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Abstract

Given that the majority of future processors will con-

tain an abundance of execution cores, redundant exe-

cution can offer a promising method for increasing the

availability and resilience against intrusions of comput-

ing systems. However, redundant execution systems rely

on the premise that when external input is duplicated

identically to a set of replicas executing the same pro-

gram, the replicas will produce identical outputs unless

they are compromised or experience an error. Unfor-

tunately, threaded applications exhibit non-determinism

that breaks this premise and current redundant execution

systems are unable to account for this non-determinism,

especially on multiprocessors. In this paper, we intro-

duce a method called relaxed determinism that is utilized

by our system, called Replicant, to support redundant

execution with reasonable performance while tolerating

non-determinism.

1 Introduction

Recent trends in computing hardware indicate that the

vast majority of future computers will contain multiple

processing cores on a single die. By the end of 2007, In-

tel expects to be shipping multi-core chips on 90% of its

performance desktop and mobile processors and 100%

of its server processors [6]. These multiprocessors can

offer increased performance through parallel execution,

as well as added system reliability and security through

redundant execution.

Redundant execution is conceptually straightforward.

A redundant execution system runs several replicas of

an application simultaneously and provides each replica

with identical inputs from the underlying operating sys-

tem (OS). The redundant execution system then com-

pares the outputs of each replica, relying on the premise

that their execution is solely determined by their inputs,

such that any divergence in their outputs must indicate a

problem. For example, executing identical replicas has

been used to detect and mitigate soft-errors [2]. More

recently, there have also been several proposals to exe-

cute slightly different replicas to detect security compro-

mises [4] and leaks of private information [9]. However,

none of these systems have addressed threaded work-

loads.

Systems that support redundant execution via the OS

kernel or a virtual machine monitor cannot account for

the non-determinism that occurs among replicas when

running threaded workloads on multiprocessors [3, 4, 9].

For similar reasons, systems that support deterministic

replay also fall short on multiprocessor systems [5, 8].

This non-determinism undermines redundant execution

by causing spurious divergences among replicas that are

not the result of any failure or attack.

We believe the key insight that will allow efficient sup-

port for redundant execution on multiprocessors is that,

in many cases, differences in the order that events are

delivered to an application will not result in significant

differences in application behavior. In light of this, we

propose a relaxed deterministic execution model that is

analogous to the relaxed memory consistency models

used to improve performance on modern processors [1].

Modern processors relax the memory ordering guaran-

tees they provide, and only enforce strict ordering when

the software developer uses a memory “fence” or “bar-

rier” instruction. Similarly, our system loosely replicates

the order of events among replicas, and only enforces a

precise ordering when instructed to do so through deter-

minism hints that the developer inserts into the applica-

tion. With the right relaxed determinism model, redun-

dant execution on multiprocessors can be supported with

reasonable overhead on existing processors.

We have implemented a redundant execution sys-

tem that supports relaxed determinism, called Replicant,

which is able to both increase the availability of a sys-

tem, as well as prevent intrusions. In this work, we will

begin with a detailed description of the problem faced



1: int counter = 0;
2: void thread_start(){
3:   int local;
4:   lock();
5:   counter = counter + thread_id();
6:   local = counter;
7:   unlock();
8:   printf(“%d\n”,local);
9: }
10: void main(){
11:   thread_create(thread_start); // thread id = 1 
12:   thread_create(thread_start); // thread id = 2 
13:   thread_create(thread_start); // thread id = 3 
14: }

Replica 1:
Thread 1 prints “1”

Thread 3 prints “4”

Thread 2 prints “6”

Replica 2:
Thread 2 prints “2”

Thread 3 prints “5”

Thread 1 prints “6”

Figure 1: Code example illustrating non-determinism in

a threaded program. Not only can the order of the thread

outputs between Replica 1 and Replica 2 differ, but the

contents of the outputs may differ as well.

by redundant execution systems on multiprocessors and

follow with our approach to relax deterministic replica-

tion. We then give high-level details on annotating ap-

plications for Replicant, as well as some preliminary re-

sults.

