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Abstract
Data-protection class workloads, including backup

and long-term retention of data, have seen a strong in-
dustry shift from tape-based platforms to disk-based sys-
tems. But the latter are traditionally designed to serve
as primary storage and there has been little published
analysis of the characteristics of backup workloads as
they relate to the design of disk-based systems. In this
paper, we present a comprehensive characterization of
backup workloads by analyzing statistics and content
metadata collected from a large set of EMC Data Domain
backup systems in production use. This analysis is both
broad (encompassing statistics from over 10,000 sys-
tems) and deep (using detailed metadata traces from sev-
eral production systems storing almost 700TB of backup
data). We compare these systems to a detailed study of
Microsoft primary storage systems [22], showing that
backup storage differs significantly from their primary
storage workload in the amount of data churn and ca-
pacity requirements as well as the amount of redundancy
within the data. These properties bring unique challenges
and opportunities when designing a disk-based filesys-
tem for backup workloads, which we explore in more
detail using the metadata traces. In particular, the need
to handle high churn while leveraging high data redun-
dancy is considered by looking at deduplication unit size
and caching efficiency.

1 Introduction
Characterizing and understanding filesystem content and
workloads is imperative for the design and implementa-
tion of effective storage systems. There have been nu-
merous studies over the past 30 years of file system char-
acteristics for general-purpose applications [1, 2, 3, 9, 15,
20, 22, 26, 30, 31], but there has been little in the way of
corresponding studies for backup systems.

Data backups are used to protect primary data. They
might typically consist of a full copy of the primary data
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once per week (i.e., a weekly full), plus a daily backup
of the files modified since the previous backup (i.e., a
daily incremental). Historically, backup data has been
written to tape in order to leverage tape’s low cost per
gigabyte and allow easy transportation off site for disas-
ter recovery. In the late 1990s, virtual tape (or “VTL”)
was introduced, which used hard disk storage to mimic
a tape library. This allowed for consolidation of storage
and faster restore times. Beginning in the early 2000s,
deduplicating storage systems [10, 34] were developed,
which removed data redundancy and extended the bene-
fits of disk-based backup storage by lowering the cost of
storage and making it more efficient to copy data off-site
over a network for disaster recovery (replication).

The transition from tape to VTL and deduplicating
disk-based storage has seen a strong adoption by the
industry. In 2010 purpose-built backup appliances pro-
tected 468PB and are projected to protect 8EB by 2015,
by which time this will represent a $3.5B market [16].
This trend has made a detailed study of backup filesys-
tem characteristics pertinent for system designers if not
long overdue.

In this paper we first analyze statistics from a broad set
of 10,000+ production EMC Data Domain systems [12].
We also collect and analyze content-level snapshots of
systems that, in aggregate, are to our knowledge at least
an order of magnitude larger than anything previously
reported. Our statistical analysis considers information
such as file age, size, counts, deduplication effective-
ness, compressibility, and other metrics. Comparing this
to Meyer and Bolosky’s analysis of a large collection
of systems in Microsoft Corp. [22], we see that backup
workloads tend to have shorter-lived and larger files than
primary storage. This is indicative of higher data churn
rates, a measure of the percentage of storage capacity that
is written and deleted per time interval (e.g., weekly), as
well as more data sequentiality. These have implications
for the design requirements for purpose-built backup sys-
tems.



While summary statistics are useful for analyzing
overall trends, we need more detailed information to con-
sider topics such as performance analysis (e.g., cache
hit rates) or assessing the effect of changes to system
configurations (e.g., varying the unit of deduplication).
We address this with our second experimental methodol-
ogy, using simulation from snapshots representing con-
tent stored on a number of individual systems. The con-
tent metadata includes detailed information about indi-
vidual file content, but not the content itself. For exam-
ple, deduplicating systems will break files into a series
of chunks with each chunk represented by a strong hash,
sometimes referred to as a fingerprint. We collect the
lists of chunk fingerprints and chunk sizes that represent
each file as well as the physical layout of these chunks on
disk. These collections represent almost 700TB of data
and span various data types including databases, emails,
workstation data, source code, and corporate application
data. These allow us to analyze the stream or file-wise
behavior of backup workloads. This type of information
is particularly helpful in analyzing the effectiveness of
deduplication parameters and caching algorithms.

