot execute concurrently with critical sections
that operate on the right branch of the tree. This is re-
flected in the address sets: 0x1032 is in Critical Section
3’s write set and in the read sets of Critical Sections 1
and 2.

In our simple example, we can determine the data in-



dependence of the critical sections by simple static anal-
ysis. In most cases, however, static analysis is insuffi-
cient because functions that modify a data structure gen-
erally determine what to modify based on an input pa-
rameter. Thus, the data independence of critical section
executions largely depends on the program’s input, re-
quiring investigation of the common case synchroniza-
tion behavior in order to determine whether to employ
optimistic concurrency.

There are cases where the structure of the critical sec-
tion code can limit concurrency. If most executions
of a critical section are not data independent, but only
conflict on a small portion of the address set, finer-
grained locking or data structure reorganization may re-
move these conflicts. For instance, the SLOB allocator
in the Linux kernel uses a shared pointer to available
heap space that is read at the beginning and written at the
end of every allocation. Thus, any two allocations will
have needless conflicts on this pointer and will never be
data independent.

There are also cases where a high degree of data inde-
pendence can be an argument for consolidation of over-
lapping critical sections under optimistic concurrency.
In a program with fine-grained locking, multiple lock
acquires and releases can be nested during overlapping
critical sections to minimize the time a lock is held and
increase performance. If, in an optimistic model, the
outermost critical section is generally data independent,
avoiding nested critical sections yields a worthwhile re-
duction in code complexity and potential increase in per-
formance.

3 Syncchar

To measure the data independence of critical sections,
we present a tool calledsyncchar(synchronization char-
acterization) that runs as a module in Virtutech Simics,
version 3.0.17 [7]. Simics is a full-system, execution-
based simulator. Syncchar tracks the synchronization
behavior of the Linux kernel, including each lock ac-
quire and release, contention for a lock acquire, and
tracks the address set of memory locations read and writ-
ten in the critical section.

If a thread busy-waits to acquire a lock in the kernel,
syncchar compares the thread’s address set when it com-
pletes the critical section to the address sets of all crit-
ical sections it waited on to determine if they conflict.
If two threads that waited for the same lock touch com-
pletely disjoint data, then they both could have optimisti-
cally executed the critical section concurrently, rather
than needlessly waiting on a lock.

Comparing the address set of threads that happen to
contend for a lock during one execution provides only
a limited window into the latent concurrency of a lock-

based application. To determine a more general limit on
optimistic concurrency, when a lock is released, sync-
char compares its address set to the address sets of the
previous 128 critical sections protected by that lock. By
recording and comparing the address sets for multiple
critical sections, syncchar’s measurements are less sensi-
tive to the particular thread interleaving of the measured
execution.

An ideal analysis would identify and compare all pos-
sible concurrent executions, rather than just the last 128.
However, this would require tracking events such as
thread forks and joins that structure concurrent execu-
tion. In addition, the number of possibly concurrent ex-
ecutions could make comparing address sets infeasible
for applications of substantial length. Comparing over a
window of critical section executions captures many ex-
ecutions that are likely to be concurrent, while minimiz-
ing false conflicts that result from serialization through
other mechanisms.

Syncchar supports a window of 128 critical sections
based on a sensitivity study of the window size. Chang-
ing the window size from 50 to 100 affects the data inde-
pendence results for most locks by less than 5%. As the
largest commercial CMP effort to date is an 80 core ma-
chine [1], 128 also represents a reasonable upper bound
on the size of CMP’s likely to be developed in the near
future.

Syncchar only compares critical regions across differ-
ent threads. Determining whether two executions of a
critical section in the same thread can be parallelized is
a more complex problem than determining whether crit-
ical sections from different threads can be executed con-
currently. If possible, this would require substantial code
rewriting or some sort of thread-level speculation [14].
However, this paper focuses only on the benefits of re-
placing existing critical sections with transactions.

Syncchar filters a few types of memory accesses from
the address sets of critical sections to avoid false con-
flicts. First, it filters out addresses of lock variables,
which are by necessity modified in every critical sec-
tion. It filters all lock addresses, not just the current lock
address, because multiple locks can be held simultane-
ously and because optimistic synchronization eliminates
reads and writes of lock variables. Syncchar also fil-
ters stack addresses to avoid conflicts due to reuse of the
same stack address in different activation frames.

