
Reflective Control for an Elastic Cloud Application:
An Automated Experiment Workbench

Azbayar Demberel, Jeff Chase, and Shivnath Babu
Duke University

Abstract

This paper addresses “reflective” control for applications
that use server resources from a shared cloud infras-
tructure opportunistically. In this approach, an exter-
nal reflective controller launches application functions
based on knowledge of what resources are available from
the cloud, their cost, and their value to the application
through time. As a driving example, we consider re-
flective control for an important use of elastic comput-
ing: a virtual workbench for digital experiments, focus-
ing on automated benchmarking. We report progress on a
Workbench Automation/Intelligence Framework (Waif),
and show how it can adapt to available cloud resources
by planning and launching experiments in parallel.

Waif is part of the ongoing Automat project – an
open testbed for programmable hosting centers, built
on the ORCA resource leasing platform. We designed
a prototype Waif, directed at constructing server per-
formance models by mapping server behavior within a
multi-dimensional parameter space. The planner esti-
mates the value and cost of candidate experiments based
on the results of completed experiments. In this setting,
we show the potential of reflective control to accelerate
progress toward a benchmarking objective in a way that
balances speed, accuracy, and cost.

1 Introduction

Elastic cloud computing infrastructure is a powerful plat-
form for elastic applications. Applications are “elas-
tic” when their resource needs vary widely through
time. Several groups have studied feedback-controlled
dynamic resource provisioning/configuration for elastic
applications [8, 10, 11, 14, 15, 17]. For example, clouds
can offer surge protection for network services to cope
with flash crowds, e.g., by modulating the amount of vir-
tual resources acquired from a cloud service to meet a
performance target as application load changes.

0

100

200

300

400

0
200

400
600

800
150

200

250

300

350

shared_buffers(MB)

TPC−H Workload Q18

effective_cache_size(MB)

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e 
(s

ec
)

Figure 1: Response surface map (RSM) generated from
TPC-H experiments. RSMs are important for cloud au-
tomation as they expose interactions of system param-
eters (effective cache size vs. shared buffer size) and
“sweet spots” of system configurations.

In most cases, dynamic provisioning for elastic ap-
plications affects the application’s performance, but it
does not change what the application does. This paper
considers another important class of elastic applications
with different control needs:reflectiveapplications that
can change the work that they do based on the resources
that are available to them. These applications are well-
matched to the capabilities of elastic cloud infrastructure
services because they can adapt to use surplus resources
opportunistically. They require a new type of reflective
control that is more deeply integrated with the applica-
tion, and has the ability to balance cost/benefit tradeoffs
in meeting application goals. For example, we are partic-
ularly interested in cloud applications that can plan their
resource usage under variable pricing, e.g., congestion
pricing for server resources or energy.

In this paper, we address the issues of control-
ling reflective elastic applications, with a specific fo-



cus on automation ofdigital experiments: experiments
that can be launched programmatically from a reflec-
tive controller. We discuss a Workbench Automa-
tion/Intelligence Framework (Waif) that provides reflec-
tive control to digital experiments and enables the cloud
to serve as a “virtual workbench” to host experiments
of multiple users as well as multiple parallel experi-
ments of a single user. Waif exploits virtual workbench
to harness resources and launch experiments automati-
cally. Additionally, it provides plug-in modules for in-
telligent control that can plan experiments, monitor their
progress, and adjust to resource changes and new results,
online. Waif takes a step toward allowing experimenters
to “close the loop” and automate gathering of experimen-
tal data for well-defined objectives.

Waif is part of the ongoing Automat project [18]
– an open testbed for programmable autonomic host-
ing services based on the ORCA resource leasing plat-
form [9, 7, 10]. We designed a prototype Waif directed
at automating comprehensive server benchmarking in a
multi-dimensional parameter space. The system obtains
virtual infrastructure to plan and conduct a schedule of
experiments for a sampling of points in the parameter
space in order to map some performance metric across
the space. Figure 1 depicts an example of the resulting
performance model as a response surface map (RSM).
While we use automated response surface mapping as an
example of a reflective elastic application, the response
models are also useful for automating cloud performance
management [6, 8, 10, 11, 14, 15, 17]. Waif extends the
ideas of our earlier work in workbench automation [13]
to a virtual cloud setting, and exposes new tradeoffs as-
sociated with reflection and elasticity of the cloud.

