
Human-Aware Computer System Design ∗

Ricardo Bianchini, Richard P. Martin, Kiran Nagaraja, Thu D. Nguyen, Fábio Oliveira
Department of Computer Science, Rutgers University, Piscataway, NJ 08854

{ricardob, rmartin, knagaraj, tdnguyen, fabiool}@cs.rutgers.edu

Abstract

In this paper, we argue that human-factors studies are
critical in building a wide range of dependable systems.
In particular, only with a deep understanding of the
causes, types, and likelihoods of human mistakes can we
build systems that prevent, hide, or at least tolerate hu-
man mistakes by design. We propose several research di-
rections for studying how humans impact availability in
the context of Internet services. In addition, we describe
validation as one strategy for hiding human mistakes in
these systems. Finally, we propose the use of operator,
performance, and availability models to guide human ac-
tions. We conclude with a call for the systems commu-
nity to make the human an integral, first-class concern in
computer system design.

1 Introduction

As computers permeate all aspects of our lives, a wide
range of computer systems must achieve high depend-
ability, including availability, reliability, and security.
Unfortunately, few current computer systems can legit-
imately claim to be highly dependable. Further, many
studies over the years have empirically observed that hu-
man mistakes are a large source of unavailability in com-
plex systems [7, 13, 15, 16]. We suspect that many secu-
rity vulnerabilities are also the result of mistakes, but are
only aware of one study that touches on this issue [15].

To address human mistakes and reduce operational
costs, researchers have recently started to design and im-
plement autonomic systems [9]. Regardless of how suc-
cessful the autonomic computing effort eventually be-
comes, humans will always be part of the installation
and management of complex computer systems at some
level. For example, humans will likely always be respon-
sible for determining a system’s overall policies, for ad-

∗This research was partially supported by NSF grants #EIA-
0103722, #EIA-9986046, and #CCR-0100798.

dressing any unexpected behaviors or failures, and for
upgrading software and hardware. Thus, human mis-
takes are inevitable.

In this paper, we argue that human mistakes are
so common and harmful because computer system de-
signers have consistently failed to consider the human-
system interaction explicitly. There are at least two rea-
sons for this state of affairs. First, dependability is often
given a lower priority than other concerns, such as time-
to-market, system features, performance, and/or cost,
during the design and implementation phases. As a re-
sult, improvements in dependability come only after ob-
serving failures of deployed systems. Indeed, one need
not look past the typical desktop to see the results of this
approach. Second, understanding human-system inter-
actions is time-consuming and unfamiliar, in that it re-
quires collecting and analyzing behavior data from ex-
tensive human-factors experiments.

Given these observations, we further argue that de-
pendability and, in particular, the effect of humans on
dependability should become a first-class design concern
in complex computer systems. More specifically, we be-
lieve that human-factors studies are necessary to iden-
tify and understand the causes, types, and likelihoods of
human mistakes. By understanding human-system inter-
actions, designers will then be able to build systems to
avoid, hide, or tolerate these mistakes, resulting in sig-
nificant advances in dependability.

In the remainder of the paper, we first briefly consider
how designers of safety-critical systems have dealt with
the human factor in achieving high dependability. We
also touch on some related work. After that, we propose
several research directions for studying how human mis-
takes impact availability in the context of Internet ser-
vices. We then describe how validation can be used to
hide mistakes and guidance to prevent or at least mitigate
the impact of mistakes. Finally, we speculate on how
a greater understanding of human mistakes can improve
the dependability of other areas of computer systems.



2 Background and Related Work

Given the prominent role of human mistakes in system
failures, human-factors studies have long been an im-
portant ingredient of engineering safety-critical systems
such as air traffic and flight control systems, e.g., [6, 18].
In these domains, the enormous cost of failures requires
a significant commitment of resources to accounting for
the human factor. For example, researchers have often
sought to understand the mental states of human opera-
tors in detail and create extensive models to predict their
actions. Our view is that system designers must account
for the human factor to achieve high dependability but at
lower costs than for safety-critical systems. We believe
that this goal is achievable by focusing on human mis-
takes and their impact on system dependability, rather
than attempting a broader understanding of human cog-
nitive functions.

