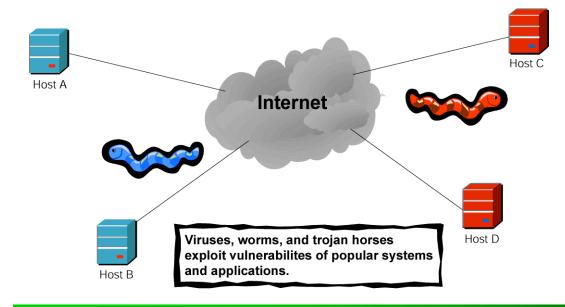
The *Phoenix* Recovery System: Rebuilding from the ashes of an Internet catastrophe


Flavio Junqueira, Ranjita Bhagwan, Keith Marzullo, Stefan Savage, and Geoffrey M. Voelker

University of California, San Diego

Hot Topics in Operating Systems - HotOS'03

Motivation

- Operating systems and applications have vulnerabilities
- A large number of hosts may share the same vulnerability

Some major outbreaks

- Code Red: over 360,000 hosts
- Sapphire: over 75,000 hosts

It is a matter of time until a major incident corrupting data on a large number of hosts happens

Our goal: build a system resilient to major Internet incidents

HotOS'03

Introduction

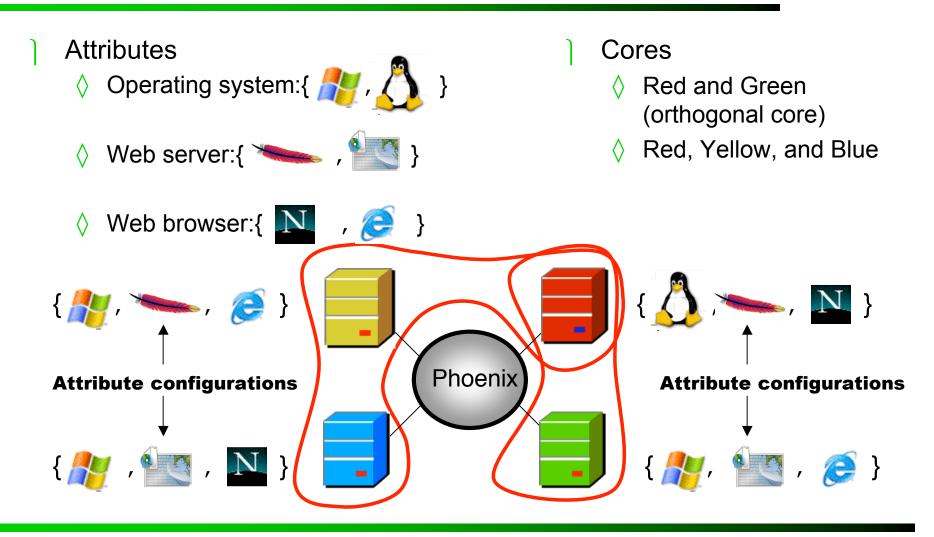
Possible approaches

- Contain Internet pathogens: very challenging [Moore03]
- Recover from catastrophes: replicate data
- Typical replication strategy
 - Assume independent host failures
 - \Diamond Compute a threshold *t* on the number of failures
 - Replicate to this degree
- Shared vulnerabilities --> Dependent host failures
- Independent host failures is not a suitable assumption
- Threshold t on the number of host failures
 - \Diamond From previous events, *t* can be large
 - ♦ Code Red worm infected over 360,000 hosts

What is a good replication strategy?

Desirable properties

- ♦ Enable recovery of data after an Internet catastrophe
- ♦ Small replica sets


Informed strategy for replica placement

- ♦ Sets of hosts that fail independently
- ♦ Hosts executing different sets of software systems

Our replication strategy

- Classes of software systems: attributes
 - \Diamond E.g. Operating system
- Potentially vulnerable software systems: *attribute values*
 - ♦ E.g. Linux, Windows
- Replicate data on a set of hosts that have different values for each attribute: *cores*
- Tolerating the failure of k values
 - No permutation of k attribute values covers all the hosts in a core
 - ♦ Current assumption: k=1
 - O At least two distinct values per attribute in a core
- Definitions
 - ♦ Attribute configuration: attribute values of a host
 - Oiversity: distribution of attribute configurations

An example

In this work...