2 Problem Description

Redundant execution systems rely on the presumption

that if inputs are copied faithfully to all replicas, any

divergence in behavior among replicas must be due to

undesirable behavior, such as a transient error or a mali-

cious attack. On such systems, the replication of inputs

and comparison of outputs are typically done in the OS

kernel, which can easily interpose between an applica-

tion and the external world, such as the user or another

application on the system. However, since inter-thread

communication through shared memory is invisible to

the kernel, and relative thread execution rates on different

processors are non-deterministic, events among concur-

rent threads in a program cannot be replicated precisely

and efficiently, leading to spurious divergences.

To illustrate, consider the scenario described in Fig-

ure 1. Three threads each add their thread ID to a shared

variable, counter, make a local copy of the variable

in local, and then print out the local copy. However,

as illustrated below the program, the threads may up-

date and print the counter in a non-deterministic order

between the two replicas. In Replica 1, the threads print

“1”, “4” and “6” because they execute the locked section

in the order (1, 3, 2) by thread ID. On the other hand, the

threads in Replica 2 print “2”, “5” and “6” because they

execute the locked section in order (2, 3, 1). This ex-

ample demonstrates that threaded applications may non-

deterministically generate outputs in both different or-

ders and with different values.

To avoid these spurious divergences, the redundant ex-

ecution system must ensure that the ordering of updates

to the counter is the same between the two replicas. If

the redundant execution system ensures that threads en-

ter the locked region in the same order in both replicas,

then both replicas will produce the same outputs, though

possibly in different orders. If the system further forces

the replicas to also execute the printf in the same or-

der, then both the values and order of the outputs will be

identical.

A simple solution might be to make accesses to shared

memory visible to the OS kernel, by configuring the

hardware processor’s memory management unit (MMU)

to trap on every access to a shared memory region. For

example, since counter is a shared variable, we would

configure the MMU to trap on every access to the page

where counter is located. However, trapping on every

shared memory access would be very detrimental to per-

formance, and the coarse granularity of a hardware page

would cause unnecessary traps when unrelated variables

stored on the same page as counter are accessed.

A more sophisticated method is to replicate the deliv-

ery of timer interrupts to make scheduling identical on

all replicas. While communication through memory is

still invisible to the kernel, duplicating the scheduling

among replicas means that their respective threads will

access the counter variable in the same order, thus re-

sulting in the exact same outputs. Replicating the timing

of interrupts is what allows systems like ReVirt [5] and

Flashback [8] to deterministically replay threaded work-

loads. Unfortunately, as the authors of those systems

point out, this mechanism only works when all threads

are scheduled on a single physical processor and does

not enable replay on a multiprocessor system. This is be-

cause threads execute at arbitrary rates relative to each

other on a multiprocessor and as a result, there is no

way to guarantee that all threads will be in the same state

when an event recorded in one replica is replayed on an-

other.

Finally, a heavy-handed solution might be to imple-

ment hardware support that enforces instruction-level

lock-stepping of threads across all processors. Unfortu-

nately, this goes against one of the primary motivations

for having multiple cores, which is to reduce the amount

of global on-chip communication. In addition, it reduces

the opportunities for concurrency among cores, resulting

in an unacceptably high cost to performance. To illus-

trate, a stall due to a cache miss or a branch mispredic-

tion on one core will also stall all the other cores in a

replica.
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Figure 2: Replicant Architecture.

In summary, to support threaded applications on a

multi-core architecture, the redundant execution sys-

tem must be able to handle outputs produced in non-

deterministically different orders among replicas. The

redundant execution system must also be able to deal

with the non-deterministic ordering of communication

among replicas, which may result in divergent replica

output values. In both cases, the system must either en-

force the necessary determinism at the cost of some lost

concurrency, or it must find ways to tolerate the non-

determinism without mistaking it for a violation.

3 Approach

Due to the non-deterministic ordering of communication

events, threaded applications can produce outputs in dif-

ferent orders and of different values when given the same

inputs over consecutive runs. Unfortunately, forcing de-

terministic execution for replication by lock-stepping or

trapping on shared memory accesses will have a high

performance cost. Instead, Replicant allows the order-

ing of events to diverge between replicas, and requires

determinism hints from the developer to indicate when a

divergence in ordering can result in a divergence in out-

put values. In this section, we will describe Replicant’s

system model, enumerate the relaxations to determinism,

and the primitives Replicant provides to remove these re-

laxations.