Our work is complementary to research on Human-
Computer Interaction (HCI), which has traditionally fo-
cused on ease-of-use and cognitive models [17], in that
we seek to provide infrastructural support to ease the
task of operating highly available systems. For exam-
ple, Barrett et al. report that one reason why operators
favor using command line interfaces over graphical user
interfaces is that the latter tools are often less trustworthy
(e.g., their depiction of system state is less accurate) [1].
This suggests that HCI tools will only be effective when
built around appropriate infrastructure support. Our vi-
sion of a runtime performance model that can be used
to predict the impact of operator actions (Section 5) is
an example of such infrastructural support. Further, our
validation infrastructure will provide a “safety net” that
can hide human mistakes caused by inexperience, stress,
carelessness, or fatigue, which can occur even when the
HCI tools provide accurate information.

Curiously, we envision guidance techniques that may
even appear to conflict with the goals of HCI at first
glance. For example, we plan to purposely add “inertia”
to certain operations to reduce the possibility of serious
mistakes, making it more difficult or time-consuming to
perform these operations. Ultimately however, our tech-
niques will protect systems against human mistakes and
so they are compatible with the HCI goals.

Our work is related to several recent studies that have
gathered empirical data on operator behaviors, mistakes,
and their impact on systems [1, 16]. Brown and Patterson
have proposed a methodology to consider humans in de-
pendability benchmarking [4] and studied the impact of
undo, an approach that is orthogonal (and complemen-
tary) to our validation and guidance approach, on repair
times for several faults injected into an email service [3].
To our knowledge, however, we were the first group to
publish detailed data on operator mistakes [15].

Our work is also related to no-futz computing [8].
However, we focus on increasing availability, whereas
no-futz computing seeks to reduce futzing and costs.

3 Operator Mistakes

In order to build systems that reduce the possibility for
operator mistakes, hide the mistakes, or tolerate them, we
must first better understand the nature of mistakes. Thus,
we believe that the systems community must develop
common benchmarks and tools for studying human mis-
takes [4]. These benchmarks and tools should include
infrastructure for experiment repeatability, e.g. instru-
mentation to record human action logs that can later be
replayed. Finally, we need to build a shared body of
knowledge on what kind of mistakes occur in practice,
what their causes are, and how they impact performance
and availability.

We have already begun to explore the nature of oper-
ator mistakes in the context of a multi-tier Internet ser-
vice. In brief, we asked 21 volunteer operators to per-
form 43 benchmark operational tasks on a three-tier auc-
tion service. Each of the experiments involved either a
scheduled-maintenance task (e.g., upgrading a software
component) or a diagnose-and-repair task (e.g., discov-
ering a disk failure and replacing the disk). To observe
operator actions, we asked the operators to use a shell
that records and timestamps every command typed into
it and the corresponding result. Our service also recorded
its throughput throughout each experiment so that we
could later correlate mistakes with their impact on ser-
vice performance and availability. Finally, one of our
team members personally monitored each experiment
and took notes to ease the interpretation of the logged
commands and to record observables not logged by our
infrastructure, such as edits of configuration files.

We observed a total of 42 mistakes, ranging from soft-
ware misconfiguration, to fault misdiagnosis, to software
restart mistakes. We also observed that a large number of
mistakes (19) led to a degradation in service throughput.
These results can now be used to design services that can
tolerate or hide the mistakes we observed. For example,
we were able to evaluate a prototype of our validation
approach, which we describe in the next section.

We learned several important lessons from this expe-
rience: First, although we scripted much of the setup
for each experiment, most of the scripts were not fully
automated. This was a mistake. On several occasions,
we only caught mistakes in the manual part of the setup
just before the experiment began. Finding human sub-
jects is too costly to risk invalidating any experiment in
this manner. Second, infrastructural support for view-
ing the changes made to configuration files would have
been very helpful. Third, we used a single observer for



all of our experiments, which in retrospect, was a good
decision because it kept the human recorded data as con-
sistent as possible across the experiments. However, on
several occasions, our observer scheduled too many ex-
periments back-to-back, making fatigue a factor in the
accuracy of the recorded observations. Fourth, our study
was time-consuming. Even seemingly simple tasks may
take operators a long time to complete; our experiments
took an average of 1 hour and 45 minutes each. We also
ran 6 warm up experiments to allow some of the novice
operators to become more familiar with our system; these
took on average 45 minutes each. Combining the differ-
ent sources of data and analyzing them were also effort-
intensive. Finally, enlisting volunteer operators was not
an easy task. Indeed, one of the shortcomings of our
study is the dearth of experienced operators among our
volunteer subjects.

