
Reducing the Cost of IT Operations—Is Automation Always the Answer?
Aaron B. Brown and Joseph L. Hellerstein
IBM Thomas J. Watson Research Center

Hawthorne, New York, 10532
{abbrown,hellers}@us.ibm.com

Abstract
The high cost of IT operations has led to an intense fo-
cus on the automation of processes for IT service de-
livery. We take the heretical position that automation
does not necessarily reduce the cost of operations since:
(1) additional effort is required to deploy and maintain
the automation infrastructure; (2) using the automation
infrastructure requires the development of structured in-
puts that have up-front costs for design, implementation,
and testing that are not required for a manual process;
and (3) detecting and recovering from errors in an au-
tomated process is considerably more complicated than
for a manual process. Our studies of several data cen-
ters suggest that the up-front costs mentioned in (2)
are of particular concern since many processes have a
limited lifetime (e.g., 25% of the packages constructed
for software distribution were installed on fewer than
15 servers). We describe a process-based methodology
for analyzing the benefits and costs of automation, and
hence for determining if automation will indeed reduce
the cost of IT operations. Our analysis provides a quan-
titative framework that captures several traditional rules
of thumb: that automating a process is beneficial if the
process has a sufficiently long lifetime, if it is relatively
easy to automate (i.e., can readily be generalized from a
manual process), and if there is a large cost reduction (or
leverage) provided by each automated execution of the
process compared to a manual invocation.

1 Introduction
The cost of information technology (IT) operations
dwarfs the cost of hardware and software, often account-
ing for 50% to 80% of IT budgets [8, 4, 16]. IBM,
HP, and others have announced initiatives to address this
problem. Heeding the call in the 7th HotOS for “futz-
free” systems, academics have tackled the problem as
well, focusing in particular on error recovery and prob-
lem determination. All of these initiatives have a com-
mon message: salvation through automation. This mes-
sage has appeal since automation provides a way to re-
duce labor costs and error rates as well as increase the
uniformity with which IT operations are performed.

After working with corporate customers, service de-
livery personnel, and product development groups, we

have come to question the widely held belief that au-
tomation of IT systems always reduces costs. In fact, our
claim is that automation can increase cost if it is applied
without a holistic view of the processes used to deliver
IT services. This conclusion derives from the hidden
costs of automation, costs that become apparent when
automation is viewed holistically. While automation
may reduce the cost of certain operational processes, it
increases other costs, such as those for maintaining the
automation infrastructure, adapting inputs to structured
formats required by automation, and handling automa-
tion failures. When these extra costs outweigh the bene-
fits of automation, we have a situation described by hu-
man factors experts as an irony of automation—a case
where automation intended to reduce cost has ironically
ended up increasing it [1].

To prevent these ironies of automation, we must take
a holistic view when adding automation to an IT system.
This requires a technique for methodically exposing the
hidden costs of automation, and an analysis that weighs
these costs against the benefits of automation. The ap-
proach proposed in this paper is based on explicit rep-
resentations of IT operational processes and the changes
to those processes induced by automation. We illustrate
our process-based approach using a running example of
automated software distribution. We draw on data col-
lected from several real data centers to help illuminate
the impact of automation and the corresponding costs,
and to give an example of how a cost-benefit analysis
can be used to determine when automation should and
should not be applied. Finally, we broaden our analysis
into a general discussion of the trade-offs between man-
ual and automated processes and offer guidance on the
best ways to apply automation.

2 Hidden Costs of Automation
We begin our discussion of the hidden costs of automa-
tion by laying out a methodical approach to exposing
them. Throughout, we use software distribution to server
machines as a running example since the proper man-
agement of server software is a critical part of operating
a data center. Our discussion applies to software pack-
age management on centrally-administered collections
of desktop machines as well. Software distribution in-



 (a) Manual Software Distribution

S
ys

te
m

 A
dm

in
is

tr
at

or


Obtain Source
Distribution

Validate
Prerequisites

Configure
Installer

Perform
Installation

Install
Succeeds?

Verify
Installation OK?

Remove
Installation
Remnants

Fix Problem

SW Request

Y Y

N N

Prereqs
Met?