Feasibility of this approach

- What is the impact of diversity on storage overhead and load?
- Simulations
 - \Diamond Levels of diversity
 - \diamond Attribute sets

Reminder

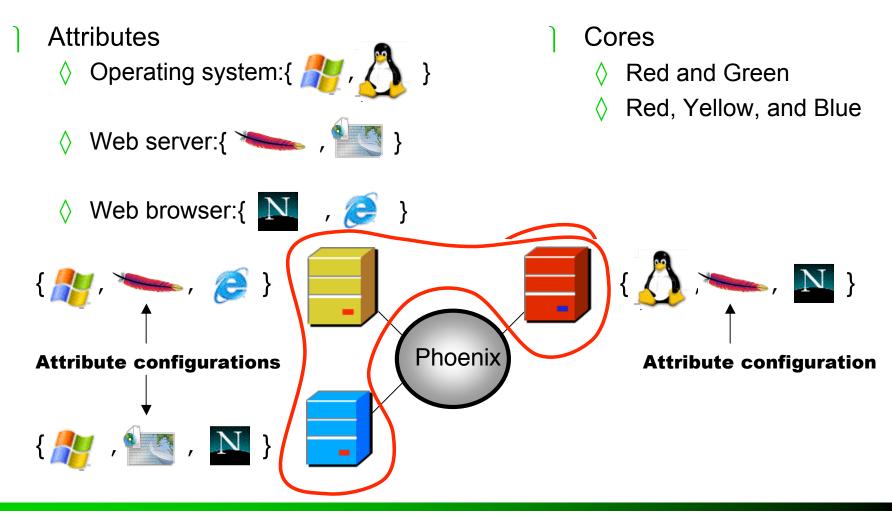
- ♦ Storage overhead: size of the replica set (core)
- \Diamond Storage load: given a host *h*, number of cores *h* participates

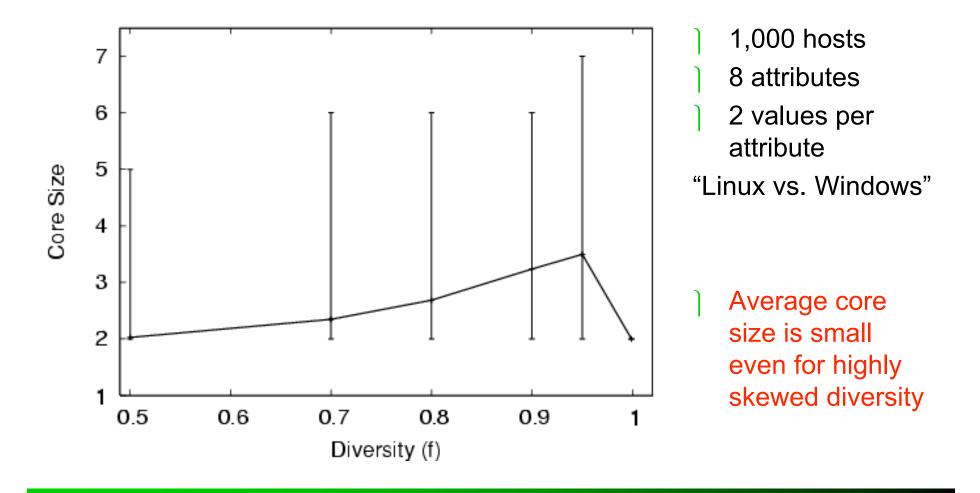
System model

- A set *H* of hosts
- A set A of attributes
- Every attribute has the same cardinality *y*
- A mapping *M* from hosts to attribute configurations
- Diversity
 - \diamond Determined by M
 - Often skewed in practice (93% Windows) [OneStat]