Despite these difficulties, our study (along with [1, 3])
proves that performing human-factor studies is not in-
tractable for systems researchers. In fact, these stud-
ies should become easier to perform over time, as re-
searchers share their tools, data, and experience with
human-factor studies.

3.1 Open Issues

While our initial study represents a significant first step,
it also raises many open issues.

Effects of long-term interactions. The short duration
of our experiments meant that we did not account for a
host of effects that are difficult to observe at short time-
scales. For example, the effect of increasing familiarity
with the system, the impact of user expectations, systolic
load variations, stress and fatigue, and the impact of sys-
tem evolution as features are added and removed.

Impact of experience. 14 of our 21 volunteer operators
were graduate students with limited experience with the
operation of computing services; 11 of the 14 were clas-
sified as novices, while 3 were classified as intermediates
(on a three-tier scale: novice, intermediate, expert).

Impact of tools and monitoring infrastructures. Our
study did not include any sophisticated tools to help with
the service operation; we only provided our volunteers
with a throughput visualization tool. Operators of real
services have a wider set of monitoring and maintenance
tools at their disposal.

Impact of complex tasks. Our experiments covered a
small range of fairly simple operator tasks. Difficult
tasks such as dealing with multiple overlapping compo-
nent faults and changing the database schema that intu-
itively might be sources of more serious mistakes have
not been studied.

Impact of stress. Many mistakes happen when humans
are operating under stress, such as when trying to repair
parts of a site that are down or under attack. Our initial
experiments did not consider these high-stress situations.

Impact of realistic workloads. Finally, the workload of-
fered to the service in our experiments was generated by
a client emulator. It is unclear whether the emulator ac-
tually behaves as human users would and whether client
behavior has any effect on operator behavior.

3.2 Current and Future Work

Encouraged by our positive initial experience, we are
currently planning a much more thorough study of opera-
tor actions and mistakes. In particular, we plan to explore
three complimentary directions: (1) survey and interview
experienced operators, (2) improve our benchmarks and
run more experiments, and (3) run and monitor all as-
pects of a real, live service for at least one year. The
surveys and interviews will unearth the problems that af-
flict experienced operators even in the presence of pro-
duction software and hardware and sophisticated support
tools. This will enable us to design better benchmarks as
well as guide our benchmarking effort to address areas
of maximum impact. Running a live service will allow
us to train the operators extensively, observe the effects
of experience, stress, complex tasks, and real workloads,
and study the efficacy of software designed to prevent,
hide, or tolerate mistakes.

We have started this research by surveying profes-
sional network and database administrators to charac-
terize the typical administration tasks, testing environ-
ments, and mistakes. Thus far, we have received 41 re-
sponses from network administrators and 51 responses
from database administrators (DBAs). Many of the re-
spondents seemed excited by our research and provided
extensive answers to our questions. Thus, we believe
that the challenge of recruiting experienced operators for
human-factor studies is surmountable with an appropri-
ate mix of financial rewards and positive research results.

A synopsis of the DBAs’ responses follows. All re-
spondents have at least 2 years of experience, with 71%
of them having at least 5 years of experience. The most
common tasks, accounting for 50% of the tasks per-
formed by DBAs, relate to recovery, performance tun-
ing, and database restructuring. Interestingly, only 16%
of the DBAs test their actions on an exact replica of the
online system. Testing is performed offline, manually
or via ad-hoc scripts, by 55% of the DBAs. Finally,
DBA mistakes are responsible (entirely or in part) for
roughly 80% of the database administration problems
reported. The most common mistakes are deployment,
performance, and structure mistakes, all of which oc-
cur once per month on average. The current differences



and separation between offline testing and online envi-
ronments are cited as two of the main causes of the most
frequent mistakes. These results further motivate the val-
idation and guidance approaches discussed next.

4 Validation

In this section, we describe validation as one approach
for hiding mistakes. Specifically, we are prototyping a
validation environment that allows operators to validate
the correctness of their actions before exposing them to
clients [15]. Briefly, our validation approach works as
follows. First, each component that will be affected by
an operator action is taken offline, one at a time. All
requests that would be sent to the component are redi-
rected to components that provide the same functionality
but that are unaffected by the operator action. After the
operator action has been performed, the affected compo-
nent is brought back online but is placed in a sand-box
and connected to a validation harness. The validation
harness consists of a library of real and proxy compo-
nents that can be used to form a virtual service around the
component under validation. The harness requires only a
few machines and, thus, has negligible resource require-
ments for real services. Together, the sand-box and val-
idation harness prevent the component, called masked
component, from affecting the processing of client re-
quests while providing an environment that looks exactly
like the live environment.