This study confirms and highlights the different
requirements between backup and primary storage.
Whereas primary storage capacities have grown rapidly
(the total amount of digital data more than doubles ev-
ery two years [13]), write throughput requirements have
not needed to scale as quickly because only a small per-
centage of the storage capacity is written every week and
most of the bytes are longer lived. Contrast this with
the throughput requirements of backup systems which,
for weekly full backups, must ingest the entire primary
capacity every week. The implication is that backup
filesystems have had to scale their throughput to meet
storage growth. Meeting these demands is a real chal-
lenge, and this analysis sheds light on how deduplication
and efficient caching can help meet that demand.

To summarize our contributions, this paper:

• analyzes more than 10,000 production backup sys-
tems and reports distributions of key metrics such
as deduplication, contents, and rate of change;
• extensively compares backup storage systems to a

similar study of primary storage systems; and
• uses a novel technique for extrapolating deduplica-

tion rates across a range of possible sizes.

The remainder of this paper is organized into the fol-
lowing sections: §2 background and related work, §3
data collection and analysis techniques, §4 analysis of
broad trends across thousands of production systems,
§5 exploring design alternatives using detailed metadata
traces of production systems, and §6 conclusions and im-
plications for backup-specific filesystem design.

2 Background and Related Work
We divide background into three areas: backups (§2.1),
deduplication (§2.2), and data characterization (§2.3).

2.1 Backups

Backup storage workloads are tied to the applications
which generate them, such as EMC NetWorker or
Symantec NetBackup. These backup software solutions
aggregate data from online file systems and copy them to
a backup storage device such as tape or a (deduplicating)
disk-based storage system [7, 34]. As a result, individ-
ual files are typically combined into large units, repre-
senting for example all files backed up on a given night;
these aggregates resemble UNIX “tar” files. Many other
types of backup also exist, such as application-specific
database backups. Backups usually run regularly, with
the most common paradigm being weekly “full” backups
and daily “incremental” backups. When files are modi-
fied, the incremental backups may have large portions
in common with earlier versions, and full backups are
likely to have many of their comprising files completely
unmodified, so the same data gets written to the backup
device again and again.

2.2 Deduplication and other Data Reduction

In backup storage workloads the inherent high de-
gree of data redundancy and need for high through-
put make deduplicating techniques important. Dedu-
plication can be performed at the granularity of en-
tire files (e.g., Windows 2000 [5]), fixed blocks (e.g.,
Venti [29]), or variable-sized “chunks” based on content
(e.g., LBFS [24]). In each case, a strong hash (such as
SHA-1) of the content, i.e., its “fingerprint,” serves as
a unique identifier. Fingerprints are used to index con-
tent already stored on the system and eliminate duplicate
writes of the same data. Because content-defined chunks
prevent small changes in content from resulting in unique
chunks throughout the remainder of a file, and they are
used in the backup appliances we have analyzed, we as-
sume this model for the remainder of this paper. Backup
data can be divided into content-defined chunks on the
backup storage server, on the backup software intermedi-
ary (e.g., a NetBackup server), or on the systems storing
the original data. If chunked prior to transmission over a
network, the fingerprints of the chunks can first be sent
to the destination, where they are used avoid transferring
those chunks already present [11, 24].

Traditional compression, such as gzip, complements
data deduplication. We refer to such compression
as “local” compression to distinguish it from com-
pression obtained from identifying multiple copies of
data, i.e., deduplication. The systems under study
perform local compression after deduplication, com-
bining unique chunks into “compression regions” that
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are compressed together to improve overall data reduc-
tion.