Y

Fail

N

More
Targets?

Success

Y

N

 (b) Automated Software Distribution

Operation

A
ut

o
m

a
tio

n
In

fr
as

tr
u

ct
u

re


M
a

in
ta

in
e

r
S

o
ftw

a
re


P

a
ck

ag
e

r
S

ys
te

m
 A

d
m

in
is

tr
a

to
r

SW Req.

Obtain
Source
Dist’n

Perform
Pilot

Install

Create
Deployment

Wrapper

Identify
Customizations

OK?Test
Wrapper

Publish
Package

Invoke
Installer

Check
Results OK?

Research
Available
Packages

Req.
Package
Exists?

Diagnose
Problem

Invoke
Wrapper

Validate
Prereqs.

Configure
Installer

Perform
Installation

Verify
Installation

Select
Targets

OK? Log
Results

Y

Y

N

N

Remove Install
Remnants

End

Package
Problem?

Diagnose
Endpoint

Repair
Endpoint

Maintenance

Y

Y

N

N

Automation
Update

Upgrade
Distribution

Servers

Upgrade
Endpoints

Identify
Affected

Packages

Wrapper
Change

Required?
End

N

Y

Y

N

Y

N

Prereqs
Met?

Figure 1: Manual and automated processes for software distribution. Boxes with heavy lines indicate process steps that
contribute to variable (per-target) costs, as described in Section 3.

volves the selection of software components and their
installation on target machines. We use the term “pack-
age” to refer to the collection of software resources to in-
stall and the step-by-step procedure (process) by which
this is done.

Our approach is based on the explicit representation of
the processes followed by system administrators (SAs).
These processes may be formal, e.g. derived from ITIL
best practices [13], or informal, representing the ad-hoc
methods used in practice. Regardless of their source, the
first step is to document the processes as they exist be-
fore automation. Our approach accomplishes this with
“swim-lane” diagrams—annotated flowcharts that allo-
cate process activities across roles (represented as rows)
and phases (represented as columns). Roles are typi-
cally performed by people (and can be shared or consol-
idated); we include automation as its own role to reflect
activities that have been handed over to an automated
system.

Figure 1(a) shows the “swim-lane” representation for
the manual version of our example software distribu-
tion process. In the data centers we studied, the SA
responds to a request to distribute software as follows:

(1) the SA obtains the necessary software resources; (2)
for each server, the SA repeatedly does the following—
(2a) checks prerequisites such as the operating system
release level, memory requirements, and dependencies
on other packages; (2b) configures the installer, which
requires that the SA determine the values of various pa-
rameters such as the server’s IP address and features to
be installed; and (2c) performs the install, verifies the
result, and handles error conditions that arise. While
Figure 1(a) abstracts heavily to illustrate similarities be-
tween software installs, we underscore that a particular
software install process has many steps and checks that
typically make it quite different from other seemingly
similar software installs (e.g., which files are copied to
what directories, pre-requisites, and the setting of con-
figuration parameters).

Now suppose that we automate the process in Fig-
ure 1(a) so as to reduce the work done by the SA. That
is, in the normal case, the SA selects a software pack-
age, and the software distribution infrastructure handles
the other parts of the process flow in Figure 1(a). Have
we simplified IT operations?

No. In fact, we may have made IT operations more



complicated. To understand why, we turn to our process-
driven analysis, and update our process diagram with the
changes introduced by the automation. In the software
distribution case, the first update is simple: we move the
automated parts of Figure 1(a) from the System Admin-
istrator role to a new Automation role. But that change
is not the only impact of the automation. For one thing,
the automation infrastructure is another software system
that must itself be installed and maintained. (For sim-
plicity, we assume throughout that the automation in-
frastructure has already been installed, but we do con-
sider the need for periodic updates and maintenance.)
Next, using the automated infrastructure requires that
information be provided in a structured form. We use
the term software package to refer to these structured in-
puts. These inputs are typically expressed in a formal
structure, which means that their creation requires extra
effort for package design, implementation, and testing.
Last, when errors occur in the automated case, they hap-
pen on a much larger scale than for a manual approach,
and hence additional processes and tools are required to
recover from them.