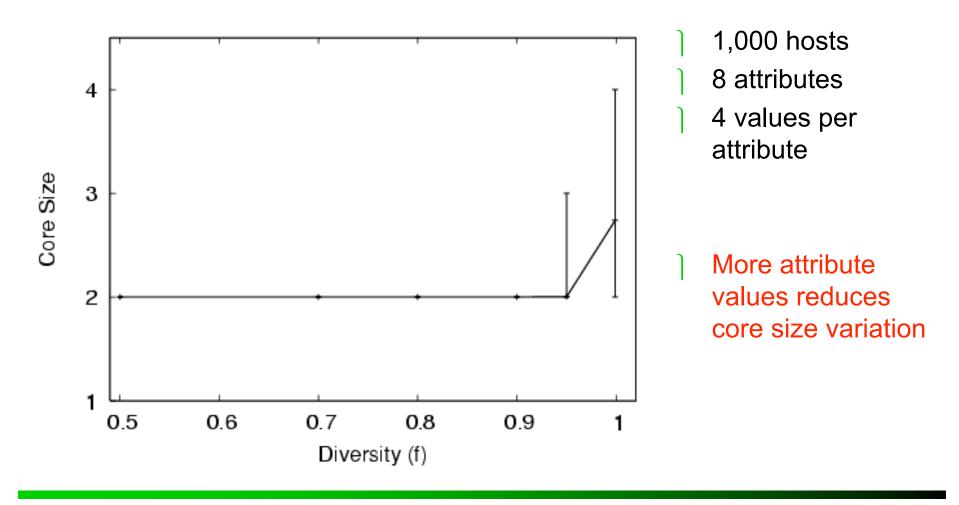
Modeling diversity

- Single parameter $f \in [0.5,1)$
- A share f of the hosts has a share (1-f) of the attribute configurations

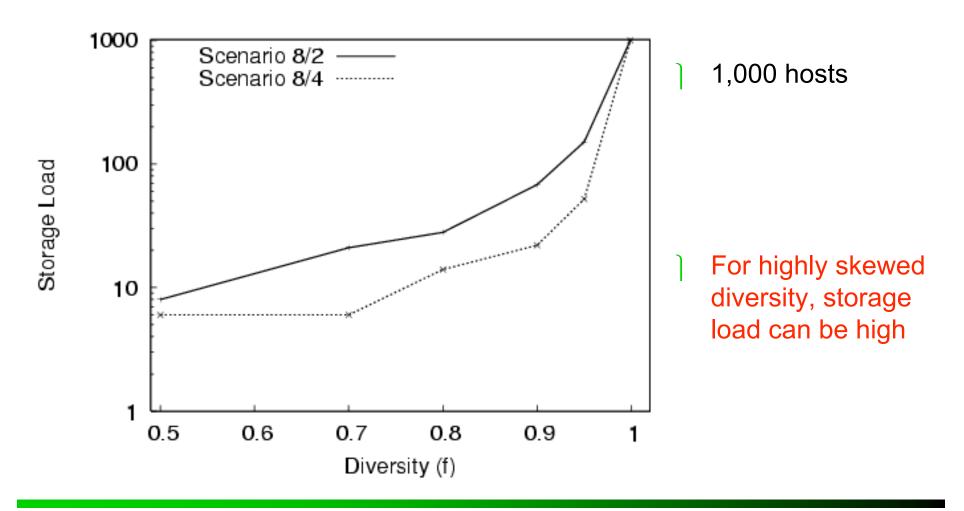

Attribute configurations: Example 1: Example 2: f = 0.75


Choosing a core

- Decision problem is NP-Complete (Set cover)
- Finding a core for host h_i
- 1. Make a list *L* of hosts orthogonal to h_i
- 2. If *L* is not empty
 - 1. Choose a host h_j s.t $h_j \in L$;
 - 2. Return $\{h_i, h_j\};$
- 3. Else
 - 1. $R \leftarrow \{h_i\};$
 - 2. Make a list L' of hosts that have different attribute configurations;
 - 3. For each attribute *a* in *A*, choose randomly a host h_j in *L*' s.t. h_j has a different value for *a*;
 - 4. $R \leftarrow R \cap \{h_i\};$
 - 5. Repeat 2 and 3 until R covers all attributes or L' is empty;
 - 6. Return *R*.