3.1 System Model

Replicant implements an input replicating and output

matching architecture that is tolerant to the reordering of

events. Like other redundant execution systems, Repli-

cant manages the inputs and outputs of several replicas

of an application to appear as a single process to an ex-

ternal observer. However, unlike other systems, Repli-

cant allows replicas to execute independently and does

not assume that divergence in behavior is necessarily in-

dicative of an application problem. Instead, Replicant

buffers outputs and only makes them externally visible

when they are confirmed (i.e. independently reproduced)

by the majority of replicas. This makes Replicant tol-

erant to the non-deterministic reordering of outputs that

concurrent applications typically exhibit.

Conceptually, Replicant can be viewed as computing

the outputs of a correct execution from the system calls

that the majority of replicas make. While an adversary

may be able to compromise a subset of replicas, a ma-

jority is needed to subvert the externally visible behavior

of the application. By increasing the number of repli-

cas and introducing differences among replicas, such as

address space randomization, we can make it arbitrarily

improbable that an adversary will be able to simultane-

ously compromise enough replicas with the same attack.

Replicant can also improve the availability of a system

by removing any crashed or unresponsive replicas, thus

allowing the remaining replicas to carry on execution.

Replicant’s architecture is described in Figure 2.

Replicant strives to increase performance by removing

dependencies between replicas. To do this, Replicant

should allow replicas to execute independently and di-

verge in their behavior. This is achieved by executing

each replica in an OS sandbox, called a harness, which

includes a private copy of the process-specific OS state

and a copy-on-write file system. The purpose of the har-

ness is to replicate the underlying OS state with enough

fidelity such that the replicas are not aware that their out-

puts are actually being buffered (e.g. a replica will never

notice an unconfirmed write to the file system). Harness

state is visible only to the replica itself and is kept up-to-

date by applying the outputs and effects of system calls

made by the replica to the harness. Replicant also adds a

matcher component to the OS kernel for each set of repli-

cas. The purpose of the matcher is to fetch and replicate

inputs from the external world into the harness, and de-

termine when outputs from the harness should be made

externally visible. The matcher is implemented as a set

of system call lists that buffer the arguments and results

of system calls made by the replicas. System calls are

matched based on the thread identifier, the system call

name and its arguments.

As summarized in Table 1, Replicant splits the han-

dling of each system call invoked by a replica between

the replica’s harness and the matcher depending on

whether the system call requires inputs or creates out-

puts, and whether those inputs and outputs are external

or not. A non-external input is one that can be derived

from the harness state, such as a read from a file on

the copy-on-write file system, while an external input is

one that must be derived from the OS, such as a read

from the network or from a device. Replicant records

the inputs from external system calls because they may

not yield the same inputs if performed again at a later



Does not Require External Input Requires External Input

Does not have Externally

Visible Output

Execute within harness. If system call matches a list entry:

Replay recorded inputs to the harness.

If system call does not match any list

entries: Execute system call on OS

and record system call in the list.

Has Externally Visible Out-

put

Execute system call within harness and

buffer the output in the matcher until

confirmed.

Extrapolate the result based on current

OS state and return it to the harness.

Defer execution on OS until the system

call is confirmed by the matcher.

Table 1: Replicant’s handling of system calls.

time. Replicant then replays the recorded inputs to other

replicas when they make the same system call. System

calls that do not require external input do not need to be

buffered because each replica is initially provided with

identical copies of the OS state in their harness.

Similarly, a non-external output is one that another ap-

plication or user on the system cannot perceive, such as a

write to a pipe between two threads in a replica, and

an external output is one whose effects are externally

visible, such as an unlink that deletes a file. Output

system calls are executed on the harness, and if they are

externally visible, they are committed to the external OS

state when confirmed. For example, a write to the file

system is a system call with external output. As such,

its output is applied to the harness and committed when

confirmed – which will succeed unless there is a catas-

trophic failure of the disk. However, a write to a socket

is a system call with external output but also requires ex-

ternal input derived from the matcher’s socket as opposed

to the harness. Since the system call cannot be executed

until confirmed, Replicant extrapolates the external in-

put from the state of the socket and allows the replica to

proceed. The socket write is buffered and externalized

when confirmed.

