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Abstract
We describe a technique for writing distributed appli-

cations which manage themselves over one or more util-
ity computing infrastructures: by dynamically acquiring
new computational resources, deploying themselves on
these resources, and releasing others when no longer re-
quired. Unlike prior work, such management function-
ality is closely integrated with the application, allow-
ing greater freedom in application-specific policies and
faster response to failures and other changes in the en-
vironment without requiring any external management
system. We address the programming complexity of this
approach by applying constraint logic programming, and
describe Rhizoma, an experimental runtime to explore
these ideas. We present early experience of deploying
self-hosting applications on PlanetLab using Rhizoma.

1 Introduction: the case for self-hosting

This paper makes a case for “self-hosting” applications
over utility-computing infrastructures, and reports on
early work on a runtime for such applications using con-
straint specifications as a programming tool.

We are increasingly seeing distributed applications
and services which use hardware and software resources
managed by infrastructure providers rather than managed
by the service or application provider themselves. In
these scenarios, services run on computation resources
that have been rented or otherwise dynamically acquired.

The clearest example is the rise of utility computing,
where providers such as Amazon’s EC2 [1] and compet-
ing services already support companies who have out-
sourced the provisioning of servers for their applications.
However, it is also the case in more research-oriented en-
vironments like PlanetLab and the Grid, and furthermore
this is the explicit model for network-layer services in
testbed platforms such as GENI.

Such platforms offer attractive features: cost of main-
tenance and administration is centralized and amortized

over multiple customers, and hardware provisioning is
decoupled from software deployment allowing cost sav-
ings and responsiveness to changes in demand. However,
applications deployed to date over these new infrastruc-
ture models (whether commercial services or research
projects) have generally not been written specifically for
the characteristics of these platforms, instead using them
as a substitute for a conventional, fixed infrastructure.

It seems reasonable, therefore, to ask how such utility
computing platforms lead to both new opportunities and
new challenges in building distributed applications. We
are interested in how to effectively write dependable ap-
plications directly targetting such deployment platforms.

We argue that while potentially reducing deployment
and management cost for applications, utility computing
leaves most traditional dependability problems unsolved
and furthermore introduces new ones. We focus on three:

Firstly, partial or complete machine failures still oc-
cur. Although services such as EC2 aim at high avail-
ability of virtual hardware, service level agreements are
remarkably vague about the uptime guarantees provided.
Of course, platforms like PlanetLab are often much less
available than in-house hosted hardware.

Secondly, changes in load, performance goals, or
other policies still require that a service acquire more re-
sources or release those it has to reduce cost. At present
such provisioning decisions generally involve a human
in the loop, though in an enterprise setting a centralized
orchestration service can perform this function as part of
a global resource allocation policy.

Finally, while utility computing providers such as EC2
aim to provide a stable execution environment, pric-
ing structures for infrastructure have changed substan-
tially [8]. As more infrastructure providers enter what is
mostly a commodity market, we can expect to see fur-
ther differentiation on pricing models. Customers seek-
ing to minimize costs will need to adapt in the face of
such changes, and some may well wish to use more than
one provider at a time.



Dealing with these challenges is traditionally a man-
agement function, performed by an external management
system and/or human administrator, while the applica-
tion itself is not involved in the process beyond con-
ventional fault-tolerance and exploiting new resources as
and when they become available (as in P2P systems).

We are investigating a different approach, to see if
handling these issues within the application is both fea-
sible and desirable. In our experimental runtime sys-
tem, Rhizoma, resource management (in effect, moni-
toring and interaction with one or more infrastructure
providers) and deployment on new nodes is performed
autonomously by the application itself.

Our system has two salient features: first, it bundles
resource management policy into the application, where
it is more closely integrated with the rest of the appli-
cation logic, and second, it uses a constraint system as a
programming interface to the runtime, to make the speci-
fication and implementation of such tightly-coupled poli-
cies tractable. We hope to see several advantages from
this approach:

Expressiveness: Constraints can naturally express an
application’s resource requirements – where it should
and should not run, and the global and local properties
of the resource set the application needs.

Optimization: Optimizing over the set of constraint
solutions allows a powerful declaration of how an ap-
plication should be deployed given alternatives, in terms
of performance (along a variety of dimensions) and
cost (capturing complex pricing models of different
providers).

Adaptation responsiveness: By coupling the man-
agement functionality that determines where and how an
application is deployed with the core application logic,
the system can react more quickly to changes in avail-
able resources, load, or policies.