These other impacts manifest as additional process
changes, namely extra roles and extra operational
processes to handle the additional tasks and activities in-
duced by the automation. Figure 1(b) illustrates the end
result for our software distribution example. We see that
the automation (the bottom row) has a flow almost iden-
tical to that in Figure 1(a). However, additional roles
are added for care and feeding of the automation. The
responsibility of the System Administrator becomes the
selection of the software package, the invocation of the
automation, and responding to errors that arise. Since
packages must be constructed according to the require-
ments of the automation, there is a new role of Software
Packager. The responsibility of the packager is to gener-
alize what the System Administrator does in the manual
process so that it can be automated. There is also a role
for an Infrastructure Maintainer who handles operational
issues related the software distribution system (e.g., en-
suring that distribution agents are running on endpoints)
and the maintenance of the automation infrastructure.

From inspection, it is apparent that the collection of
processes in Figure 1(b) is much more complicated than
the single process in Figure 1(a). Clearly, such addi-
tional complexity is unjustified if we are installing a sin-
gle package on a single server. This raises the following
question—at what point does automation stop adding
cost and instead start reducing cost?

3 To Automate or Not To Automate
To answer this question, we first characterize activities
within a process by whether they are used for setup (the
outer part of a loop) or per-instance (the inner part of the

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Targets

C
um

ul
at

iv
e 

Fr
ac

tio
n 

of
 P

ac
ka

ge
s

Figure 2: Cumulative distribution of the number of targets
(servers) on which a software package is installed over its life-
time in several data centers. A larger number of packages are
installed on only a small number of targets.

loop). Boxes with heavy outlines in Figure 1 indicate the
per-instance activities. Note that in Figure 1(b), most of
the per-instance activities are done by the automation.
We refer to the setup or up-front costs as fixed costs,
and the per-instance cost as variable costs.

A rule-of-thumb for answering the question above is
that automation is desirable if the variable cost of the
automated process is smaller than the variable cost of
the manual process. But this is wrong.

One reason why this is wrong is that we cannot ig-
nore fixed costs for automating processes with a limited
lifetime. IT operations has many examples of such lim-
ited lifetime processes. Indeed, experience with trying to
capture processes in “correlation rules” used to respond
to events (e.g., [10, 5]) has shown that rules (and hence
processes) change frequently because of changes in data
center policies and endpoint characteristics.

Our running example of software distribution is an-
other illustration of limited lifetime processes. As indi-
cated before, a software package describes a process for
a specific install; it is only useful as long as that install
and its target configuration remain current. The fixed
cost of building a package must be amortized across the
number of targets to which it is distributed over its life-
time. Figure 2 plots the cumulative fraction of the num-
ber of targets of a software package based on data col-
lected from a several data centers. We see that a large
fraction of the packages are distributed to a small num-
ber of targets, with 25% of the packages going to fewer
than 15 targets over their lifetimes.

There is a second reason why the focus on variable
costs is not sufficient. It is because the focus is on
the variable costs of successful results. By considering
the complete view of the automated processes in Fig-
ure 1(b), we see that more sophistication and people are
required to address error recovery for automated soft-



ware distribution than for the manual process. Using the
same data from which Figure 2 is extracted, we deter-
mined that 19% of the requested installs result in failure.
Furthermore, at least 7% of the installs fail due to issues
related to configuration of the automation infrastructure,
a consideration that does not exist if a manual process
is used. This back-of-the envelope analysis underscores
the importance of considering the entire set of process
changes that occur when automation is deployed, partic-
ularly the extra operational processes created to handle
automation failures. It also suggests the need for a quan-
titative model to determine when to automate a process.

Motivated by our software distribution example, we
have developed a simple version of such a model. Let
Cm

f be the fixed cost for the manual process and Cm
v

be its variable cost. We use N to denote lifetime of
the process (e.g., a package is distributed to N targets).
Then, the total cost of the manual process is

Cm = Cm
f + NCm

v

Similarly, there are fixed and variable costs for the auto-
mated process. However, we observe from Figure 1(a)
and Figure 1(b) that the fixed costs of the manual process
are included in the fixed cost of the automated process.
We use Ca

f to denote the additional fixed costs required
by the automated process, and we use Ca

v to denote the
variable cost of the automated process. Then, the total
cost of the automated process is

Ca = Cm
f + Ca

f + NCa
v

The costs can be obtained through billing records, as we
have done at IBM. N depends on the packages being
distributed and the configuration of potential targets.