3.2 Determinism Hints

Similar to relaxed memory consistency models, Repli-

cant’s behavior can be modeled as a set of relaxations

that are made to the strict determinism that would be en-

forced by lock-stepping replica execution. From our sys-

tem model, we can enumerate those relaxations and pro-

vide two determinism hints with which the programmer

can temporarily suppress those relaxations when needed.

First, because Replicant does not explicitly force a de-

terministic ordering of events among replicas, they may

produce divergent outputs due to non-determinism as il-

lustrated in Figure 1. Since Replicant will not external-

ize divergent outputs, we provide the developer with a

sequential region hint to enforce a deterministic ordering

on events that affect external outputs. A sequential re-

gion encompasses a section of code, and Replicant en-

sures that all threads in all replicas will pass through

sequential regions in the same order. This concept is

similar to the shared object abstraction introduced by

LeBlanc et al. [7].

Sections of code that contain inter-thread communi-

cation that can affect external outputs must be executed

within sequential regions. Inserting sequential regions

is straightforward in a conservatively written application

where all accesses to shared memory are protected by

locks. Because threads communicate through the locked

memory, a simple solution is to place a sequential region

around each critical section. By ensuring that memory

accesses in sequential regions occur in the same order

on all replicas, Replicant provides the same guarantees

as lock-stepping but at a lower cost since deterministic

execution is only enforced when threads are accessing

shared data structures.

The second source of non-determinism is caused by

instances where Replicant is unable to extrapolate the

results of a system call that has an external output and

requires an external input. A concrete example of this

occurs when an application writes to a network socket.

Replicant will return a result based on the state of the

socket at the time the replica makes the system call.

Later, when the system call is confirmed and is executed

on the OS, the remote side may have closed the connec-

tion causing the socket write to fail. Other replicas who

made the system call earlier may have been led to be-

lieve that the write succeeded because the remote client

was still connected at the time. This leads to divergent

results being returned to the replicas. Under these cir-

cumstances, the developer may suppress the relaxed de-

terminism with a synchronize syscall hint. This hint in-

structs Replicant to cause the thread to block when it

executes the next system call until it is confirmed, thus

relieving Replicant of the need to extrapolate the return

value.

Replicant also relaxes consistency between inputs and

external outputs by delaying outputs until they are con-



firmed. Thus, Replicant may reorder inputs and outputs

with respect to an earlier output in a way that is con-

ceptually similar to the memory consistency guarantees

provided by Partial Store Order [1]. The developer can

also use the synchronize syscall hint to suppress this re-

laxation.

4 Annotating Applications

In the previous section, we enumerated the sources of

non-determinism that may result in divergent outputs

among replicas. Since Replicant will not externalize

outputs with divergent values, the application developer

must use determinism hints to annotate the events that

can affect the outputs required for an external observer

to perceive a correct application execution. Replicant

will ensure that annotated events are deterministically re-

played in all replicas.

Replicant introduces non-determinism among repli-

cas in two ways: through non-deterministic ordering

of inter-thread communication events and through non-

deterministic input values extrapolated from system calls

that have external output. Figure 1 illustrates inter-thread

communication occurring through a shared counter vari-

able. In this example, the developer can use a sequential

region hint to ensure that the threads in both replicas ac-

cess the shared variable in the same order, thus causing

the outputs between the two replicas to be identical.

Figure 1 illustrates a key insight that makes it easier

to place sequential region hints – accesses to shared vari-

ables are typically protected by critical sections defined

by lock and unlock pairs. This has motivated us to

create a sequential region programming interface which

reflects that of locks. Replicant extends the Linux kernel

with a begin seq system call and an end seq system

call, which informs Replicant when a thread is entering

and leaving a sequential region respectively. The devel-

oper uses these system calls by placing a begin seq

whenever a critical section begins, such as before the

lock statement in Figure 1, and an end seq whenever

the critical section ends, such as right after the unlock.

Sequential regions need only be inserted if the ordering

of events can affect externally visible outputs. For exam-

ple, if the program in Figure 1 did not print the interme-

diate values of the shared counter variable on line 8, but

instead only printed the final value after all threads had

updated it, then no sequential regions would be needed.

This is because the thread ordering no longer has any ef-

fect on the application output. Since sequential regions

enforce ordering across threads, they can reduce oppor-

tunities for concurrency, and should be used only when

necessary.

