CHARACTERISTICS OF BACKUP WORKLOADS IN PRODUCTION SYSTEMS

Grant Wallace, **Fred Douglis**, Hangwei Qian*, Philip Shilane, Stephen Smaldone, Mark Chamness, Windsor Hsu

Backup Recovery Systems Division EMC Corporation

*Case Western Reserve Univ.

Backup Data Patterns

 Weekend: full backup 100 GB tar-type file

- Monday Friday: incremental
 1 GB tar-type file
- Weekend: full backup 100 GB tar-type file
- Retained for months
- Full backups have the majority of bytes transferred to the backup appliance, though a small fraction of the bytes have changed

EMC Data Domain Appliance

	211	2 11 2	HEN
1			PICIO
Chi in all	to be stirt up to		
	and the second sec		0.00
		1	
U TTTTTTT	11 FEB		
		1	19
10 010 01-			
1. D (1. D (1.			000
to be lide in the			
		1	
1.5 CF 5 CF			3
1-0 dt 0 dt.			0
			6
1. D (1. D (1.	4 1		
LO CLO CL		9	

- Purpose-built backup appliance
 - Designed to identify duplicate regions of files and replace with references
- Deduplication
 - Content-defined chunks, fingerprinted with secure hash
 - Check each hash against previously stored data
 - New data written together are stored together [Zhu08]
- Generally claim 5-20X deduplication ratio and 2X compression ratio \rightarrow 10-40X total data reduction
 - Depends on data change rate, backup pattern, and retention policy
- Deduplication ratio is

Pre-deduplication *togical* data

Post-deduplication physical data

Motivation

- Lots of analyses of "primary" storage systems but little characterization of backup
 - Estimates of 8EB of data stored on disk-based purposebuilt protection appliances by 2015
- Backup statistics tend to be single-dimension
 - "Our systems average 10x deduplication or better"
- Performance optimizations supported by limited datasets
 - "We compared our system against that other system using backups from this environment over that interval"
- Validate past design decisions using more extensive data, and provide data for future analyses

Two-Pronged Analysis

- Broad study
 - Snapshot of autosupport data to characterize production systems in statistical terms
 - Compare these metrics against primary storage systems
 - Meyer & Bolosky, FAST'11, Microsoft workstation data
- Deep content-based analysis
 - Statistics insufficient for some types of study
 - Collect anonymized metadata from customer and internal Data Domain backup systems
 - By specific agreement
 - Generate time-ordered representation of content ("trace")
 - Analyze impact of chunk size, caching policies

Broad Study: Autosupports

- Over 10,000 systems periodically send statistical information to a centralized repository
 - Deduplication and compression rates
 - Storage usage
 - File counts, ages, etc
 - Many others
- Took ASUPs from one week in July 2011
 - Exclude any systems younger than 3 months or with less than 2.5% of capacity in use

Content-based Analysis: Metadata Collection

• Why metadata?

- Collecting entire content infeasible (size, privacy)
- Examples of metadata:
 - Per-chunk (fingerprints, size, physical location)
 - Per-file (comprising fingerprints)
 - Sub-chunk fingerprints
- Physical chunks, logical files
- Ensuring privacy
 - Anonymize filenames, paths, fingerprints, and any other content that can be matched to actual data

Characteristics of Backup Filesystems

Autosupport Analysis

© Copyright 2012 EMC Corporation. All rights reserved.

- Backup files are orders of magnitude larger than primary storage files
- Small-file optimizations, e.g., embedding data in inodes, don't work for backup
- Use large allocation units

How sparse is the file system hierarchy?

How sparse is the file system hierarchy?

How sparse is the file system hierarchy?

- Many fewer files & directories on backup systems than primary
- Flat hierarchy for backup: many files per directory
- Backup software uses catalog doesn't organize files the way humans do

Weekly Churn

- How quickly does data get replaced in the backup appliance?
 - Logical churn: backup files deleted and added

Weekly Churn

- On average, ~20% of total stored data freed & written per week
- System needs to be able to reclaim huge amounts of data on a regular basis
- Deduplication helps, since one physical copy can be retained over time

Deduplication

- How much deduplication do backup systems get?
 - Microsoft primary study was a single aggregate across many systems
 - Not directly comparable, but ~3X (cross-system), ~6X (4 weekly fulls)

Deduplication

- Long tail: some systems with 60x + dedupe!
 - Max dedupe seen is 384x!
- Much higher than primary workloads

Sensitivity Analyses

Content Metadata Analysis

 $\ensuremath{\mathbb{C}}$ Copyright 2012 EMC Corporation. All rights reserved.

Goals

- Assess impact of chunk size
 - What is the right size for a system?
 - Can we evaluate without the full data snapshot?
- Compare alternatives for caching

- What is the right cache unit?