We can make some qualitative statements about these
costs. In general, we expect that Cm

v > Ca
v ; otherwise

there is little point in considering automation. Also, we
expect that Cm

v ≤ Ca
f since careful design and testing

are required to build automation, which requires per-
forming the manual process one or more times. Sub-
stituting into the above equations and solving for N, we
can find the crossover point where automation becomes
economical. That is, where Ca < Cm.

N >
Ca

f

Cm
v − Ca

v

.

This inequality provides insights into the importance
of considering when to automate a process. IBM inter-
nal studies of software distribution have found that Ca

f

can exceed 100 hours for complex packages. Our intu-
ition based on a review of these data is that for complex
installs, Cm

v is in the range of 10 to 20 hours, and Ca
v is

in the range of 1 to 5 hours (mostly because of error re-
covery). Assuming that salaries are the same for all the

 1/N

Auto
mate

d

Man
ua

l
 1

Automation Leverage (L)

A
m

or
tiz

ed
 G

en
er

al
iz

at
io

n 
D

iff
ic

ul
ty

 (G
/N

)

 1

Figure 3: Preference regions for automated and manual
processes. Automated processes are preferred if there is a
larger leverage for automation and/or if there is a smaller
(amortized) difficulty of generalizing the manual procedure to
an automated procedure (G/N ).

staff involved, these numbers indicate that there should
be approximately 5 to 20 targets for automated software
distribution to be cost effective. In terms of the data in
Figure 2, these numbers mean that from 15% to 30% of
the installs should not have been automated.

The foregoing cost models can be generalized fur-
ther to obtain a broader understanding of the trade-off
between manual and automated processes. In essence,
this is a trade-off between the leverage provided by au-
tomation versus the difficulty of generalizing a manual
process to an automated process.

Leverage L describes the factor by which the variable
costs are reduced by using automation. That is, L =
Cm

v

Ca
v
≥ 1.

The generalization difficulty G relates to the chal-
lenges involved with designing, implementing, and test-
ing automated versions of manual processes. Quanti-
tatively, G is computed as the ratio between the fixed
cost of automation and the variable cost of the manual
process: G =

Ca
f

Cm
v

≥ 1. The intuition behind G is that,
to construct an automated process, it is necessary to per-
form the manual process at least once. Any work beyond
that test invocation of the manual process will result in a
larger G. Substituting and solving, we find that

G

N
= 1 −

1

L

We refer to G/N as the amortized difficulty of gen-
eralization since the generalization difficulty is spread
across N invocations of the automated process.

Figure 3 plots G/N versus L. We see that the ver-
tical axis (G/N ) ranges from 1/N to 1 since G ≥ 1
and G ≤ N . The latter constraint arises because there
is little point in constructing automation that is G times
more costly than a manual process if the process will
only be invoked N < G times. The figure identifies re-



gions in the (L, G/N ) space in which manual and auto-
mated processes are preferred. We see that if automation
leverage is large, then an automated process is cost effec-
tive even if amortized generalization difficulty is close
to 1. Conversely, if amortized generalization difficulty
is small (close to 1/N ), then an automated process is
cost effective even if automation leverage is only slightly
more than 1. Last, having a longer process lifetime N
means that G/N is smaller and hence makes an auto-
mated process more desirable.

This analysis suggests three approaches to reducing
the cost of IT operations through automation: reduce
the generalization difficulty G, increase the automation
leverage L, and increase the process lifetime N . In
the case of software distribution, the most effective ap-
proaches are to increase N and to reduce G. We can
increase N by making the IT environment more uni-
form in terms of the types of hardware and software
so that the same package can be distributed to more
targets. However, two issues arise. First, increasing
N has the risk of increasing the impact of automation
failures, causing a commensurate decrease in L. Sec-
ond, attempts to increase homogeneity may encounter
resistance—ignoring a lesson learned from the transi-
tion from mainframes to client-server systems in the late
1980s, which was in large part driven by the desire of
departments to have more control over their computing
environments and hence a need for greater diversity.

