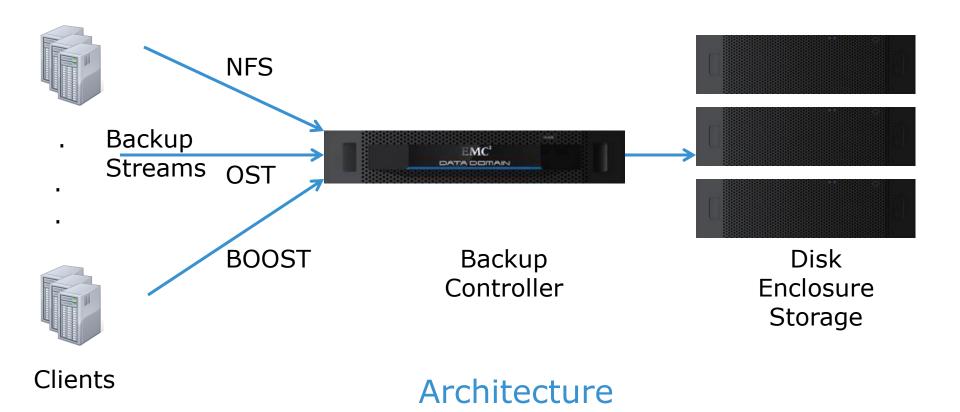
Power Consumption in Enterprise-Scale Backup Storage Systems

Zhichao Li⁺, Kevin Greenan⁺, Andrew Leung⁺, Erez Zadok⁺

Stony Brook University Backup Recovery Systems Division, EMC

10th USENIX Conference on File and Storage Technologies (FAST'12)



How To Design Power Management?

- Disk backup prime for power management
 - Stores lots of cold data
 - Competes with low-power tape
- No previous power measurements
 - Good design is guided by measurement
 - Often just follow vender spec sheets
 - Must guess and use assumptions
 - Often assume disks will dominate power

Methodology

Power Consumption in Enterprise-Scale Backup Storage Systems

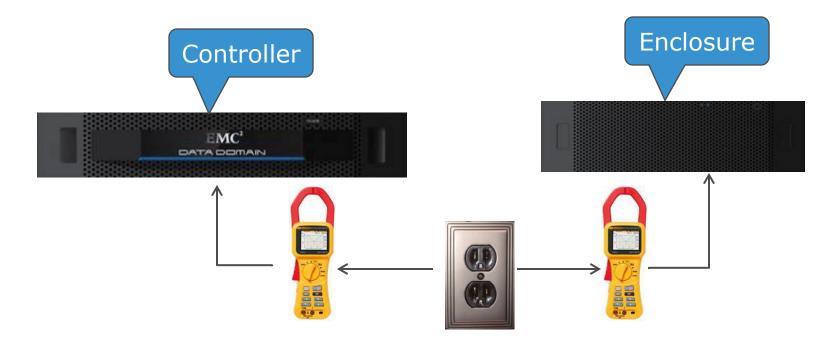
Methodology

Measured 4 enterprise backup controllers

Controller	DD880	DD670	DD860	DDTBD
Ship year	2009	2010	2011	Experimental
Market	High end	Low end	High end	High end
# CPUs	2	1	2	4
RAM (GBs)	64	16	72	256

Controller hardware summary

Methodology

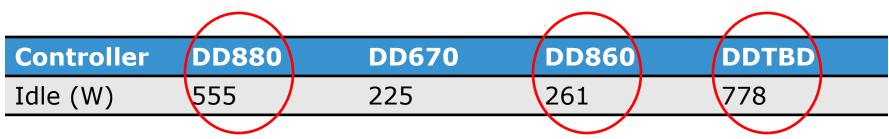

• Measured 2 enterprise backup enclosures

Enclosure	ES20	ES30
Ship year	2006	2011
# Disks	16	15
# SAS cards	2	2
# Fans	2	4

Enclosure hardware summary

Measurement

Not measured: networking, cooling, internal subcomponents



Idle power consumption

Power Consumption in Enterprise-Scale Backup Storage Systems

Idle Power Consumption

- DDTBD consumes more than 100 2TB drives
- DD880 2x more power than DD860

Controller	DD880	DD670	DD860	DDTBD
Usable TBs	192	76	192	1152
W/Usable TB	2.89	2.96	1.35	0.675

Newer HW generations are more efficient

Idle Power Consumption

Enclosure	ES20	ES30
Idle (W)	278	179

• Again, newer HW is more efficient

Deduplication on power savings?

