
Lifetime Management of Flash-Based SSDs
Using Recovery-Aware Dynamic Throttling

Sungjin Lee, Taejin Kim, Kyungho Kim†, and Jihong Kim

10th USENIX Conference on File and Storage Technologies
February 17, 2012

School of Computer Science and Engineering
Seoul National University

†Samsung Electronics

2FAST ‘12 S. LEE

Flash-based SSDs in Enterprise
• Flash-based SSDs (Solid-State Drives) are becoming an

attractive storage solution for enterprise systems.

<MLC-based SSD><PCIe-based Flash Array>

• The limited lifetime caused by poor write endurance is
a main barrier for wider adoption of SSDs in the
enterprise market.

3FAST ‘12 S. LEE

SSD Lifetime
• The SSD lifetime is determined by two main factors:

• (1) SSD capacity
• (2) Number of program/erase (P/E) cycles
• (3) Incoming write traffic
• (4) Write Amplification Factor (WAF)

– Efficiency of FTL algorithms

Capacity • # of P/E cycles

Write traffic (day) • WAF
SSD lifetime (days) =

The number of bytes written per day

The total number of bytes that can be written to the SSD

4FAST ‘12 S. LEE

Intensive Write Traffic
• Enterprise systems exhibit high write traffic

Required lifetime

Ba
nd

w
id

th
(M

B/
se

c)

Write not intensive
(e.g., Mobile phone and Desktop PC)

Ba
nd

w
id

th
(M

B/
se

c)

Write intensive
(e.g., Enterprise Server)

Cannot guarantee
the required lifetime

Capacity • # of P/E cycles

Write traffic (day) • WAF
Lifetime =

5FAST ‘12 S. LEE

Decreasing P/E Cycles
• The number of P/E cycles is continuously decreasing as

the semiconductor process is scaled-down

Capacity • # of P/E cycles

Write traffic (day) • WAF
Lifetime =

6FAST ‘12 S. LEE

Existing Lifetime-Enhancement Schemes

• Reduce WAF
• Optimize garbage collection algorithms
• Optimize wear-leveling algorithms
• Use more fine-grained mapping schemes

• Reduce incoming write traffic
• Use lossless data compression
• Use data deduplication

Capacity • # of P/E cycles

Write traffic (day) • WAF
Lifetime =

All those approaches improve the overall SSD lifetime,
but cannot guarantee the required SSD lifetime !

7FAST ‘12 S. LEE

Static Throttling (Existing Approach)
• Limit the maximum throughput of SSDs

Ba
nd

w
id

th
(M

B/
se

c)

Required Lifetime

Static throttling Guarantee
the required lifetime

• Disadvantages

• Likely to throttle performance uselessly
• High performance penalty and high response time variations

• Underutilize the available endurance

Original write traffic

8FAST ‘12 S. LEE

Dynamic Throttling
• Throttle SSD performance dynamically depending on:

• The characteristics of a given workload
• The remaining SSD lifetime

Our Approach (1):

• Less performance penalty and response time variations

• Fully utilize the available endurance

Ba
nd

w
id

th
(M

B/
se

c)

Required Lifetime

An SSD is worn outDynamic Throttling

Static Throttling

9FAST ‘12 S. LEE

• The effective P/E cycles are much larger than the number on
datasheets due to the recovery effect

Exploit Self-Recovery Effect
Our Approach (2):

• Guarantee the SSD lifetime with less throttling overheads

Ba
nd

w
id

th
(M

B/
se

c)

Required Lifetime

An SSD is worn out

Recovery-Aware
Dynamic Throttling

Dynamic Throttling

…

10FAST ‘12 S. LEE

Contribution
• Propose a novel REcovery-Aware DYnamic throttling

technique, called READY
• Throttle the SSD performance to guarantee the required

SSD lifetime
• Exploit the self-recovery property of a flash memory cell to

lessen the performance penalty caused by throttling

• Evaluate the proposed READY technique using real-
world enterprise traces

• Guarantee the required SSD lifetime for all evaluated traces
• Achieve 4.4x higher responses time over a simple static

throttling technique

11FAST ‘12 S. LEE

Outline
• Introduction

• Motivation

• Recovery-Aware Dynamic Throttling

• Evaluation Results

• Conclusion

12FAST ‘12 S. LEE

Design Goals of READY
• Design goal 1: guarantee the required SSD lifetime

• Throttle the write throughput of SSDs by applying
throttling delays to write requests