In the next section we describe constraint logic pro-
gramming (CLP) and its use in resource management
and optimization. Section 3 presents the architecture of
Rhizoma, our self-hosting runtime supporting applica-
tion adaptability. Some early experimental results quan-
tifying this advantage are shown in Section 4. We discuss
related work in Section 5, and conclude in Section 6.

2 Why CLP?

Building applications which can acquire, manage, and
release their own set of computational resources in re-
sponse to changing demand and conditions immediately
raises the problem of complexity: how can programmers
easily write and understand code which causes the appli-
cation to do “the right thing”, when running in a complex
and dynamic environment?

We are investigating the suitability of constraint logic
programming [17] for this task. Several features of CLP
make it an attractive option at first glance for specifying
the resource requirements and desired adaptive behavior
of a distributed application.

Firstly, logic programming’s powerful facilities for ex-
pressing concepts such as unification help us to manage
the heterogeneity of resource types, measurement and
monitoring data, and application policies. Logic pro-
gramming languages like Prolog are slightly more ex-
pressive than formats such as RDF [16], while being
considerably more computationally tractable than more
heavyweight subsets of first-order logic like description
logics [15]. As researchers this gives us a convenient pro-
gramming platform to explore the design space for more
specialized solutions.

Secondly, CLP extends logic programming with the
addition of logical and numeric constraints, which are
a natural way to express both local and global resource
requirements such as physical location, computational
power, communication quality, replication conditions,
and cost limitations, provided that a feasible solution to
a constraint set can be found reasonably efficiently.

An example of a small overlay-based service on the
PlanetLab platform can illustrate the use of constraints.
Given information about node properties and current sta-
tus, the application developer can specify requirements
using the following:

node_constraint(Host) :-

node{hostname: Host, resptime: Resptime,

fiveminload: Fiveminload,

cpuspeed: Cpuspeed, freecpu: Freecpu},

alive(Host), Resptime < 0.5, Fiveminload < 5,

Cpuspeed*Freecpu/100 > 1.

node constraint defines the constraints on each node.
The pre-defined alive predicate requires that a node re-
spond to ping requests, accept SSH connections, have
acceptable clock skew and a working DNS resolver.
Resptime and Fiveminload ensure light load, while
the final clause guarantees a minimum CPU capacity.

More interesting are global constraints:

group_constraint(HostList) :-

length(HostList, N), N = 3,

% Geographical constraints

node_loc(HostList, LocList),

geographical_constraint(LocList),

% Aggregated memory constraints

node_mem(HostList, FreememList),

node_mem_constraint(FreememList),

% Inter-node constraint

edge_constraint(HostList).

geographical_constraint(LocList) :-

alldifferent(LocList).



node_mem_constraint(FreememList) :-

avg(FreememList, Avg), Avg > 80. % built-in

edge_constraint(HostList) :-

make_graph_pl(HostList, Graph), % built-in

diameter(Graph, Diameter), % built-in

Diameter < 300.

These constraints include the number of nodes, spatial
distribution, aggregate properties on specific attributes
(such as minima, maxima, averages or sums) and edge
constraints on latency, bandwidth, or network diameter.
In this example, we choose three nodes on different con-
tinents with minimum average free memory, and a net-
work diameter lower than 300ms.

The example also illustrates the need to reduce the
complexity of constraint specifications, making them ac-
cessible to application developers. By providing a library
of built-in constraints, the most common requirements
can be succinctly expressed, with the power of the full
constraint language remaining available for the few cases
where it is necessary.

Thirdly, CLP solvers typically perform optimization,
allowing a programmer to give criteria in the form of an
objective function for selecting the best solution which
satisfies the constraints. This is potentially a very pow-
erful technique as it allows an application to select the
cheapest feasible deployment which meets its perfor-
mance targets. For our simple example, we define the
objective function to be a weighted average of the devia-
tion of various node parameters from an ideal:

obji =
1

∑i weighti

(
xi−ai

bi−ai
weighti

)
Here, ai and bi give a range for parameter xi (bi is an

ideal value, and may be greater or less than ai). Example
values are shown in Table 1.

In reality, this is not sufficient. An objective function
like the one above may measure the “goodness” of a par-
ticular state, but fails to take into account the cost of re-
configuring the application from one state to another.