To reduce cost by reducing G, one approach is to
adopt the concept of mass customization developed in
the manufacturing industry (e.g., [9]). This means de-
signing components and processes so as to facilitate cus-
tomization. In terms of software distribution, this might
mean developing re-usable components for software
packages. It also implies improving the reusability of
process components—for example by standardizing the
manual steps used in software package installations—
so that a given automation technology can be directly
applied to a broader set of situations. This concept of
mass-customizable automated process components rep-
resents an important area of future research.

Mass customization can also be improved at the sys-
tem level by having target systems that automatically
discover their configuration parameters (e.g., from a reg-
istry at a well known address). This would mean that
many differences between packages would be elimi-
nated, reducing G and potentially leading to consolida-
tion of package versions, also increasing N .

4 Related Work
The automation of IT operations has been a focus of at-
tention for the last two decades [10], with on-going de-
velopment of new technologies [5, 19, 2] and dozens of
automation related products on the market [18]. More

recently, there has been interest in process automation
through workflow based solutions [6, 17, 14]. How-
ever, none of these efforts address the question of when
automation reduces cost. There has been considerable
interest in manufacturing in business cases for automa-
tion [12, 3, 7], and even an occasional study that ad-
dresses automation of IT operations [11, 15]. However,
these efforts only consider the automation infrastructure,
not whether a particular process with a limited lifetime
should be automated.

5 Next Steps
One area of future work is to explore a broader range of
IT processes so as to assess the generality of the automa-
tion analysis framework that we developed in the context
of software distribution. Candidate processes to study
include incident reporting and server configuration. The
focus of these studies will be to assess (a) what automa-
tion is possible, (b) what additional processes are needed
to support the automation, and (c) the fixed and variable
costs associated with using automation on an on-going
basis. Our current hypothesis for (b) is that additional
processes are required for (1) preparing inputs, (2) in-
voking and monitoring the automation, (3) handling au-
tomation failures, and (4) maintaining the automation in-
frastructure. A particularly interesting direction will be
to understand if there are any common patterns to the
structure and cost of these additional processes across
automation domains.

Thus far, we have discussed what automation should
be done. Another consideration is the adoption of au-
tomation. Our belief is that SAs require a level of trust
in the automation before the automation will be adopted.
Just as with human relationships, trust is gained through
a history of successful interactions. However, creating
such a history is challenging because many of the tech-
nologies for IT automation are immature. As a result,
care must be taken to provide incremental levels of au-
tomation that are relatively mature so that SA trust is
obtained. One further consideration in gaining trust in
automation is that automation cannot be a “black box”
since gaining trust depends in part on SAs having a clear
understanding of how the automation works.

The history of the automobile provides insight into the
progression we expect for IT automation. In the early
twentieth century, driving an automobile required con-
siderable mechanical knowledge because of the need to
make frequent repairs. However, today automobiles are
sufficiently reliable so that most people only know that
automobiles often need gasoline and occasionally need
oil. For the automation of IT operation, we are at a stage
similar to that of the early days of the automobile in that
most computer users must also be system administrators
(or have one close at hand). IT operations will have ma-



tured when operational details need not be surfaced to
end users.

6 Conclusions
Recapping our position, we argue against the widely-
held belief that automation always reduces the high costs
of IT operations. Our argument rests on three pillars:

1. Introducing automation creates extra processes to
deploy and maintain that automation, as we saw in
comparing manual and automated software distrib-
ution processes.

2. Automation requires structured inputs (e.g., pack-
ages for a software distribution system) that in-
troducing extra up-front (fixed) costs for design,
implementation, and testing compared to manual
processes. These fixed costs are a significant con-
sideration in IT operations since many processes
have a limited lifetime (e.g., a software package is
installed on only a limited number of targets). In-
deed, our studies of automated software distribu-
tion in several data centers found that 25% of the
software packages were installed on fewer than 15
servers.