The system then uses the validation harness to com-
pare the behavior of the component affected by the oper-
ator action against that of a similar but unaffected com-
ponent. If this comparison fails, the system alerts the op-
erator before the masked component is placed in active
service. The comparison can either be against another
live component, or against a previously collected trace.
After the component passes the validation process, it is
migrated from the sand-box into the live operating envi-
ronment without any changes to its configurations.

Using our prototype validation infrastructure, we were
able to detect and hide 66% of the mistakes we ob-
served in our initial human-factors experiments. A de-
tailed evaluation of our prototype can be found in [15].

4.1 Open Issues

Although our validation prototype represents a good first
step, we now discuss several open issues.

Isolation. A critical challenge is how to isolate the
components from each other yet allow them to be mi-
grated between live and validation environments with no
changes to their internal state or to external configuration
parameters, such as network addresses. We can achieve

this isolation and transparent migration at the granularity
of an entire node by running nodes over a virtual net-
work, yet for other components this remains a concern.

State management. Any validation framework is faced
with two state management issues: (1) how to start up
a masked component with the appropriate internal state;
and (2) how to migrate a validated component to the on-
line system without migrating state that was built up dur-
ing validation but is not valid for the live service.

Bootstrapping. A difficult open problem for validation
is how to check the correctness of a masked component
when there is no component or trace to compare against.
This problem occurs when the operator action correctly
changes the behavior of the component for the first time.

Non-determinism. Validation depends on good com-
parator functions. Exact-match comparator functions
are simple but limiting because of application non-
determinism. For example, ads that should be placed in
a Web page may correctly change over time. Thus, some
relaxation in the definition of similarity is often needed,
yet such relaxation is application-specific.

Resource management. Regardless of the validation
technique and comparator functions, validation retains
resources that could be used more productively when no
mistakes are made. Under high load, when all available
resources should be used to provide a better quality of
service, validation attempts to prevent operator-induced
service unavailability at the cost of performance. This
suggests that adjusting the length of the validation period
according to load may strike an appropriate compromise
between availability and performance.

Comprehensive validation. Validation will be most ef-
fective if it can be applied to all system components. To
date, our prototyping has been limited to the validation of
Web and application servers in a three-tier service. De-
signing a framework that can successfully validate other
components, such as databases, load balancers, switches,
and firewalls, presents many more challenges.

4.2 Current Work

We are extending our validation framework in two ways
to address some of the above issues. First, we are ex-
tending our validation techniques to include the database,
an important component of multi-tier Internet services.
Specifically, we are modifying a replicated database
framework, called C-JDBC, which allows for mirroring a
database across multiple machines. We are facing several
challenges, such as the management of the large persis-
tent state when bringing a masked database up-to-date,
and the performance consequences of this operation.

Second, we are considering how to apply validation



when we do not have a known correct instance for com-
parison. Specifically, we are exploring an approach we
call model-based validation. The idea is to validate the
system behavior resulting from an operator action against
an operational model devised by the system designer. For
example, when configuring a load balancing device, the
operator is typically attempting to even out the utiliza-
tion of components downstream from the load balancer.
Thus, if we can conveniently express this resulting be-
havior (or model) and check it during validation, we can
validate the operator’s changes to the device configura-
tion. We are currently designing a language that can
express such models for a set of components, including
load balancers, routers, and firewalls.

5 Guidance

In this section, we consider how services can prevent
mistakes by guiding operator actions when validation is
not applicable. For example, when the operator is try-
ing to restore service during a service disruption, he may
not have the leisure of validating his actions since repairs
need to be completed as quickly as possible. Guidance
can also reduce repair time by helping the operator to
more rapidly find and choose the correct actions.

One possible strategy is to use the data gathered in op-
erator studies to create models of operator behaviors and
likely mistakes, and then build services that use these
models together with models of the services’ own behav-
iors to guide operator actions. In particular, we envision
services that monitor and predict the potential impact of
operator actions, provide feedback to the operator before
the actions are actually performed, suggest actions that
can reduce the chances for mistakes, and even require
appropriate authority, such as approval from a senior op-
erator, before allowing actions that might negatively im-
pact the service.