Some kernel objects, like directory cache entries, are
recycled through a cache. The lifetime of locks con-
tained in such objects is bounded by the lifetime of the
object itself. When a directory cache entry emerges from
the free pool, its lock is initialized and syncchar consid-
ers it a new, active lock. The lock is considered inactive
when the object is released back to the free pool. If the
lock is made active again, its the address set history is



Lock Total Acquires Contended Acq Data Conflicts Mean Addr Set Bytes Mean Confl Bytes
zone.lock 14,450 396 (2.74%) 100.00% 161 50
ide lock 4,669 212 (4.54%) 97.17% 258 24
runqueuet.lock (0xc1807500) 4,616 143 (3.23%) 84.62% 780 112
zone.lrulock 16,186 131 (0.81%) 48.09% 134 8
rcu ctrlblk.lock 10,975 84 (0.77%) 97.62% 27 4
inode.i data.immaplock 1,953 69 (3.53%) 89.86% 343 48
runqueuet.lock (0xc180f500) 3,686 62 (1.74%) 90.32% 745 118
runqueuet.lock (0xc1847500) 2,814 27 (0.96%) 88.89% 530 74
runqueuet.lock (0xc1837500) 2,987 24 (0.80%) 95.83% 526 100
runqueuet.lock (0xc184f500) 3,523 22 (0.68%) 86.36% 416 70
runqueuet.lock (0xc182f500) 2,902 24 (0.83%) 87.50% 817 103
runqueuet.lock (0xc1817500) 3,224 17 (0.68%) 94.12% 772 108
runqueuet.lock (0xc1857500) 2,433 20 (0.86%) 90.00% 624 100
dcachelock 15,358 21 (0.14%) 0.00% 0 0
files lock 7,334 20 (0.27%) 70.00% 15 8

Table 2: The fifteen most contended spin locks during the pmake benchmark. Total Acquires is the number of times
the lock was acquired by a process. Different instances of the same lock are distinguished by their virtual address.
Contended Acq is the number of acquires that required a process had to spin before obtaining the lock, including
the percent of total acquires. The Data Conflicts column lists the percentage of Contended Acquires that had a data
conflict. Mean Addr Set Bytes is the average address set size of conflicting critical sections, whereas Mean Confl
Bytes is the average number of conflicting bytes.

cleared, even though it resides at the same address as in
its previous incarnation.

Before scheduling a new process, the kernel acquires
a lock protecting one of the runqueues. This lock is held
across the context switch and released by a different pro-
cess. As this lock is actually held by two processes dur-
ing one critical section, Syncchar avoids comparing its
address set to prior address sets from either process.

Finally, some spinlocks protect against concurrent at-
tempts to execute I/O operations, but do not actually
conflict on non-I/O memory addresses. Syncchar cannot
currently detect I/O, so results for locks that serialize I/O
may falsely appear data independent.

4 Experimental Results

We run our experiments on a simulated machine with
15 1 GHz Pentium 4 CPUs and 1 GB RAM. We use 15
CPUs because that is the maximum supported by the In-
tel 440-bx chipset simulated by Simics. For simplicity,
our simulations have an IPC of 1 and a fixed disk access
latency of 5.5ms. Each processor has a 16KB instruc-
tion cache and a 16KB data cache with a 0 cycle access
latency. There is a shared 4MB L2 cache with an access
time of 16 cycles. Main memory has an access time of
200 cycles.

We use version 2.6.16.1 of the Linux kernel. To
simulate a realistic software development environment,
our experiments run the pmake benchmark, which exe-
cutesmake -j 30 to compile 27 source files from the
libFLAC 1.1.2 source tree in parallel.

4.1 Data Independence of Contended Locks

The data independence of the most contended kernel
locks during the pmake benchmark is presented in Ta-
ble 2. Columns 2 and 3 show the total number of times
each lock was acquired and the percentage of those ac-
quires which were contended. There are low levels of
lock contention in the kernel for the pmake workload.
For all locks, at least 95% of acquires are uncontended.
Linux developers have invested heavy engineering effort
to make kernel locks fine-grained.

Each time two or more threads contend for the same
lock, syncchar determines whether the critical sections
they executed have a data conflict (shown in column 4).
These locks have a high rate of data conflict, indicating
that 80–100% of the critical sections cannot be executed
safely in parallel. Many of the locks in this list protect
the process runqueues, which are linked lists. The linked
list data structure is particularly ill-suited for optimistic
concurrency because modification of an element near the
front will conflict with all accesses of elements after it in
the list.