• Design goal 2: minimize average response times
• Determine a throttling delay as low as possible so that the

SSD is completely worn out at the required lifetime

• Design goal 3: minimize response time variations
• Distribute a throttling delay as evenly as possible over

every write request

13FAST ‘12 S. LEE

Host Interface

Throttling Layer

FTL

NAND Flash Chips

Overall Architecture of READY

Write Demand PredictorWrite Demand Predictor

Throttling Delay EstimatorThrottling Delay Estimator

Epoch-Capacity RegulatorEpoch-Capacity Regulator

Recovery ModelRecovery Model

Monitoring write demands

Predict future write demands Throttling Delay

Apply throttling delays

SSD

Host System

Estimate how many
data will be written

Determine
throttling delays

Throttle
write performance

Write

Write w/ Delay

14FAST ‘12 S. LEE

Write Demand Predictor
• The write traffic of enterprise workloads is likely to

change significantly over time
• How to predict future write traffic for throttling?

• Exploit cyclic behaviors of enterprise applications!

Ba
nd

w
id

th
 (M

B/
se

c)

Time

15FAST ‘12 S. LEE

Cyclical Behaviors of Enterprise Workloads

• A strong cyclical behavior is frequently observed in
enterprise applications

When a cyclic period is set to 30 min,
the write demand difference is
less than 30% for 88% periods

When a cyclic period is set to 30 min,
the write demand difference is
less than 20% for 98% periods

16FAST ‘12 S. LEE

Future Write Demand Estimation
• (1) Divide time into epochs which exhibit similar write demands
• (2) Estimate the similar amount of data written during the latest

epoch will be written during the next epoch

Ba
nd

w
id

th
 (M

B/
se

c)

Time
(i-1)th epoch i-th epoch (i+1)th epoch

Cyclical Period (= Epoch)

The similar amount of data will be written
during the i-th epoch

17FAST ‘12 S. LEE

Host Interface

Throttling Layer

FTL

NAND Flash Chips

Overall Architecture of READY

Write Demand PredictorWrite Demand Predictor

Throttling Delay EstimatorThrottling Delay Estimator

Epoch-Capacity RegulatorEpoch-Capacity Regulator

Recovery ModelRecovery Model

Monitoring past write demands

Predict future write demands Throttling Delay

Apply throttling delays

SSD

Host System

Determine
throttling delays

18FAST ‘12 S. LEE

• Determine a throttling delay
• (1) The future write demand for the next epoch
• (2) The epoch capacity

• The amount of data allowed to be written during the epoch

Throttling Delay Estimator

We already know it
Ba

nd
w

id
th

(i-1)th epoch i-th epoch (i+1)th epoch (i+2)th epoch (i+3)th epoch

Epoch capacity =
of remaining P/E cycles x SSD capacity

of remaining epochs

(1) Future Write Demand

Present

(2) Epoch Capacity

19FAST ‘12 S. LEE

Change Throttling Delay
Ba

nd
w

id
th

(i-1)th epoch i-th epoch (i+1)th epoch (i+2)th epoch (i+3)th epoch

(1) Future Write Demand

Present

(2) Epoch Capacity

• Case 1: future write demand = epoch capacity
• Don’t change a throttling delay

• Case 2: future write demand > epoch capacity
• Increase a throttling delay

• Case 3: future write demand < epoch capacity
• Decrease a throttling delay

• A throttling delay is initially set to 0 and is changed adaptively at
the beginning of each epoch.