Back to the first example

Core size for scenario 8/2



Core size for scenario 8/4

₹UCSD

Storage load

System design issues

- Fully-distributed system
 - No single point of failure
 - ♦ Leverage research on P2P systems
- Announcing available configurations
 - ♦ DHT-based approach
- Encryption scheme to protect against data corruption
- Recovering from a catastrophe
 - Time to recover is not critical
 - Coping with a large number of requests
 - O Threshold on the number of accepted requests
 - O Exponential backoff

Conclusions

- Failures are not independent
- Computing a threshold is not practical
- Model of dependent failures based on shared vulnerabilities
- Storage overhead is small even for highly skewed diversity
- Storage load can be large
 - \Diamond Has to be considered by the heuristic that finds cores
 - Increase average core size

Future work

How do we determine the attributes?

- Resilience depends on the attributes
- ◊ Vulnerability databases
- Oynamic attributes:new attributes and values
- How many attributes do we need?
 - > The number of attributes impact on storage overhead
- What is a good level of granularity for the attributes?
 - E.g. {Windows} vs. {Win_95, Win_98, Win_2000, Win_XP}
- Other challenges
 - ♦ Heuristics for finding cores: storage overhead and storage load
 - ♦ Efficacy
 - O How do we assess the efficacy of a prototype?
 - O Major Internet incidents are not so frequent

Possible attributes

Classes of exposed from the ICAT vulnerability database (http://icat.nist.gov) - 05/13/2003

Exposed component	2003	2002	2001	2000
Operating system	54 (15%)	212 (16%)	248 (16%)	152 (15%)
Network protocol stack	2 (1%)	18 (1%)	8 (1%)	14 (1%)
Non-server application	113 (31%)	266 (20%)	309 (21%)	194 (20%)
Server application	177 (48%)	772 (59%)	886 (59%)	555 (56%)
Hardware	17 (5%)	54 (4%)	43 (3%)	15 (2%)
Communication protocol	10 (3%)	2 (0%)	9 (1%)	31 (3%)
Encryption module	0 (0%)	0 (0%)	6 (0%)	23 (2%)
Other	9 (2%)	27 (2%)	5 (0%)	24 (2%)

Introduction

Backup systems

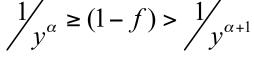
- Local techniques: tapes and CDs
- Commercial remote backup
- Cooperative remote backup
- Cooperative remote backup
 - A host h relinquishes a fraction x of its disk λ
 - $\langle x/k \text{ per user, if } h \text{ serves } k \text{ other hosts} \rangle$
 - Threshold model
 - Worst-case scenario
 - ♦ For dependent host failures
 - O Threshold possibly very large
 - O k possibly very large and x/k very small
 - Infeasible for such scenarios

Introduction

Software

- Worms and viruses exploit these vulnerabilities
- Several hosts share the same vulnerability
- E.g. Code Red worm (360,000); Saphire worm (75,000)
- None of these caused any major damage on computers connected to the Internet

... but It is a matter of time until a major Internet incident occurs


Replication strategy

- Replicate on hosts that fail independently
- Assumption
 - ♦ Hosts executing the same program are likely to fail dependently
 - ♦ E.g. Hosts executing the same OS version
- Rationale
 - ♦ Shared vulnerabilities
 - Derived strategy
 - Replicate on hosts that run distinct sets of programs

A simple model of diversity

Rationale:

- $\Diamond\;$ distribution of attribute configurations is often skewed
- Assess the tradeoffs as diversity becomes more skewed
-) $f \in [0.5,1)$: single parameter of the model
 - \Diamond A share *f* of the hosts has a share (1-f) of the attribute configurations
- Given a value of f, find the value of α that satisfies the following:

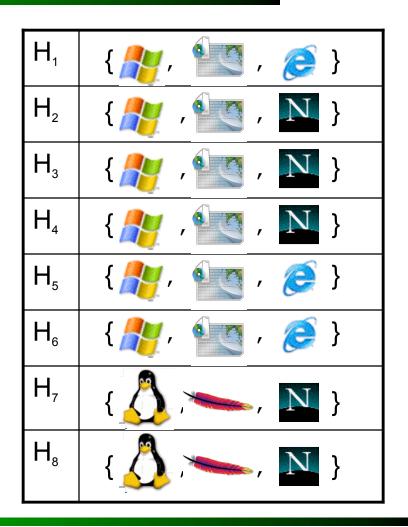
Generating a mapping M

- \Diamond Fix the value of α attributes
- \Diamond Choose values randomly for the other |A| α attributes

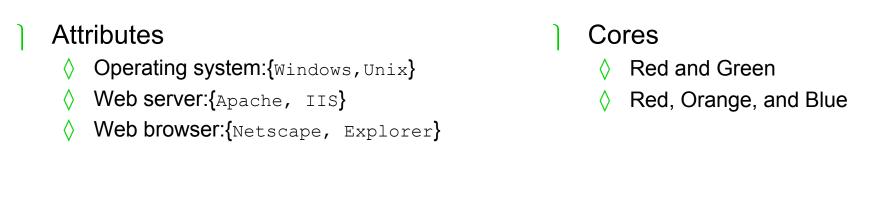
Another example

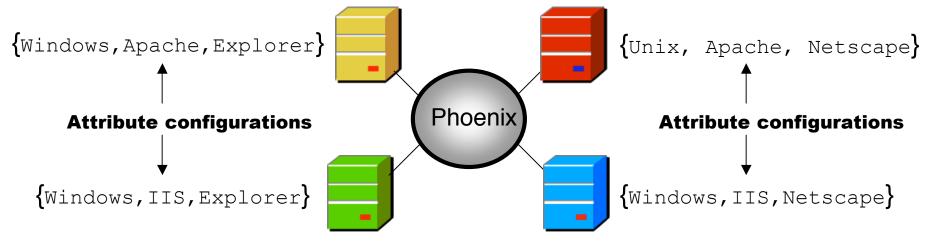
- Attributes

 - Veb server:{ ****

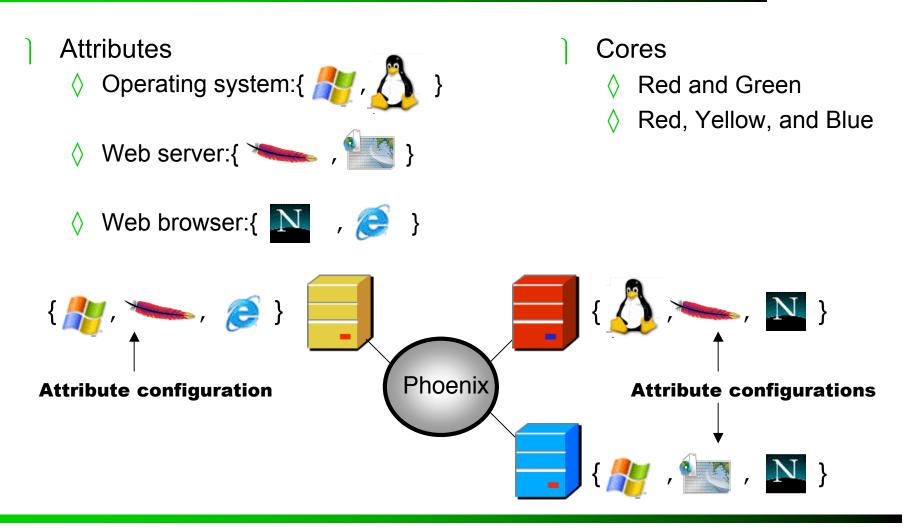


- \diamond Web browser:{ \mathbb{N} , \gtrless }
- Operating system and Web browser: most skewed attributes
- 75% of the hosts (6) have 25% of the attribute configurations (2)


$$\langle f = 0.75 \rangle$$


$$\diamond y = 2$$

$$\Diamond \quad \alpha = 2$$



An example

Back to the first example

HotOS'03