
SFS: Random Write 
Considered Harmful in Solid 

State Drives

Changwoo Min1, 2, Kangnyeon Kim1, Hyunjin Cho2, 

Sang-Won Lee1, Young Ik Eom1

1Sungkyunkwan University, Korea
2Samsung Electronics, Korea



Outline

• Background
• Design Decisions
• Introduction
• Segment Writing
• Segment Cleaning
• Evaluation
• Conclusion

2



Flash-based Solid State Drives

• Solid State Drive (SSD)
– A purely electronic device built on NAND flash memory
– No mechanical parts

• Technical merits
– Low access latency
– Low power consumption
– Shock resistance
– Potentially uniform random access speed

• Remaining two problems limiting wider deployment of 
SSDs
– Limited life span
– Random write performance

3



Limited lifespan of SSDs
• Limited program/erase (P/E) cycles of NAND flash 

memory
– Single-level Cell (SLC): 100K ~ 1M
– Multi-level Cell (MLC): 5K ~ 10K
– Triple-level Cell (TLC): 1K

• As bit density increases 
 cost decreases, lifespan decreases

• Starting to be used in laptops, desktops and data 
centers. 
– Contain write intensive workloads

4



Random Write Considered 
Harmful in SSDs

• Random write is slow.
– Even in modern SSDs, the disparity with sequential 

write bandwidth is more than ten-fold. 

• Random writes shortens the lifespan of SSDs.
– Random write causes internal fragmentation of SSDs.
– Internal fragmentation increases garbage collection 

cost inside SSDs. 
– Increased garbage collection overhead incurs more 

block erases per write and degrades performance.
– Therefore, the lifespan of SSDs can be drastically 

reduced by random writes. 
5



Optimization Factors
• SSD H/W

– Larger over-provisioned space  lower 
garbage collection cost inside SSDs

Higher cost

• Flash Translation Layer (FTL)
– More efficient address mapping schemes
– Purely based on LBA requested from file 

system 
• Less effective for the no-overwrite file systems

 Lack of information

• Applications
– SSD-aware storage schemes (e.g. DBMS)
– Quite effective for specific applications
 Lack of generality

SSD H/W

Flash Translation Layer
(FTL)

File System

Applications

We took a file system level approach to directly exploit file block level statistics and 
provide our optimizations to general applications. 6



Outline

• Background
• Design Decisions

– Log-structured File System
– Eager on writing data grouping

• Introduction
• Segment Writing
• Segment Cleaning
• Evaluation
• Conclusion

7



Performance Characteristics of 
SSDs

• If the request size of the 
random write are same as 
erase block size, such write 
requests invalidate whole 
erase block inside SSDs. 

• Since all pages in an erase 
block are invalidated together, 
there is no internal 
fragmentation. 

8

The random write performance becomes same as sequential write 
performance when the request size is same as erase block size. 



Log-structured File System

• How can we utilize the performance characteristics 
of SSD in designing a file system?

• Log-structured File System 
– It transforms the random writes at file system level 

into the sequential writes at SSD level. 

– If segment size is equal to the erase block size of a 
SSD, the file system will always send erase block 
sized write requests to the SSD.

– So, write performance is mainly determined by 
sequential write performance of a SSD. 

9



Eager on writing data grouping

• To secure large empty chunk for bulk sequential write, 
segment cleaning is needed. 
– Major source of overhead in any log-structured file system
– When hot data is colocated with cold data in the same 

segment, cleaning overhead significantly increases. 

1 2 3 4 5 6 7 8

1 3 7 8 2 4 5 6

• Traditional LFS writes data regardless of hot/cold and 
then tries to separate data lazily on segment cleaning. 
– If we can categorize hot/cold data when it is first written, 

there is much room for improvement. 
 Eager on writing data grouping

Disk segment (4 blocks)

1 3 7 8 Four live blocks should be moved to 
secure an empty segment. 

1 3 7 8 No need to move blocks to secure an 
empty segment. 