In practice, in our runtime system Rhizoma, we opti-
mize the objective minus a cost function which captures
how hard it is to acquire and use new resources like vir-
tual machines and release old ones. Furthermore, the so-
lution that Rhizoma’s CLP solver generates is not a new
application configuration, but rather a set of “moves” that
improve the service’s state. This is a powerful technique
for reducing the computational complexity of evaluating
the constraint program for two reasons: firstly, it a priori
limits the search space to configurations which are not
wildly different from the application’s current deploy-
ment, and secondly, it allows a programmer to cleanly
express this tradeoff both in the cost function, and addi-
tional constraints that limit the number of “moves”.
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Figure 1: Rhizoma per-node architecture

Finally, CLP is a relatively mature technology, and
easily embeddable CLP solvers are readily available – it
has been used extensively for scheduling, planning, and
routing problems where a diverse set of resources must
be reconciled with a complex set of requirements. Our
aim is not to push the envelope of constraint techniques,
but to investigate their usefulness for our system.

We are certainly not the first to point out CLP’s appli-
cability to problems of system management – indeed, the
ECLiPSe constraint solver we use for Rhizoma was orig-
inally developed as the core of a suite of network man-
agement applications [4]. However, we are unaware of
existing work building such functionality into the appli-
cation itself, and thereby integrating application knowl-
edge and management information.

3 Rhizoma architecture

Our runtime system, Rhizoma, bundles management
logic with every instance of the distributed application.
As shown in Figure 1, application developers specify
system requirements in the form of constraints. Then,
based on real-time network statistics, Rhizoma auto-
matically checks the system state for conformance with
the requirements, generating feedback to the application
layer whenever the constraints are not satisfied. Appli-
cations translate such feedback into overlay operations
(such as allocating or releasing nodes) to effect changes
to the distributed infrastructure on which they execute.

Resource management, a cross-layer component criti-
cal to the architecture of Rhizoma, is shared between the
application and Rhizoma itself. It consists of three parts:
a reasoning engine embedding the ECLiPSe constraint
programming system [4], along with sensors and actu-
ators wrapped by the resource interface. Sensors col-
lect status information about the underlying distributed
infrastructure and update a knowledge base (KB) main-
tained by Rhizoma. The reasoning engine evaluates the
constraints provided by the application against the infor-



(a, b) weight
freecpu (1, 3) 3
freemem (50, 100) 2
fiveminload (10, 0) 2
liveslice (10, 0) 1

Table 1: Objective function parameters

mation in the KB, either periodically or in response to a
change in resource availability. It then reports the results
to the application, which may take actions on the overlay.

Although the reasoning engine is capable of running
on any node in the system, a leadership election is used
to select one node to perform reasoning and disseminate
the results. If this node fails, a new leader will be elected
to perform the reasoning. Management is therefore de-
centralized and thus as robust to failure as the applica-
tion itself – there is fate-sharing between the manage-
ment logic and the application.

The overlay maintenance component facilitates con-
trol and communication within the overlay network. It
provides a simple management API for the application.
Control commands from the application are interpreted
as operations on the distributed infrastructure, which in
turn are executed by the actuators. The overlay main-
tenance component also serves as a data source for the
KB, providing real-time overlay status information. In
this way, a control-flow cycle is formed from one deci-
sion to the next, making the system self-adaptable.

4 Early experiments

In order to evaluate how Rhizoma helps applications
adapt to resource changes, we tested our early prototype
using a simple PlanetLab application.

PlanetLab might seem an unusual choice for imple-
menting mechanisms for dependability: it is consid-
erably more heterogeneous, less predictable, and less
available than other utility computing platforms, and
not remotely representative of platforms like EC2. Our
methodology is to use PlanetLab as an early “prov-
ing ground”, since its variability is likely to expose is-
sues with our design that would take longer to discover
through simulation or deployment on more stable plat-
forms. Once these issues are shaken out, we will inves-
tigate Rhizoma in environments that more closely match
our motivating scenarios.

The constraints for our test application are the same as
those in Section 2. The parameters chosen for the objec-
tive function are shown in Table 1, and the migration cost
is set as mcost = 0.1n (where n is the number of changed
nodes) to penalize overlay churn. The best solution is
then selected by Rhizoma, minimizing the difference of

the objective value and migration cost.
We started our application manually at first on an arbi-

trary PlanetLab node. Rhizoma periodically generates
a deployment solution according to network status re-
ported by PlanetLab monitoring services [14,19] and the
provided constraints. Meanwhile, a comparable query is
sent to the SWORD [13] service. SWORD is a service
commonly used for deploying PlanetLab applications. It
accepts XML-encoded user queries expressed as utility
functions, and returns a set of nodes that maximizes the
utility. The query we send does not include any of the
group constraints, because they cannot be expressed as
a SWORD utility function. The reasoning period is set
to five minutes, matching that of the most frequently up-
dated monitoring service.