In annotating an application, the developer may need

to annotate several critical sections with sequential re-

gions. To avoid adding unnecessary dependencies be-

tween critical sections protected by unrelated locks,

Replicant allows the developer to define an arbitrary

number of sequential region domains. Replicant enforces

the order in which threads cross sequential regions that

belong to the same domain, but does not enforce any

order on sequential regions in different domains. As

a result, there is a one-to-one mapping between locks

in an application and sequential region domains, and

each critical section that is protected by a certain lock

maps to a sequential region in the corresponding do-

main. Sequential region domains are initialized through

the init seq system call, which takes a word-length

domain identifier as an argument. This identifier is also

passed as an argument to begin seq and end seq

calls to identify which domain the sequential region be-

longs to.

While one can infer most of the inter-thread communi-

cation in an application from its use of locks, developers

frequently find application-specific opportunities to in-

crease performance by avoiding the use locks when ac-

cessing shared variables. As a result, when porting ap-

plications, we have found that while using information

gleamed from the locks to automatically add sequential

regions saves a great deal of time, some amount of man-

ual analysis is usually required to discover the commu-

nication that does not occur in a critical section, but can

still affect external output values. Qualitatively, we have

found that inserting sequential regions is as difficult, and

very similar in process, to inserting locks to parallelize

an application. While the proper use of locks is certainly

not trivial, they are in common use in concurrent applica-

tions today. Therefore, we feel that, if done at the time of

development, the addition of sequential regions will not

be an overly heavy burden on the application developer.

The other circumstance where Replicant may intro-

duce non-determinism among replicas is by returning

different extrapolated input values in response to system

calls. In these cases, a synchronize syscall hint can be

used to eliminate non-deterministic inputs at the devel-

oper’s request. Similar to the sequential region, the de-

veloper need only insert this hint if the extrapolated in-

put of the system call will affect the application’s output

values. We have added the make sync system call for

use in application annotations. This annotation is only

required before instances of system calls with external

inputs and extrapolated outputs where the application or

a library checks the return value of the system call and

takes some output action based on the return value.

5 Preliminary Results

We study the effectiveness of a 2-replica implementa-

tion of Replicant on six representative threaded appli-
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Figure 3: Performance of Replicant on six representative

threaded applications as compared to 1P and 2P.

cations. We have ported three SPLASH-2 benchmarks

(FFT, LU and WATER-N2), Apache HTTP Server 2.2.3

(with worker Multi-Process Module), Squid Web Proxy

Cache 2.3.STABLE9 (with asynchronous I/O enabled)

and MySQL 5.0.25. All benchmarks were performed

on an Intel Core 2 Duo 2.13GHz machine with 1GB of

memory running Fedora Core 5 on a Gigabit network.

The working set of all benchmarks fit in memory and the

number of threads was increased until the dual proces-

sor vanilla benchmark could no longer utilize any more

CPU time. We note that this does not mean that applica-

tions were necessarily able to utilize both CPUs to their

maximum.

Figure 3 illustrates the performance of Replicant as

compared to unmodified (vanilla) application perfor-

mance on single processor and dual processor configura-

tions. The comparison against the single processor per-

formance is indicative of the case where the vanilla ap-

plication is unable to make use of all processors available

due to lack of sufficient parallelism. This is a reasonable

scenario considering that future processors are projected

to have many cores.

We find that there are three major application-

dependent factors in Replicant performance. The first

is how well the application balances load among threads.

Squid has poor load balance and exhibits poor perfor-

mance, while Apache, a very similar application, has

good load balance and enjoys good performance. The

second is the number of determinism hints that need to

be invoked. MySQL has many sequential regions due

to its frequent use of locks. Since sequential regions

reduce opportunities for concurrency, MySQL experi-

ences higher overhead. Finally, the ratio of user-space

to kernel-space execution will affect application perfor-

mance. Applications that spend much of their time in the

kernel will experience less overhead because many ker-

nel operations are only performed once, where as user

space execution must always be duplicated.

6 Conclusion

By relaxing the determinism requirement among repli-

cas in a redundant execution system, Replicant is able to

provide better security and reliability at a lower cost to

performance than systems that enforce strict determinis-

tic replication of execution.
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