5.1 Future Work

Our guidance strategy relies on the system to maintain
several representations of itself: an operator model, a
performance model, and an availability model.

Operator behavior models. To date, operator model-
ing has mostly been addressed in the context of safety-
critical systems or those where the cost of human mis-
takes can be very high. Rather than follow the more
complex cognitive approaches that have evolved in these
areas (see Section 2), we envision a simpler approach in
which the operator is modeled using stochastic state ma-
chines describing expected operator behavior.

Our intended approach is similar in spirit to the Op-
eration Function Models (OFMs) first proposed in [12].

Like the OFMs, our models will be based on finite au-
tomata with probabilistic transitions of operator actions,
which can be composed hierarchically. However, we do
not plan on representing the mental states of the opera-
tor, nor do we expect to model the operator under normal
operating conditions.

An important open issue to be considered is whether
tasks are repeated enough times with sufficient similar-
ity to support the construction of meaningful models. In
the absence of a meaningful operator model for a certain
task, we need to rely on the other models for guidance.

Predicting the impact of operator actions. Along with
the operator behavior models, we will need a software
monitoring infrastructure for the service to represent it-
self. In particular, it is important for the service to moni-
tor the configuration and utilization of its hardware com-
ponents. This information can be combined with ana-
lytical models of performance and availability similar to
those proposed in [5, 14] to predict the impact of oper-
ator actions. For example, the performance (availabil-
ity) model could estimate the performance (availability)
degradation that would result from taking a Web server
into the validation slice for a software upgrade.

Guiding and constraining operator actions. Using
our operator models, we will develop software to guide
operator actions. Guiding the operator entails assisting
him/her in selecting actions likely to address a specific
scenario. These correspond to what today might be en-
tries in an operations manual. However, unlike a manual,
our guidance system can directly observe current system
state and past action history in suggesting actions.

Our approach to guide the operator uses the behavior
models, the monitoring infrastructure, and the analytical
models to determine the system impact of each action.
Given a set of behavior model transitions, the system can
suggest the operator actions that are least likely to cause a
service disruption or performance degradation. To do so,
the system will first determine the set of components that
are likely to be affected by each operator action and the
probability that these components would fail as a result
of the action. The system will then predict the overall im-
pact for each possible action along with the likelihoods
of each of these scenarios.

To allow operators to deviate from automatic guidance
yet allow a service to still protect itself against arbitrary
behaviors, we will need dampers. The basic idea behind
the damper is to introduce inertia representing the poten-
tial negative impact of an operator’s action in case the
action is a mistake. For example, if an action is likely to
have a small negative (performance or availability) im-
pact on the service, the damper might simply ask the op-
erator to verify that he indeed really wants to perform
that action. On the other hand, if the potential impact



of the operator’s action is great enough, the system may
require the intervention of a senior or “master” opera-
tor before allowing the action to take place. In a similar
vein, Bhaskaran et al. [2] have recently argued that sys-
tems should require acknowledgements from operators
before certain actions are performed. However, the need
for acknowledgements in their proposed systems would
be determined by operator behavior models only.

6 Discussion and Conclusion

The research we have advocated in this paper is appli-
cable to many other areas of Computer Science. In this
section, we motivate how some of these areas may be im-
proved by accounting for human actions and mistakes.

In the area of Operating Systems, little or no attention
has been paid to how mistakes can impact the system.
For example, when adding a device driver, a simple mis-
take can bring down the system. Also, little attention has
been given to the mistakes made when adding and re-
moving application software. Addressing these mistakes
explicitly would increase robustness and dependability.

In the area of Software Engineering, again historically
there has been little direct investigation into why and how
people make mistakes. A small body of work exists in
examining common types of programming errors, yet lit-
tle is understood about the processes that cause there er-
rors. An interesting example of work in this direction is
[10], in which the authors exploit data mining techniques
to detect cut-and-paste mistakes.

Finally, in the field of Computer Networks, the Border
Gateway Routing Protocol suffered from severe disrup-
tions when bad routing entries were introduced, mostly
as a result of human mistakes [11]. Again, addressing hu-
man mistakes explicitly in this context can significantly
increase routing robustness and dependability.