Saves ~10X space, and saves hardware

Less controllers/enclosures/networking

• Reduces disk IO, faster data processing

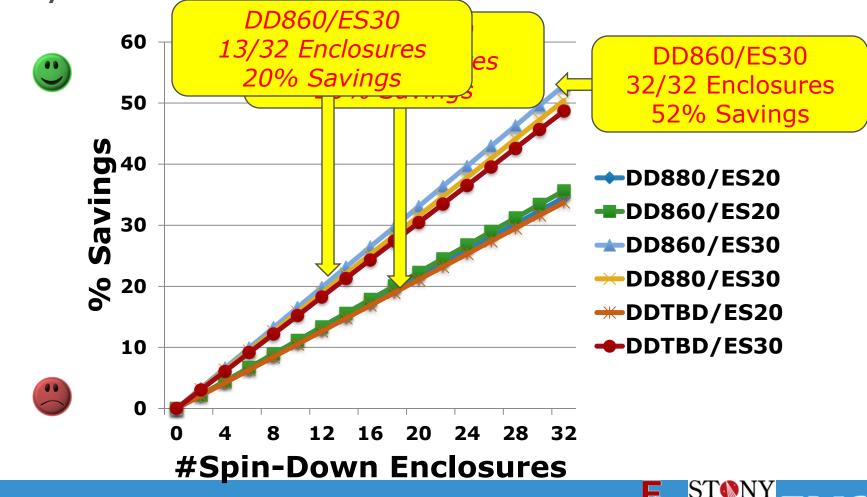
Longer idle time for power management

Power management

Power Consumption in Enterprise-Scale Backup Storage Systems

Disk power management

• Systems often power manage disks


ES20	ES30
278 🔍	
176 (<mark>37% ↓</mark>)	Disks
155 (<mark>44% ↓</mark>) 🎸	2 123W
	278 ► 176 (37% ↓)

- Spin down saves ~100W for both enclosures
 Spin down saves 6.5W per disk
- Power down saves 34% more for ES30
 - Power down saves 7.6W to 9.3W per disk
- ES20 uses more power than just 16 disks

Disk spin down at scale

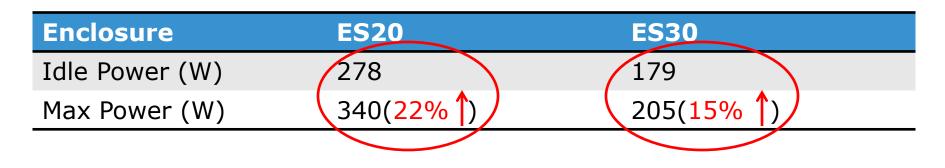
• System with 1 controller and 32 enclosures

Power Consumption in Enterprise-Scale Backup Storage Systems

Power proportionality

Power Consumption in Enterprise-Scale Backup Storage Systems

Power Proportionality - Controller


Controller	DD880	DD670	DD860	DDTBD
NFS	44%	24%	58%	20%
OST	58%	29%	61%	36%
BOOST	56%	28%	57%	23%

Power increase ratios from idle to loaded

- Power varies more by model than workload
- Why care?
 - Idle power should take small fraction
 - Great deal of power consumed while idle

Power Proportionality - Enclosure

- 22% increase from idle to max in ES20
- 15% increase from idle to max in ES30
- A lot of power is consumed while idle!

Conclusions

- Controller/Enclosure are power hungry
 - DDTBD > 100 2TB SATA disks
 - ES20 > 16 disks
 - Disk may not be primary power consumer
- Current systems not power proportional
 - Active vs. idle varies differently
 - More by model than workload
- Disparate consumption between similar H/W
 - Normalized W/TB decreases from 2.89 to 0.675
 - Newer HW more efficient

Future

- Measure aged backup system
- Measure primary storage system
- Investigate individual components

 CPU, RAM, etc.

Power Consumption in Enterprise-Scale Backup Storage Systems

Zhichao Li⁺, Kevin Greenan⁺, Andrew Leung⁺, Erez Zadok⁺

*Stony Brook University * Backup Recovery Systems Division, EMC

Power Consumption in Enterprise-Scale Backup Storage Systems

