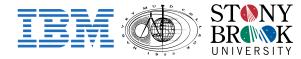
Extracting Flexible, Replayable Models from Large Block Traces

Vasily Tarasov¹, Santhosh Kumar¹, Jack Ma², Dean Hildebrand³, Anna Povzner², Geoff Kuenning², Erez Zadok¹

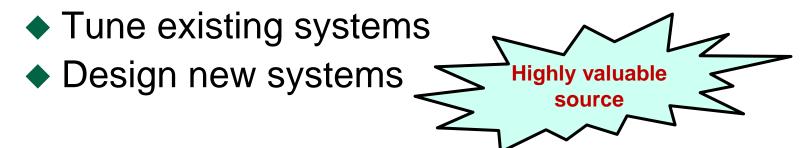
¹Stony Brook University ²Harvey Mudd College ³IBM Research – Almaden

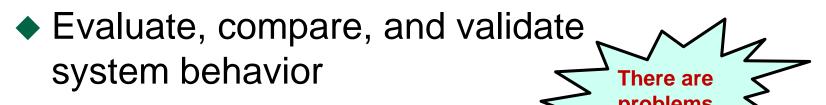
- 1. Traces and their problems
- 2. Workload models suitability
- 3. Design of the model extractor
- 4. Evaluation
- 5. Conclusions


Time- stamp	Opera- tion	I/O size	Offset
0	read	4096	0
0.5	read	4096	4096
0.7	read	4096	8192
1.3	write	8192	28762
1.5	write	8192	32768
1.6	read	4096	12288
2.0	read	4096	14384

Traces

Trace record


- In general case, any event can be traced (process forking, file accesses, user logins)
- Timestamp is a common field
- Other fields depend on the specific events traced
- We used block traces
- Our approach is valid for any trace

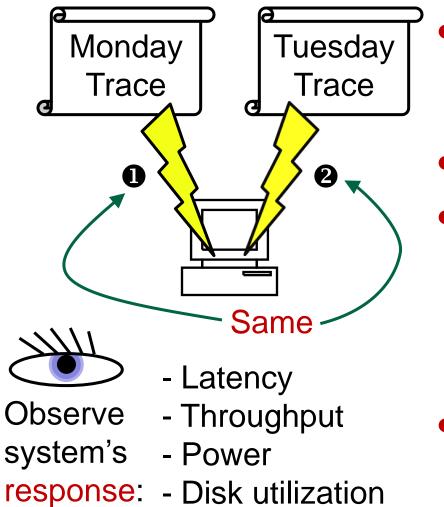

3

Trace Use Cases

Workload analysis and characterization

Trace replay

Problems with Trace Replay


- Large in size
 - Disturb results
 - Replayer bottlenecks on I/O
 - Cache pollution
 - Hard to distribute
- Static objects
 - Hard to intelligently and systematically modify the workload
 - Not easy to compare

- 1. Traces and their problems
- 2. Workload models suitability
- 3. Design of the model extractor
- 4. Evaluation
- 5. Conclusions

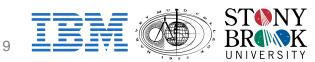
Statistics Matter

- Monday's trace is not exactly the same as a Tuesday's trace
- Responses are the same
- Statistics of the workload in the traces impact the system:
 - read/write ratio
 I/O size
- Set of statistics depends on specific system

- 1. Traces and their problems
- 2. Workload models suitability

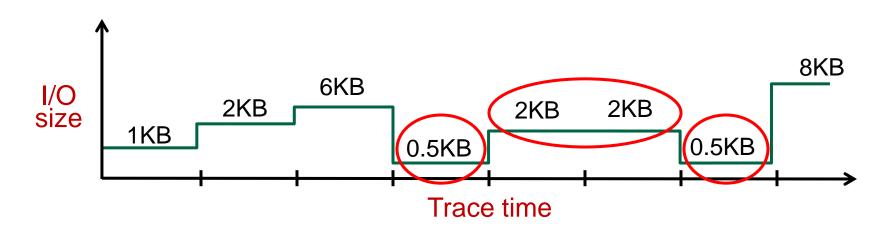
3. Design of the model extractor

- 4. Evaluation
- 5. Conclusions



Design Goals

- Accuracy
 - System responses match
- Conciseness
 - Small model size
- Flexibility
 - Trade model size for accuracy
 - Existing benchmarks for workload generation