There is one noteworthy lock that protects crit-
ical regions that are highly data independent—
dcache lock, a global, coarse-grained lock. The
dcache lock protects the data structures associated
with the cache of directory entries for the virtual filesys-
tem. Directory entries represent all types of files, en-
abling quick resolution of path names. This lock is held
during a wide range of filesystem operations that often
access disjoint regions of the directory entry cache.

In the cases where the critical sections have data con-



flicts, we measured the number of bytes in each ad-
dress set and the number of conflicting bytes, listed in
Columns 5 and 6. A particularly small address set can
indicate that the lock is already fine grained and has lit-
tle potential for optimistic execution. For example, the
rcu ctrlblk.lock, protects a small, global control
structure used to manage work for a Read-copy update
(RCU). When this lock is held, only a subset of the struc-
ture’s 4 integers and per-CPU bitmap are modified and
the lock is immediately released. Our experimental data
closely follows this pattern, with the lock’s critical sec-
tions accessing an average of 7 bytes, 5 of which con-
flict.

A larger working set with only a small set of con-
flicting bytes can indicate an opportunity for reorganiz-
ing the data structure to be more amenable to optimistic
synchronization. Thezone.lru lock protects two
linked lists of pages that are searched to identify page
frames that can be reclaimed. Replacing the linked list
with a data structure that avoided conflicts on traversal
could substantially increase the level of data indepen-
dence.

4.2 The Limits of Kernel Data Independence

To investigate the limits of data independence in the
kernel, syncchar compares the address set of each crit-
ical section to the address sets of the last 128 address
sets for the same lock, as discussed in Section 3. The
purpose of comparing against multiple address sets is to
investigate how much inherent concurrency is present in
the kernel.

Amdahl’s law governs the speedup gained by exploit-
ing the concurrency inherent within Linux’s critical sec-
tions. Locks that are held for the longest period of
time contribute the most to any parallel speedup, so
the results in Table 3 are presented for the ten longest
held locks. Conflicting acquires vary from 21%–100%,
though the average data independence across all spin-
locks, weighted by the number of cycles they are held, is
24.1%. That level of data independence will keep an av-
erage of 4 processors busy. Data structure reorganization
can increase the amount of data independence.

One interesting lock in Table 3 is theseqlock t.-
lock. Seqlocks are a kernel synchronization primi-
tive that provides a form of optimistic concurrency by
allowing readers to speculatively read a data structure.
Readers detect concurrent modification by checking a
sequence number before and after reading. If the data
structure was modified, the readers retry. Seqlocks use
a spinlock internally to protect against concurrent incre-
ments of the sequence number by writers, effectively se-
rializing writes to the protected data. Because the same
sequence number is modified every time the lock is held,

Lock Confl Acq Mean Confl Bytes
zone.lock 100.00% 32.49 20.40%
zone.lrulock 65.82% 6.63 20.10%
ide lock 70.92% 6.93 19.03%
runqueuet.lock (0xc1807500) 27.41% 24.06 24.50%
runqueuet.lock (0xc180f500) 29.14% 26.10 23.20%
inode.i data.immaplock 46.03% 22.81 16.53%
runqueuet.lock (0xc1837500) 27.30% 27.83 19.15%
seqlockt.lock 100.00% 56.01 48.41%
runqueuet.lock (0xc1847500) 23.32% 26.64 19.55%
runqueuet.lock (0xc183f500) 21.03% 28.21 18.37%

Table 3: Limit study data from the ten longest held ker-
nel spin locks during the pmake benchmark. This data is
taken from comparing each address set to the last 128 ad-
dress sets for that lock, rather than contended acquires,
as in Table 2. Conflicting Acquires are the percent of
acquires that have conflicting data accesses. Mean Con-
flicting Bytes shows the average number of conflicting
bytes and their percentage of the total address set size.

this lock’s critical section will never be data indepen-
dent. Although this seems to limit concurrency at first
blush, there remains a great deal of parallelism in the
construct because an arbitrarily large number of pro-
cesses can read the data protected by the seqlock in par-
allel. Sometimes locks that protect conflicting data sets
are not indicators of limited concurrency because they
enable concurrency at a higher level of abstraction.

The data conflicts of fine-grained locks can distract at-
tention from the ability to concurrently access the larger
data structure. The locks protecting the per-CPU data
structuretvec base t from an occasional access by
another CPU tend to have an extremely low degree of
data independence because they are fine grained. In the
common case, however, the data these locks protect is
only accessed by one CPU, which represents a large de-
gree of overall concurrency. We leave extending this
methodology to multiple levels of abstraction for future
work.