In conclusion, we hope that this paper included
enough motivation, preliminary results, and research di-
rections to convince our colleagues that designers must
consider human-system interactions and the mistakes
that may result explicitly in their designs. In this context,
human-factors studies, techniques to prevent or hide hu-
man mistakes, and models to guide operator actions all
seem required. Failure to address humans explicitly will
perpetuate the current scenario of human-produced un-
availability and its costly and annoying consequences.

References

[1] BARRETT, R., MAGLIO, P. P., KANDOGAN, E., AND BAILEY,
J. Usable Autonomic Computing Systems: the Administrator’s
Perspective. In Proceedings of the 1st International Conference
on Autonomic Computing (ICAC’04) (May 2004).

[2] BHASKARAN, S. M., IZADI, B., AND SPAINHOWER, L. Coor-
dinating Human Operators and Computer Agents for Recovery-

Oriented Computing. In Proceedings of the International Con-
ference on Information Reuse and Integration (Nov. 2004).

[3] BROWN, A. A Recovery-oriented Approach to Dependable Ser-
vices: Repairing Past Errors with System-wide Undo. PhD thesis,
Computer Science Division-University of California, Berkeley,
2003.

[4] BROWN, A., AND PATTERSON, D. A. Including the Human
Factor in Dependability Benchmarks. In Proceedings of the DSN
Workshop on Dependability Benchmarking (June 2002).

[5] CARRERA, E. V., AND BIANCHINI, R. Efficiency vs. Portabil-
ity in Cluster-Based Network Servers. In Proceedings of the 8th
Symposium on Principles and Practice of Parallel Programming
(PPoPP) (June 2001).

[6] GOVINDARAJ, T., WARD, S. L., POTURALSKI, R. J., AND

VIKMANIS, M. M. An Experiment and a Model for the Hu-
man Operator in a Time-Constrained Competing-Task Environ-
ment. IEEE Transactions on Systems Man and Cybernetics 15, 4
(1985).

[7] GRAY, J. Why do Computers Stop and What Can Be Done About
It? In Proceedings of 5th Symposium on Reliability in Distributed
Software and Database Systems (Jan. 1986).

[8] HOLLAND, D. A., JOSEPHSON, W., MAGOUTIS, K., SELTZER,
M. I., STEIN, C. A., AND LIM, A. Research Issues in No-Futz
Computing. In Proceedings of the 9th Workshop on Hot Topics
in Operating Systems (HotOS IX) (May 2003).

[9] KEPHART, J. O., AND CHESS, D. M. The Vision of Autonomic
Computing. IEEE Computer 36, 1 (Jan. 2003).

[10] LI, Z., LU, S., MYAGMAR, S., AND ZHOU, Y. CP-Miner: A
Tool for Finding Copy-paste and Related Bugs in Operating Sys-
tem Code. In Proceedings of the USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI ’04) (Dec. 2004).

[11] MAHAJAN, R., WETHERALL, D., AND ANDERSON, T. Under-
standing BGP Misconfiguration. In Proceedings of the ACM SIG-
COMM ’02 Conference on Communications Architectures and
Protocols (Aug. 2002).

[12] MITCHELL, C. M. GT-MSOCC: A Domain for Research on
Human-Computer Interaction and Decision Aiding in Supervi-
sory Control Systems. IEEE Transactions on Systems, Man and
Cybernetics 17, 4 (1987), 553–572.

[13] MURPHY, B., AND LEVIDOW, B. Windows 2000 Dependability.
Tech. Rep. MSR-TR-2000-56, Microsoft Research, June 2000.

[14] NAGARAJA, K., GAMA, G., MARTIN, R. P., JR., W. M., AND

NGUYEN, T. D. Quantifying Performability in Cluster-Based
Services. IEEE Transactions on Parallel and Distributed Systems
16, 5 (May 2005).

[15] NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MARTIN,
R. P., AND NGUYEN, T. D. Understanding and Dealing with
Operator Mistakes in Internet Services. In Proceedings of the
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’04) (Dec. 2004).

[16] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D.
Why do Internet Services Fail, and What Can Be Done About
It. In Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems (USITS’03) (Mar. 2003).

[17] RASMUSSEN, J. Information Processing and Human-Machine
Interaction: An Approach to Cognitive Engineering. North-
Holland, New York, 1986.

[18] WALDEN, R. S., AND ROUSE, W. B. A Queueing Model of Pi-
lot Decisionmaking in a Multitask Flight Management Situation.
IEEE Transactions on Systems, Man and Cybernetics 8, 12 (Dec.
1978).