10



Outline

• Background
• Design Decisions
• Introduction
• Segment Writing
• Segment Cleaning
• Evaluation
• Conclusion

11



SFS in a nutshell
• A log-structured file system

• Segment size is multiple of erase block size
– Random write bandwidth = Sequential write bandwidth

• Eager on writing data grouping
– Colocate blocks with similar update likelihood, hotness, 

into the same segment when they are first written
– To form bimodal distribution of segment utilization
– Significantly reduces segment cleaning overhead

• Cost-hotness segment cleaning
– Natural extension of cost-benefit policy
– Better victim segment selection

12



Outline

• Background
• Design Decisions
• Introduction
• Segment Writing
• Segment Cleaning
• Evaluation
• Conclusion

13



On Writing Data Grouping
• Colocate blocks with similar update likelihood, hotness, 

into the same segment when they are first written.

1Dirty Pages: t 2 3 4 5 6

1. Calculate 
hotness

1 2 3 4 5 6

2. Classify 
blocks

1 3 4 5 2 6

Hot group Cold group

3. Write large 
enough groups 1 3 4 5 Disk segment (4 blocks)

2 6Dirty Pages: t+1

How to measure hotness?

How to determine grouping criteria?

14



Measuring Hotness

• Hotness: update likelihood 
– Frequently updated data  hotness ↑
– Recently updated data  hotness ↑

– 	

File block hotness Hb Segment hotness Hs

	 	

	 	 	 	 	 	
	 	 	 	

	

	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

15



equi-width partitioning

Determining Grouping Criteria
: Segment Quantization

• The effectiveness of block grouping is determined by 
the grouping criteria. 
– Improper criteria may colocate blocks from different 

groups into the same segment, thus deteriorates the 
effectiveness of grouping. 

• Naïve solution does not work. 

hot 
group

warm 
group

cold
group

read-only
group

equi-height partitioning

hot group

warm group

cold group

read-only group

16



Iterative Segment Quantization
• Find natural hotness groups across segments in disk. 

– Mean of segment hotness in each group is used as grouping 
criterion. 

– Iterative refinement scheme inspired by k-means clustering 
algorithm

• Runtime overhead is reasonable. 
– 32MB segment  only 32 segments for 1GB disk space
– For faster convergence, the calculated centers are stored in 

meta data and loaded at mounting a file system.

1. Randomly select initial center of 
groups

2. Assign each segment to the closest 
center.

3. Calculate a new center by averaging 
hotnesses in a group.

4. Repeat Step 2 and 3 until convergence 
has been reached or three times at 
most. 

17



• Writing of the small groups will be 
deferred until the size of the group 
grows to completely fill a segment.

• Eventually, the remaining small 
groups will be written at creating a 
check-point.

Process of Segment Writing
Segment Writing

2. Classify dirty blocks 
according to hotness

warm
blocks

hot
blocks

read-only
blocks

cold
blocks

3. Only groups large 
enough to completely fill 
a segment are written. 

1. Iterative segment 
quantization

write request
Segment writing is invoked in four case:
• every five seconds 
• flush daemon to reduce dirty pages
• segment cleaning
• sync or fsync

18



Outline

• Background
• Design Decisions
• Introduction
• Segment Writing
• Segment Cleaning
• Evaluation
• Conclusion

19



Cost-hotness Policy

• Natural extension of cost-benefit policy

• In cost-benefit policy, the age of the youngest block in a 
segment is used to estimate update likelihood of the segment. 
– cost-benefit 	 	 	∗	 	 	

• In cost-hotness policy, we use segment hotness instead of the 
age, since segment hotness directly represents the update 
likelihood of segment.
– cost-hotness 	 	

	∗	 	
– Segment cleaner selects a victim segment with maximum cost-

hotness value. 

20



Writing Blocks under Segment 
Cleaning

• Live blocks under segment cleaning are 
handled similarly to typical writing scenario. 
– Their writing can also be deferred for continuous 

re-grouping 
– Continuous re-grouping to form bimodal segment 

distribution. 

21



Scenario of Data Loss in 
System Crash

• There are possibility of data loss for the live 
blocks under segment cleaning in system 
crash or sudden power off. 