3. Detecting and removing errors from an automated
process is considerably more complicated than for
a manual process. Our software distribution data
suggest that errors in automation can be frequent—
19% of the requested installs failed in the data cen-
ters we studied.

Given these concerns, it becomes much less clear
when automation should be applied. Indeed, in our
model-driven analysis of software distribution in several
large data centers, we found that 15–30% of automated
software installs may have been less costly if performed
Manually. Given that IT operations costs dominate IT
spending today, it is essential that the kind of process-
based analysis we have demonstrated here become an
integral part of the decision process for investing in and
deploying IT automation. We encourage the research
community to focus effort on developing tools and more
sophisticated techniques for performing such analyses.

References
[1] L. Bainbridge. The ironies of automation. In J. Ras-

mussen, K. Duncan, and J. Leplat, editors, New Technol-
ogy and Human Error. Wiley, 1987.

[2] G. Candea, E. Kiciman, S. Kawamoto, and A. Fox. Au-
tonomous recovery in componentized internet applica-
tions. Cluster Computing Journal, 2004.

[3] T.J. Caporello. Staying ahead in manufacturing and
technology-the development of an automation cost of
ownership model and examples. IEEE International
Symposium on Semiconductor Manufacturing, 1999.

[4] D. Cappuccio, B. Keyworth, and W. Kirwin. Total
Cost of Ownership: The Impact of System Management
Tools. Technical report, The Gartner Group, 2002.

[5] G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kines-
thetics extreme: An external infrastructure for monitor-
ing distributed legacy systems. In Fifth Annual Interna-
tional Active Middleware Workshop, 2003.

[6] A. Keller, J.L. Hellerstein, J.L. Wolf, K.-L. Wu, and
V. Krishnan. The champs system: Change management
with planning and scheduling. In IEEE/IFIP Network
Operations and Management, April 2004.

[7] N.S. Markushevich, I.C. Herejk, and R.E. Nielsen. Func-
tion requirements and cost-benefit study for distribution
automation at B.C. Hydro. IEEE International Transac-
tions on Power Systems, 9(2):772–781, 1994.

[8] MicroData. The Hidden Cost of Your Network. Techni-
cal report, MicroData, 2002.

[9] J.H. Mikkola and T. Skjott-Larsen. Supply-chain inte-
gration: implications for mass customization, modular-
izaiton and postponement strategies. Production Plan-
ning and Control, 15(4):352–361, 2004.

[10] K.R. Milliken, A.V. Cruise, R.L. Ennis, A.J. Finkel,
J.L. Hellerstein, D.J. Loeb, D.A. Klein, M.J. Masullo,
H.M. Van Woerkom, and N.B. Waite. YES/MVS and
the autonomation of operations for large computer com-
plexes. IBM Systems Journal, 25(2), 1986.

[11] NetOpia. netoctopus: The comprehensive system ad-
ministration solution. http://www.netopia.com/
software/pdf/netO-ROI.pdf, 2005.

[12] C.A. Niznik. Cost-benefit analysis for local inte-
grated facsimile/data/voice packet communication net-
works. IEEE Transactions on Communications, 30(1),
January 1982.

[13] UK Office of Government Commerce. Best Practice for
Service Support. IT Infrastructure Library Series. Sta-
tionery Office, 1st edition, 2000.

[14] Peregrine. Service center. http://www.
peregrine.com/products/servicecenter.
asp, 2005.

[15] M. H. Sherwood-Smith. Can the benefits of integrated
information systems (IIS) be costed. Internation Confer-
ence on Information Technology in the Workplace, pages
11–18, 1991.

[16] Serenity Systems. Managed Clinent Impact
on the Cost of Computing. http://www.
serenity-systems.com, 2005.

[17] G. Valetto and G. Kaiser. A case study in software adap-
tation. In WOSS ’02: Proceedings of the first workshop
on Self-healing systems, pages 73–78, 2002.

[18] ComputerWorld Staff Writer. E-business buyers’ guide.
In www.computerworld.com, 2005.

[19] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and
D. Ohsie. High speed and robust event correlation. IEEE
Communications Magazine, 34(5):82–90, 1996.