Figure 2 shows the experimental results. Figure 2(a)
plots the value of the objective function on different so-
lutions.1 In this figure, Rhizoma solution is our final de-
ployed solution, optimal solution is a hypothetical so-
lution maximizing the objective value with mcost = 0,
and SWORD solution is our comparison. Figure 2(b)
shows the number of nodes changed by the Rhizoma and
SWORD solutions. Rhizoma performs 15 migrations in
total, whereas SWORD changes the node set 28 times,
as it does not record the previous solution, nor consider
migration costs.

As shown in Figures 2(a) and (b), Rhizoma usually
performs better than SWORD, although SWORD can
outperform Rhizoma, as it derives a solution irrespec-
tive of cost. Despite being conservative, Rhizoma still
exhibits adaptability and responsiveness. Because it con-
siders migration cost, Rhizoma keeps the system stable
even as the solution’s objective value degrades in the nth
round. However, it reacts to this loss, and redeploys to
two new nodes in the next round to increase the objective
value.

The experiment shows Rhizoma’s ability to optimize
and adapt to changes in resource availability. However,
to see the real performance of the Rhizoma solution, we
plotted the objective value of this solution as calculated
using two different data sets: one based on the same
sources used by Rhizoma, and a second using a real-time
data set gathered every 30 seconds by our own monitor-
ing service, which collects the same information locally
on every node. These results appear in Figure 2(c), which
shows that the data sets that Rhizoma uses for its reason-
ing tend to lag behind, while the network status varies
more frequently. They also explain the outlier in the third
round, during which the Rhizoma solution appears to per-
form better than the optimal solution, because Rhizoma
saw a stale data set, leading to two successive rounds

1The objective values are calculated based on the CoMon [14] (up-
dated every five minutes) and S3 [19] (updated every four hours) data
sets.
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Figure 2: Rhizoma experimental results

with the same solution and objective value. The system’s
responsiveness could therefore be improved if real-time
overlay status information was fed back into the knowl-
edge base.

5 Related work

Constraints have been used to manage real-world net-
work configuration from high-level specifications [6,12],
and logic programming more generally has been widely
applied in projects to manage networks [18], express net-
work protocols [11] and in system administration [10].
A number of projects provide centralized management
services for distributed platforms including PlanetLab
[2, 3, 9, 13] and the Grid [5, 7].

6 Conclusions and future work

CLP provides a clean programming interface to describe
heterogeneous network resources as well as tightly-
coupled application resource policies. However, skills
and experience are needed to write constraints that can
be efficiently evaluated. Adding more powerful con-
straints can help improve application performance, but
such over-specification may result in no solutions be-
ing found. In order to reduce the complexity of writing
constraint logic, we intend to provide more built-in con-
straint solvers. Some concerns of future work include
which solvers to provide and what interfaces to use.

The general efficiency of the constraint solver can also
be improved in two ways: by using the branch-and-
bound algorithm to find sub-optimal but “good-enough”
solutions with a second acceptability bound, and by us-
ing an incremental reasoning strategy instead of starting
from scratch each time.

Since the resource management and application logic
are tightly integrated, the complexity of resource alloca-
tion as well as overlay maintenance increases with the

size of the overlay. We are primarily targeting applica-
tions of limited size – no more than a hundred nodes –
in a heterogeneous network environment. Even though
the overlay won’t scale to thousands of nodes, the effi-
ciency of resource allocation and the consistency of over-
lay maintenance remain a challenge.

Rhizoma tries to adapt the application overlay quickly
to node failures, available resources and modified pol-
icy. However, transient constraint violation is unavoid-
able when changing from one stable network configura-
tion to another. To take a simple example, if the applica-
tion decides to move from some heavily-loaded to more
lightly-loaded nodes, the migration process will involve
first replicating to the new nodes before shutting down
the heavily-loaded nodes, and thus will lead to a tempo-
rary violation of a constraint that calls for a fixed number
of nodes. Future work involves identifying which appli-
cation constraints may be violated, and giving the appli-
cation developer more control over such situations.

Finally, rather than the simple application used cur-
rently, we intend to explore applications with diverse re-
source and topology constraints to quantify the relation-
ship between solution performance and migration cost,
and to develop general re-usable constraint routines.

In summary, we are exploring how to build depend-
able distributed applications over utility-computing in-
frastructures. Two novel ideas, using constraint speci-
fications as a programming tool and building resource
management policy into application logic, are proposed,
and an initial evaluation of our runtime, Rhizoma, is
presented. We have argued by example that constraints
enable greater expressiveness of resource requirements
and continuous optimization of resource allocation. Our
early experiments have shown that Rhizoma’s constraint-
based runtime can perform sophisticated resource man-
agement in the face of changing conditions and machine
failures over a dynamic infrastructure.
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