1 3 7 8

1 2 3 4disk 
segment

1 3 7 8 2 4dirty 
pages

1 2 3 42 4

1. Segment cleaning. 
Live blocks are read 
into the page cache. 

1 2 3 42 4

1 3 7 8 2 4

1 3 7 8

2. Hot blocks are 
written.

3. System Crash!!
 Block 2, 4 will be 
lost since they do not 
have on-disk copy. 

22



How to Prevent Data Loss
• Segment Allocation Scheme

– Allocate a segment in Least Recently Freed (LRF) order. 
• Check if writing a normal block could cause data loss of blocks 

under cleaning. 
• This guarantees that live blocks under cleaning are never 

overwritten before they are written elsewhere. 

disk 
segment

1 3 7 8 2 4dirty 
pages

1 2 3 4 1 2 3 42 4

St: currently 
allocated 
segment

St+1: segment that 
will be allocated 
next time

1. Check if live blocks 
under cleaning is 
originated from St+1?

1 2 3 4 1 2 3 42 4

St: currently 
allocated 
segment

St+1: segment that 
will be allocated 
next time

1 3 7 8 2 4

2. If so, write the live 
blocks under cleaning 
first regardless of 
grouping. 

2 4 1 3 7 8

` ` ` `

23



Outline

• Background
• Design Decisions
• Introduction
• Segment Writing
• Segment Cleaning
• Evaluation
• Conclusion

24



Evaluation
• Server

– Intel i5 Quad Core, 4GB RAM
– Linux Kernel 2.6.27

• SSD

• Configuration
– 4 data groups
– Segment size: 32MB

SSD-H SSD-M SSD-L
Interface SATA SATA USB 3.0

Flash Memory SLC MLC MLC

Max. Sequential Writes (MB/s) 170 87 38

Random 4KB Writes (MB/s) 5.3 0.6 0.002

Price ($/GB) 14 2.3 1.4

25



Workload
• Synthetic Workload

– Zipfian Random Write
– Uniform Random Write

• No skewness  worst-case scenario of SFS

• Real-world Workload
– TPC-C benchmark 
– Research Workload (RES) [Roseli2000]

• Collected for 113 days on a system consisting of 13 desktop machines 
of research group. 

• Replaying workload
– To measure the maximum write performance, we replayed write 

requests in the workloads as fast as possible in a single thread 
and measured throughput at the application level. 

– Native Command Queuing (NCQ) is enabled. 

26



Throughput vs. Disk Utilization

27* SSD-M

Zipfian Random Write TPC-C

2x 1.9x

1.7x
2.5x

Uniform Random Write RES

1.4x

1.2x

1.9x

1.2x



Segment Utilization Distribution

* Disk utilization is 70%. 28

Zipfian Random Write TPC-C

Uniform Random Write RES

nearly full

nearly empty



Comparison with Other File 
Systems

File System

FTL Simulator

workload • Ext4
– In-place-update file system 

• Btrfs 
– No overwrite file system

 Measured Throughput

blktrace • Coarse grained hybrid mapping FTL
• FAST FTL [Lee’07]

• Full page mapping FTL
 Measured Write Amplification and 
Block Erase Count 

29



Throughput under Different 
File Systems

* Disk utilization is 85%. / SSD-M

1.6x
7.3x

1.5x1.3x
10.6x

1.3x

2x
14.6x

1.6x

30

1.4x
48x

2.4x

1.7x
4.2x

1.3x



Coarse Grained Hybrid Mapping FTL: FAST FTL

1.4x
6.7x 4.3x 1.1x

6.4x
2.5x

1.2x
4.9x 2.6x 1.2x

5.4x

Full page mapping FTL

1.3x
7.5x

2.6x

1.1x
2.7x

1.3x 1.2x
2.4x 1.5x 1.2x

2.8x
3.3x

Block Erase Count

* Disk utilization is 85%.
31

1.2x
6.1x 3.1x5.2x

1.2x
3.8x

1.8x



Outline

• Background
• Design Decisions
• Introduction
• Segment Writing
• Segment Cleaning
• Evaluation
• Conclusion

32



Conclusion
• Random write on SSDs causes performance 

degradation and shortens the lifespan of SSDs. 

• We present a new file system for SSD, SFS. 
– Log-structured file system
– On writing data grouping
– Cost-hotness policy

• We show that SFS considerably outperforms existing 
file systems and prolongs the lifespan of SSD  by 
drastically reducing block erase count inside SSD. 

• Is SFS also beneficial to HDDs?
– Preliminary experiment results are available on our poster!

33



THANK YOU!

QUESTIONS?

34