20FAST ‘12 S. LEE

Exploit Effective P/E Cycles
• P/E operations cause damage to NAND flash memory cells

• This damage is partially recovered during the idle time

Effective P/E cycles are larger than pre-set P/E cycles

Epoch capacity = # of remaining P/E cycles x SSD capacity

of remaining epochs

of effective remaining P/E cycles x SSD capacity

of remaining epochs
<

21FAST ‘12 S. LEE

Effective P/E Cycles Modeling
• Self-recovery effect validation from real measurements

• Effective P/E cycles modeling

<Effective P/E cycles><Self-Recovery Model><Damage Model>

Recovery

Recovery

22FAST ‘12 S. LEE

The Effective P/E Cycles
• The maximum P/E cycles without the recovery effect are 3K.
• The effective P/E cycles are gradually increased in proportional

to the length of the idle time.
Ef

fe
ct

iv
e

P/
E

cy
cl

es

23FAST ‘12 S. LEE

Host Interface

Throttling Layer

FTL

NAND Flash Chips

Overall Architecture of READY

Write Demand PredictorWrite Demand Predictor

Throttling Delay EstimatorThrottling Delay Estimator

Epoch-Capacity RegulatorEpoch-Capacity Regulator

Recovery ModelRecovery Model

Monitoring past write demands

Predict future write demands Throttling Delay

Apply throttling delays

SSD

Host System

Throttle
write performance

24FAST ‘12 S. LEE

8KB

Throttling
delay

8KB

Throttling
delay

8KB

Throttling
delay

8KB

Throttling
delay

8KB

Throttling
delay

Epoch-Capacity Regulator
• Throttle write performance as evenly as possible

• To minimize response time variations

• (1) Apply the same throttling delay to every page write
• (2) Increase a throttling delay later to reclaim the over-used

capacity

…

Req. Ack.

Time

A page write
(page size is 8 KB)

Epoch Capacity = 24 KB

32 KB data has been written

8KB

Throttling
delay

Increase a throttling delay slightly
to reclaim the over-used capacity

25FAST ‘12 S. LEE

Outline
• Introduction

• Motivation

• Recovery-Aware Dynamic Throttling

• Evaluation Results

• Conclusion

26FAST ‘12 S. LEE

Experimental Setting
• Used the DiskSim-based SSD simulator for evaluations

• 20 nm 2-bit MLC NAND flash memory with 3K P/E cycles
• The target SSD lifetime is set to 5 years

• Evaluated four SSD configurations
• NT: No Throttling

– No performance throttling; No lifetime guarantee

• ST: Static Throttling
• DT: Dynamic Throttling without Recovery
• READY: Recover-Aware Dynamic Throttling

27FAST ‘12 S. LEE

Benchmarks
• Used the traces from MSR-Cambridge and MS-

Production benchmarks

28FAST ‘12 S. LEE

Lifetime Analysis

• NT cannot guarantee the required SSD lifetime (except for proj)

• READY achieves the lifetime close to 5 years

• ST and DT exhibit the lifetime much longer than 5 years

Required lifetime

29FAST ‘12 S. LEE

Performance Analysis

• NT exhibits the best performance among all the configurations

• READY perform better than ST and DT while guaranteeing the
required lifetime

30FAST ‘12 S. LEE

Response Time Variations (1)

• READY shows shorter response times than ST/DT.
• ST exhibits significant response time variations.

• Stop writing if incoming write traffic is higher than a fixed
throughput

31FAST ‘12 S. LEE

Response Time Variations (2)

• The write traffic of proj and map changes greatly with time.
• It is hard to predict future write traffic.

• READY and DT exhibit relatively high fluctuation on response
times, but is more stable than ST

32FAST ‘12 S. LEE

Conclusion
• We proposed the recovery-aware dynamic throttling

technique, called READY
• Guarantee the SSD lifetime by throttling SSD performance
• Reduce throttling overheads by exploiting the self-recovery

effect of flash memory cells
• Achieve about 4.4x higher performance over the existing

static throttling with less response time variations

• Future works
• Implement READY in a real SSD platform
• Support latency-aware performance throttling

33FAST ‘12 S. LEE

Thank you