4.3 Transactional Memory

To provide a comparison between the performance of
lock-based synchronization and optimistic synchroniza-
tion, we ran the pmake benchmark under syncchar on
both Linux and on TxLinux with the MetaTM hardware
transactional memory model [13]. TxLinux is a version
of Linux that has several key synchronization primitives
converted to use hardware transactions. Syncchar mea-
sures the time spent acquiring spinlocks and the time lost
to restarted transactions. For this workload, TxLinux
converts 32% of the spinlock acquires in Linux to trans-
actions, reducing the time lost to synchronization over-
head by 8%. This reduction is largely attributable to re-
moving cache misses for the spinlock lock variable. The



syncchar data indicates that converting more Linux locks
to transactions will yield speedups that can be exploited
by 4–8 processors. However, gaining even greater con-
currency requires data structure redesign.

5 Related work

This paper employs techniques from parallel pro-
gramming tools to evaluate the limits of optimistic con-
currency. There is a large body of previous work
on debugging and performance tuning tools for pro-
grams [3, 15]. Our work is different from other tools
because it is concerned more with identifying upper
bounds on performance rather than performance tuning
or verifying correctness.

Lock-free (and modern variants like obstruction-free)
data structures are data-structure specific approaches to
optimistic concurrency [4, 5]. Lock-free data structures
attempt to change a data structure optimistically, dy-
namically detecting and recovering from conflicting ac-
cesses.

Transactional memory is a more general form of opti-
mistic concurrency that allows arbitrary code to be exe-
cuted atomically. Herlihy and Moss [6] introduced one
of the earliest Transactional Memory systems. More re-
cently, Speculative Lock Elision [10] and Transactional
Lock Removal [11] optimistically execute lock regions
transactionally. Several designs for full-function trans-
actional memory hardware have been proposed [2,8,12].

6 Conclusion

This paper introduces a new methodology and tool
for examining the potential benefits of optimistic con-
currency, based on measuring the data independence of
critical section executions. Early results indicate that
there is sufficient data independence to warrant the use
of optimistic concurrency on smaller multiprocessors,
but data structure reorganization will be necessary to re-
alize greater scalability. The paper motivates more de-
tailed study of the relationship of concurrency enabled
at different levels of abstraction, and the ease and effi-
cacy of data structure redesign.

7 Acknowledgements

We would like to thank the anonymous reviewers,
Hany Ramadan, Christopher Rossbach, and Virtutech
AB. This research is supported in part by NSF CISE Re-
search Infrastructure Grant EIA-0303609 and NSF Ca-
reer Award 0644205.

References

[1] Michael Feldman. Getting serious about transac-
tional memory. HPCWire, 2007.

[2] L. Hammond, V. Wong, M. Chen, B. Carlstrom,
J. Davis, B. Hertzberg, M. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. InISCA,
2004.

[3] J. Harrow. Runtime checking of multithreaded
applications with visual threads. InSPIN, pages
331–342, 2000.

[4] M. Herlihy. Wait-free synchronization. In
TOPLAS, January 1991.

[5] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. InICDCS, 2003.

[6] M. Herlihy and J. E. Moss. Transactional mem-
ory: Architectural support for lock-free data struc-
tures. InISCA, May 1993.

[7] P.S. Magnusson, M. Christianson, and J. Eskilson
et al. Simics: A full system simulation platform.
In IEEE Computer vol.35 no.2, Feb 2002.

[8] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill,
and D. A. Wood. LogTM: Log-based transactional
memory. InHPCA, 2006.

[9] C. Papadimitriou. The serializability of concur-
rent database updates.J. ACM, 26(4):631–653,
1979.

[10] R. Rajwar and J. Goodman. Speculative lock eli-
sion: Enabling highly concurrent multithreaded
execution. InMICRO, 2001.

[11] R. Rajwar and J. Goodman. Transactional lock-
free execution of lock-based programs. InASP-
LOS, October 2002.

[12] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
transactional memory. InISCA. 2005.

[13] H.E. Ramadan, C.J. Rossbach, D.E. Porter, O.S.
Hofmann, A. Bhandari, and E. Witchel. MetaT-
M/TxLinux: Transactional memory for an operat-
ing system. InISCA, 2007.

[14] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C.
Mowry. A scalable approach to thread-level spec-
ulation. InISCA, 2000.

[15] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Ef-
ficient detection of data race conditions via adap-
tive tracking. InSOSP, 2005.