2 Overview

The domain of our focus is digital experiments in a vir-
tual cloud workbench. A “digital” experiment is a run
of a system, model, data query, or simulation with some
set of parameters in order to discover a new result that
adds to knowledge of some behavior. One property of
digital experiments is that they can be launched automat-
ically whenever suitable resources are available. When
resources have a price, it is also desired to launch exper-
iments when the price is right, i.e., the result is worth
more than the cost to run the experiment. The choice of
experiments to run may depend on the resources avail-
able to run them.

Automation of virtual labs is already attracting com-
mercial interest as a driving application of virtual cloud
computing [2, 3, 4]. The idea is also applicable to net-
work testbed initiatives such as NSF’s GENI [1]. In ef-
fect, GENI broadens the virtual cloud idea to a diverse
set of virtualizable, programmable substrate components

Figure 2: Response surface map (left) generated
from Fstress experiments and potential sampling points
(right). RSM displays interactions of number of nfsd
threads and the maxio configuration parameters. Each
point on the surface represents the saturation throughput
obtained by running tests for various workload levels for
the given configuration.

that includes other networked elements in addition to
servers. Each GENI experiment runs within a “slice” of
the testbed cloud acquired on demand and configured to
order with virtual servers and other elements needed to
conduct the experiment.

Our approach involves a controller that launches ex-
periments automatically on resources obtained from the
cloud. Since it requests and configures the cloud re-
sources bound to each of its slices, and launches the ex-
periments that run as “guests” within the slice, we call
it a slice controlleror guest controller. This controller
is not part of the cloud service itself: it runs externally
on behalf of the user or experimenter and uses the inter-
faces exported by the cloud platform to its customers. It
uses cloud APIs to determine what resources are avail-
able, and matches them against a list of candidate ex-
periments. The controller for response surface mapping
plans experiments in part by estimating the value (utility)
of each candidate experiment at a particular time based
on what it knows about the results of completed experi-
ments. This estimate of the value of work is an essential
ingredient for reflective control.

Consider automated sampling of a parameter space
to map a response surface. For example, commercial
database systems are shipped with hundreds of config-
uration parameters. As good configuration can enhance
performance by orders of magnitude, administrators are
motivated to experiment with a wide range of configu-
ration settings (Figure 1) to optimize performance [16].
Similarly, server benchmarking requires repeated exper-
iments for various combinations of resource~R, configu-
ration ~C, and workload~W parameters to expose impacts
of system design on performance (Figure 2). The param-
eter space is too large to explore exhaustively, but guided
sampling can yield accurate models: if the planner does
its job well, then more resources or more time yield more

2



Figure 3: Better? Cheaper? Faster? A reflective con-
troller can adjust the behavior of an elastic cloud appli-
cation to balance tradeoffs of quality, cost, and time. For
example, an experiment planner can determine when it is
worthwhile to use cloud resources to run speculative ex-
periments in parallel, based on the expected yield from
those experiments and the cost of the resources.

accurate models. Since experiments at different points in
the parameter space run independently, the planner may
run them in parallel when sufficient resources are avail-
able.

Planning parallel experiments on an elastic cloud,
however, exposes new tradeoffs of speed vs. cost. The
planner refines its value estimates for candidate experi-
ments continuously as earlier experiments complete and
their results become available. With more information
the planner can make more efficient choices about the
next experiments to run. For example, Figure 2 illustrates
a response surface and some sampling points to map this
surface. We can see that any point in the circle provides
enough information about the neighboring area. Sam-
pling too many points from the circle for the sake of par-
allelism would be wasteful given that other higher-utility
experiments could be run instead. In contrast, sampling
along the nfsds axis (points in the rectangle) provides
useful information about the general shape of the sur-
face. The planner may map the response surface faster
with higher levels of parallelism, but the tradeoff of par-
allelism is that the planner has less information when it
selects new experiments; thus it may make choices that
yield a less efficient experiment schedule with a higher
overall cost. Our research explores techniques to navi-
gate such tradeoffs (Figure 3).

3 Reflective Control in Waif

The Waif controller is designed as a set of interacting
modules that instantiate new slices and configure and
launch experiments to run within those slices. It has
plug-in policy modules to estimate experiment utilities,
plan experiments, and evaluate progress toward a high-

Figure 4: Waif controller structure

level objective. We implemented policy modules geared
to RSM benchmarking for servers [13].

The Waif slice controller is designed hierarchically so
that decoupled control elements can be stacked and com-
bined. There are three main elements in the controller:
control executive, control managers, and executors (Fig-
ure 4). The control executive evaluates candidate experi-
ments and matches them to resources available from the
cloud. It builds the experiment schedule to balance trade-
offs in accuracy, cost, and time, using the planner mod-
ule to select candidate experiments based on estimates of
cost and benefits.