Extensibility

Statistics and benchmarks

Trace Chunking

Workload changes in the trace over time

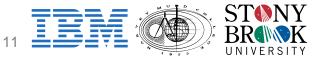
- Chunk the trace:
 - Fixed chunking first
 - Then deduplicate chunks
 - This often results in variable chunking

Within a Chunk

- Assume stationary workload
- Feature functions

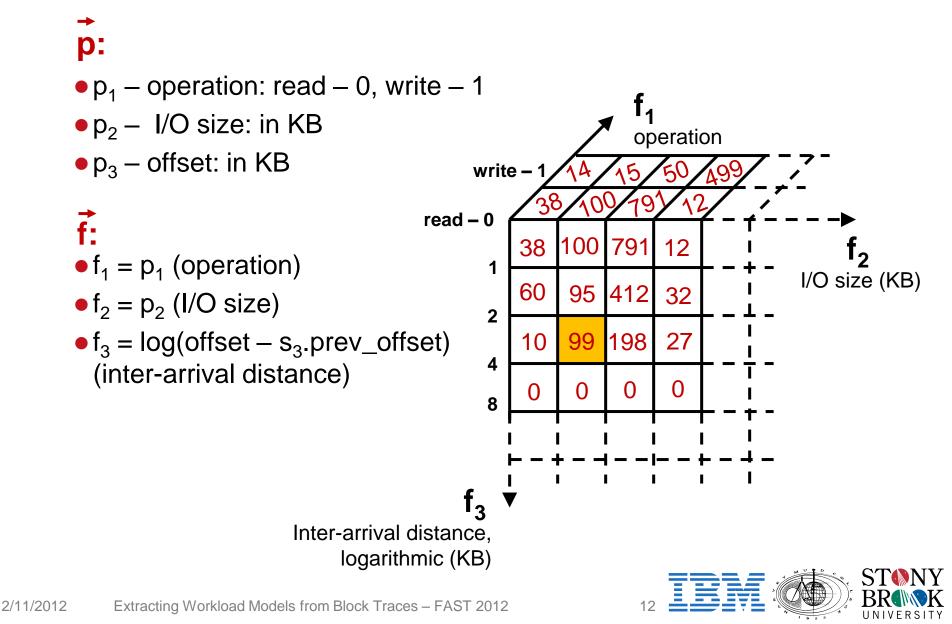
Trace field vector: $\vec{p} = (p_1, p_2, ..., p_n)$ Feature function: $f_1 = f_1(\vec{p}, s_1)$ s_1 : state

Feature function vector:

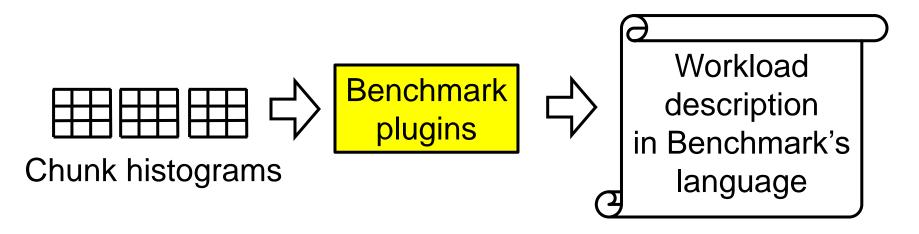

$$\vec{f} = (f_1(\vec{p}, s_1), f_2(\vec{p}, s_2), \dots, f_n(\vec{p}, s_n))$$

Put into a multi-dimensional histogram

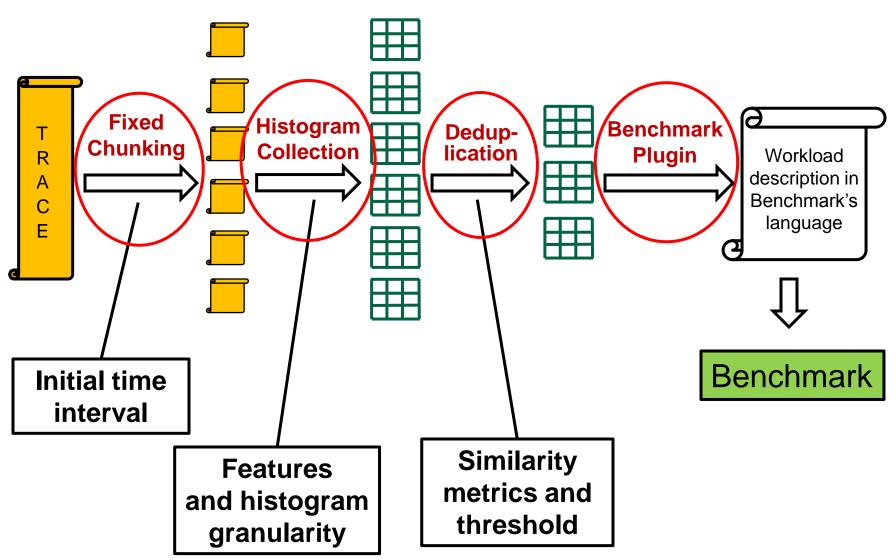
Trace


p₂

 p_1


p_n

Multi-Dimensional Histogram


Benchmark Plugins

- Yet another workload generator?
- Use existing benchmarks instead
- Benchmark plugin:

- command line arguments for IOzone
- config files for Filebench or FIO

Overall Design

14

UNIVERSITY

- 1. Traces and their problems
- 2. Workload models suitability
- 3. Design of the model extractor

4. Evaluation

5. Conclusions

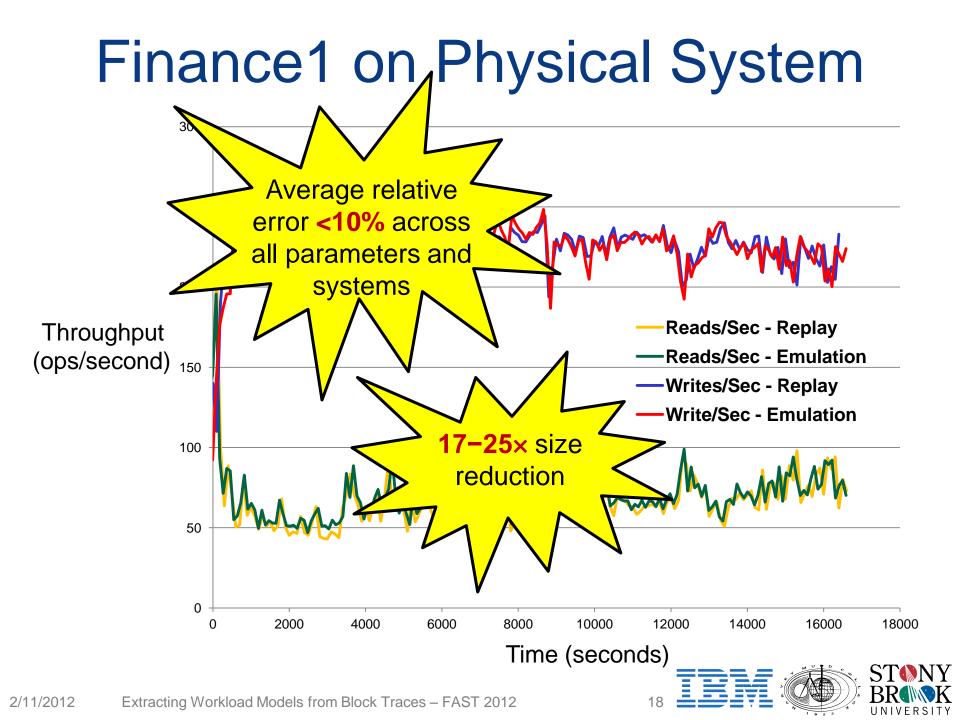
Evaluation

- 1. Replayed the trace
- 2. Emulated workload
- 3. Compared response (accuracy) parameters

Reads/sec
Writes/sec
Latency
I/O Utilization
I/O Queue length
Request size

- CPU Utilization
- Memory consumption
- Interrupts
 - Context Switches
- Wait Processes

Evaluation setup


Physical Setup
 single node with physical disk drives

Virtual Setup

VM with disk image on remote GPFS server

- Finance1
 OLTP applications
- MS-WBS
 - Microsoft build server

- 1. Traces and their problems
- 2. Workload models suitability
- 3. Design of the model extractor
- 4. Evaluation
- 5. Conclusions

Conclusions

- Extractor of workload models from traces
- Multi-dimensional histograms of feature functions
- Trace chunking
- Trade off accuracy for size reduction
- Standard benchmarks

Future work

- More of everything
 - accuracy parameters, systems, traces
- File system traces
- Automatic selection of parameters chunking interval, matrix granularity
- Operations on models

Extracting Flexible, Replayable Models from Large Block Traces

http://goo.gl/yFdrG

Vasily Tarasov¹, Santhosh Kumar¹, Jack Ma², Dean Hildenbrand³, Anna Povzner², Geoff Kuenning², Erez Zadok¹

¹Stony Brook University ²Harvey Mudd College ³IBM Research – Almaden