Data Set Characteristics

Dataset	Size (TB)	Deduplication	Median Age (weeks)
Homedirs	201	14x	3.5
Mixed2 (Workstations & Servers)	43	11x	9.4
Email	146	10x	1.4
Workstations	5	8x	13.6
Fileservers (Exchange, DB)	60	6x	5.8
Mixed1 (NAS)	47	6x	3.2
Database1	177	5x	2.2
Database2	4	2x	0.2

Data Set Characteristics

Dataset	Size (TB)	Deduplication	Median Age (weeks)
Homedirs	201	14x	3.5
Mixed2 (Workstations & Servers)	Purple datasets used		9.4
Email	for chunk size experiments		1.4
Workstations		ъх	13.6
Fileservers (Exchange, DB)	60	6x	5.8
Mixed1 (NAS)	47	6x	3.2
Database1	177	5x	2.2
Database2	4	2x	0.2

Data Set Characteristics			
Dataset	Size (TB)	Dedup	weeks)
Homedirs	201	14x	3.5
Mixed2 (Workstations & Servers)	43	11x	9.4
Email	146	10x	1.4
Workstations	5	8x	13.6
Fileservers (Exchange, DB)	60	6x	5.8
Mixed1 (NAS)	47	6x	3.2
Database1	177	5x	2.2
Database2	4	2x	0.2

Data Set Characteristics

Dataset	Size (TB)	Deduplication	Median Age (weeks)
Homedirs	201	14x	3.5
Mixed2 (Workstations & Servers)	43	11x	9.4
Email	146	10x	
Workstations	5	8x Daily fu	Ills for
Fileservers (Exchange, DB)	60	6x just 3	days
Mixed1 (NAS)	47	6x	5.2
Database1	177	5x	2.2
Database2	4	2x	0.2

Merging Chunks

Goal

- Analyze deduplication rates across range of chunk sizes without having access to the contents
- Methodology
 - Collect fingerprints and sizes at standard 8K chunk size and of 1K sub-chunks
 - Merge 1K into 2K and 4K, and 8K into 16K+
 - Content-defined merging technique to make merges repeatable when content repeats
 - Consider impact of metadata overheads
 - Per-chunk overhead decreases effective deduplication on disk and adds to memory overheads
 - Greater relative overhead with higher deduplication, smaller chunks

Impact of Chunk Size

- A rule of thumb is 15% better deduplication for each smaller power of 2 in chunk size, but about 2x the metadata
- Best deduplication is 4KB, but also considering cost to maintain datastructures and cleaning, 8KB is often a sweet spot
- A given dataset with small interspersed changes will see much more improvement

 For small chunks, metadata overhead dominates increased deduplication

Impact of Chunk Size

- A rule of thumb is 15% better deduplication for each smaller power of 2 in chunk size, but about 2x the metadata
- Best deduplication is 4KB, but also considering cost to maintain datastructures and cleaning, 8KB is often a sweet spot
- A given dataset with small interspersed changes will see much more improvement

 For small chunks, metadata overhead dominates increased deduplication

Without Metadata Costs

Impact of Chunk Size

- A rule of thumb is 15% better deduplication for each smaller power of 2 in chunk size, but about 2x the metadata
- Best deduplication is 4KB, but also considering cost to maintain datastructures and cleaning, 8KB is often a sweet spot
- A given dataset with small interspersed changes will see much more improvement

- For small chunks, metadata overhead dominates increased deduplication
- Microsoft study found whole-file deduplication got 87% of block-level deduplication for backups
 - Works for individual files but not when files are aggregated before backup

Caching

- Memory cache to avoid disk accesses
 - For writes, need to cache metadata so we know which chunks are duplicates
 - For reads, want to also cache the data
- Granularity (possibly using stream locality hints)
 - Chunks: if you access a chunk, keep its metadata (or data) around
 - Compression regions: for reads, keep chunks that are compressed together as a group
 - Containers: cache all chunks in a SISL container together [Zhu08]
- Methodology
 - Replay trace with varying cache sizes
 - Report on the last Nth of the data (warm cache)
 - Where N is the deduplication ratio, so it approximates one full backup

Caching Results

• Chunk-level LRU caching needs large cache to be effective for writes

Sharp knee in

some

curves

- Fit a full backup's metadata into cache
- Container-level LRU caching works well
 - Compulsory misses a function of deduplication rate

Caching Results

- Read cache behavior similar to writes but for much larger cache due to data caching
 - No compulsory misses beyond one access per container; fragmentation effects

Caching Results

- Read cache behavior similar to writes but for much larger cache due to data caching
 - No compulsory misses beyond one access per container; fragmentation effects
- Consider compression region caching
 - CRs usually close to container caching; some need very large caches

Related Work

- Deduplication
 - Windows 2000 (whole file), Venti (fixed blocks), many variable chunks including LBFS
 - Performance optimizations: SISL, Sparse Indexing, HydraSTOR, ...
 - Bimodal Chunking for picking between two chunk sizes depending on deduplication effectiveness
- Data Characterization
 - Numerous primary storage studies, including Microsoft
 2011 FAST study emphasizing deduplication
 - Univ. Minnesota backup deduplication characterization (limited datasets)

Conclusions

- High churn means throughput must scale with primary storage capacity growth
- Backup systems tend to have fewer, larger, and shorter-lived files than primary
- High locality and deduplication necessary for hit rates and high performance
- 8KB chunks are a "sweet spot" for backup deduplication

Backup != Primary

Questions?

© Copyright 2012 EMC Corporation. All rights reserved.