Once selected, each experiment is assigned to a con-
trol manager to launch and monitor its execution. Digital
experiments often consist of multiple tasks. For exam-
ple, in the server RSM benchmarking example, each ex-
periment to map a point on the response surface requires
multiple tests for different workload levels to determine
the saturation throughput at the given configuration [13].
The control manager devises tasks to complete the exper-
iment and executors run the tasks and process the results.

As each experiment completes, the controller invokes
a validator module to evaluate progress toward a high-
level objective. For the RSM example, we implemented
a hybrid of mean squared error and cross-validation tech-
niques to test convergence, i.e., whether the planner has
sufficient results to build an accurate RSM model.

The reflective Waif planner adjusts plans dynamically
according to resource availability and completed results.
The current planner implements an “Active-sampling”
approach [12]. The utility generator algorithm (Figure 5)
generates a list of top-k candidates that promise to add
the most new information to the results already known
from completed experiments. To do this it trains multi-
ple regression models from different subsets of the com-
pleted results, and selects new experiments for which the
model predictions disagree (high variance). It estimates
utility of the candidates from their variance, then uses a
simple greedy heuristic to match candidates to suitable

3



Algorithm Utility generator
Input: (i)smpls: Samples from completed experiments
(ii) candts:list of candidate experiments, (iii)M: model
for learning the system
BEGIN
1. Partition thesmplsinto τ random subsetsS1...Sτ

2. For each subsetSi learn modelMi

3. For each candidate experimente ∈ candts
4. For each modelMi predict response valuep(e)i

5. Compute variancevar(e)amongp(e)i :

var(e) =

τ
P

i=1

(p(e)i−
¯p(e))2

τ−1
6. Sortcandtsaccording to decreasing variance
END

Figure 5: Utility-generator algorithm in the current pro-
totype. A recent paper [5] offers an alternative using
Gaussian Processes.

resources as they become available (Figure 6).

4 Results

We implemented Waif for running file server benchmark-
ing experiments with Fstress – an NFS workload gener-
ator with many parameters. As an example, we mapped
the saturation throughput as a function of CPU and mem-
ory allocated to the server and NFS thread number and
maxiosize configuration parameters. For each candidate
experiment, i.e. each parameter configuration, the con-
troller obtains a slice of the cloud, consisting of NFS
server, workload generator clients, and experiment direc-
tor machines, and runs Fstress request loads against the
server configuration. Figure 7 illustrates an RSM gen-
erated from the learned model using a parallelism level
of four. We can see that because the surface is convex,
it required only 11 experiments to map the surface with
reasonable accuracy.

To compare the tradeoffs in planning, we also ran
experiments with a wider range of configuration and
workload parameters for various levels of parallelism.
For efficiency, we generated a full-factorial experi-
ment result (i.e. discretized grid of experiments for
all possible parameter combinations) in advance and
during each selected experiment we obtained the results
from the stored table, rather than repeating the exper-
iment. Figure 8 compares the impact of parallelism
on modeling performance. The figure illustrates that
although higher parallelism requires more resources, it
achieves model convergence faster. Figure 9 displays
the number of experiments required to map the response
surface. It shows that higher parallelism required more

Algorithm Experiment Planner
BEGIN
1. Collect results from an initial set ofI experiments.
2. Repeat steps 3 to 7 when new results arrive and

if the model has not converged
3. UseUtility-generatoralgorithm to generate a

sorted listl of candidate experiments, where
l=top(candts)

4. For each experimente∈ l
5. Get status of the knapsack for each machine

in the workbench
6. If e’s resource requirement can be

satisfied by the workbench
7. Assigne to the workbench
END

Figure 6: Greedy experiment planner algorithm

Figure 7: Surface map of NFS file server with 30 percent
CPU cap and maxio limit of 20, which was generated
from the learned model. The circles illustrate the points
where samples were collected.

experiments to achieve the same level of accuracy, i.e.
it illustrates the tradeoff of parallelism (speed) and cost.
The following table summarizes the results:

Parallelism Duration Experiments Cost
1 71.6 hr 180 71.6 m·hr
5 15.5 hr 200 77.5 m·hr
20 4.8 hr 240 96 m·hr
50 2.4 hr 265 120 m·hr

Our initial results illustrate the tradeoffs in accuracy,
cost, and time, and suggest that there is a rich policy
space to explore. For example we can see that paral-
lelism of five provides 4.6 times better performance, in
terms of time, for a machine·hr cost increase of only six.
Additionally, in our experiments we considered a con-
stant cost for the resources. In the future, we are partic-

4



0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

100

200

300

400

500

600

700
M

S
E

Time (minutes)

 

 
50 parallel
20 parallel
5 parallel
Sequential

Figure 8: Results of digital experiments for various lev-
els of parallelism. With higher parallelism, the model
converges faster.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

M
S

E

Number of experiments

 

 
50 parallel
20 parallel
5 parallel
Sequential

Convergence

Figure 9: Cost of parallelism. Higher parallelism re-
quires more experiments to achieve the same level of ac-
curacy.

ularly interested in cloud applications that can plan their
resource usage under variable pricing, e.g., congestion
pricing for server resources or energy.

5 Conclusion

A digital experiment workbench is a compelling appli-
cation of generalized cloud computing, and a context for
exploring reflective elastic control. We illustrate Work-
bench Automation/Intelligence Framework for intelli-
gent, reflective control of automated digital experiments
on a cloud. Our initial results demonstrate the tradeoffs
in accuracy, cost, and time, and show that reflective ap-
plications provide a rich policy space to explore in the
future.

Acknowledgment. This research is supported by the
National Science Foundation through CNS-0509408 and
CNS-0720829, and by IBM.

References
[1] http://www.geni.net.

[2] http://www.skytap.com.

[3] http://www.vmlogix.com/Products/
VMLogix-LabManager.

[4] http://www.vmware.com/products/labmanager.

[5] S. Babu, N. Borisov, S. Duan, H. Herodotou, and V. Thummala.
Automated Experiment-Driven Management of (Database) Sys-
tems. InProceedings of 12th Workshop on Hot Topics in Operat-
ing Systems, May 2009.

[6] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patter-
son. Automatic Exploration of Datacenter performance Regimes.
In First Workshop on Automated Control for Datacenters and
Clouds, June 2009.

[7] J. Chase, L. Grit, D. Irwin, V. Marupadi, P. Shivam, and
A. Yumerefendi. Beyond Virtual Data Centers: Toward an Open
Resource Control Architecture. InSelected Papers from the In-
ternational Conference on the Virtual Computing Initiative (ACM
Digital Library), May 2007.

[8] A. Ganapathi, H. Kuno, U. Dayal, J. Wiener, A. Gox, M. Jordan,
and D. Patterson. Predicting Multiple Metrics for Queries:Better
Decisions Enabled by Machine Learning. InProceedings of 25th
International Conference on Data Engineering, March 2009.

[9] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi, D. Becker,and
K. G. Yocum. Sharing Networked Resources with Brokered
Leases. InProceedings of the USENIX Technical Conference,
June 2006.

[10] H. Lim, S. Babu, J. Chase, and S. Parekh. Automated Control in
Cloud Computing: Challenges and Opportunities. InFirst Work-
shop on Automated Control for Datacenters and Clouds, June
2009.

[11] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive Control of Virtualized Re-
sources in Utility Computing Environments. InProceedings of
2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems, March 2007.

[12] P. Shivam. Proactive Experiment-Driven Learning for System
Management. PhD thesis, Duke University Department of Com-
puter Science, December 2007.

[13] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, and S.Babu.
Cutting Corners: Workbench Automation for Server Benchmark-
ing. In Proceedings of the USENIX Technical Conference, June
2008.

[14] A. Soror, U. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis,
and S. Kamath. Automatic Virtual Machine Configuration for
Database Workloads. InProceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, June 2008.

[15] G. Soundararajan, D. Lupei, S. Ghanbari, A. Popescu, J.Chen,
and C. Amza. Dynamic Resource Allocation for Database
Servers Running on Virtual Storage. InProceedings of 6th
USENIX Conference on File and Storage Technologies, February
2009.

[16] R. Thonagi, V. Thummala, and S. Babu. Finding good config-
urations in high-dimensional spaces: Doing more with less.In
Proceedings of 16th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, September 2008.

[17] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic
Provisioning of Multi-tier Applications. InProceedings of 2nd
IEEE International Conference on Autonomic Computing, June
2005.

[18] A. Yumerefendi, P. Shivam, D. Irwin, P. Gunda, L. Grit, A. Dem-
berel, J. Chase, and S. Babu. Towards an Autonomic Computing
Testbed. InWorkshop on Hot Topics in Autonomic Computing
(HotAC), June 2007.

5