There is a large body of research and commercial ef-
forts on optimizing [14, 21, 34], scaling [8, 10], and
improving the storage efficiency [17] of deduplicating
backup systems. Our efforts here are mostly comple-
mentary to that work, as we are characterizing backup
workloads rather than designing a new storage architec-
ture. The impact of the chunk size has been explored
in several studies [17, 18, 22, 28], as has delta-encoding
of content-defined chunks [18]. However, our study of
varying chunk sizes (§5.1) uses real-world workloads
that are substantially larger than those used in previous
studies. We also develop a novel technique for using a
single chunk size to extrapolate deduplication at larger
chunk sizes. This is different from the methodology of
Kruus, et al. [17], which decides on the fly what chunk
size to use at a particular point in a data stream, using
the actual content of the stream. Here, we use just the
fingerprints and sizes of chunks to form new “merged
chunks” at a coarser granularity. We evaluate the effec-
tiveness of this approach by comparing metrics from the
approximated merged chunks and native chunking at dif-
ferent sizes, then evaluate the effectiveness of chunking
various large-scale datasets over a range of target chunk
sizes.

2.3 Data Characterization

The closest work to ours in topic, if not depth, is Park and
Lilja’s backup deduplication characterization study [27].
It uses a small number of truncated backup traces, 25GB
each, to evaluate metrics such as rate of change and com-
pression ratios. By comparison, our paper considers a
larger set of substantially larger traces from production
environments and aims at identifying filesystem trends
related to backup storage.

There have been many studies of primary storage char-
acteristics [1, 2, 3, 9, 15, 20, 22, 26, 30, 31], which have
looked at file characteristics, access patterns and caching
behavior for primary workloads. Our study measures
similar characteristics but for backup workloads. It is in-
teresting to compare the different characteristics between
backup and primary storage systems (see §4). For com-
parison data points we use the most recent study from
Microsoft [22], which contains a series of large-scale
studies of workstation filesystems. There are some dif-
ferences that arise from the difference in usage (backup
versus day-to-day usage) and some that arise from the
way the files are accessed (aggregates of many files ver-
sus individual files). For example, the ability to dedupli-
cate whole files may be useful for primary storage [5] but
is not applicable to a backup environment in which one
file is the concatenation of terabytes of individual files.

3 Data Collection and Analysis Techniques
In conducting a study of file-system data, the most en-
compassing approach would be to take snapshots of all
the systems’ data and archive them for evaluation and
analysis. This type of exercise would permit numerous
forms of interesting analysis including changes to sys-
tem parameters such as average chunk size and tracking
filesystem variations over time.

Unfortunately, full-content snapshots are infeasible
for several reasons, the primary one being the need to
maintain data confidentiality and privacy. In addition,
large datasets (hundreds of terabytes in size each) be-
come infeasible to work with because of the long time to
copy and process and the large capacity required to store
them. The most practical way of conducting a large-scale
study is to instead collect filesystem-level statistics and
content metadata (i.e., data about the data).

For this study we collect and analyze two classes
of data with the primary aim of characterizing backup
workloads to help design better protection storage sys-
tems. The first class of data is autosupport reports from
production systems. Customers can choose to configure
their systems to automatically generate and send auto-
supports, which contain system monitoring and diagnos-
tic information. For our analysis, we extract aggregate
information from the autosupports such as file statistics,
system capacity, total bytes stored, and others.

The second type of information collected is detailed
information about data contained on specific production
systems. These collections contain chunk-level meta-
data such as chunk hash identifiers (fingerprints), sizes,
and location on disk. Because of the effort and storage
needed for the second type of collection, they are ob-
tained from only a limited set of systems.

The two sets of data complement each other: the auto-
supports (§3.1) are limited in detail but wide in deploy-
ment, while the content metadata snapshots (§3.2) con-
tain great detail but are limited in deployment.

3.1 Collecting Autosupports

The Data Domain systems that are the subject of this
study send system data back to EMC periodically, usu-
ally on a daily basis. These autosupport reports contain
diagnostic and general system information that help the
support team monitor and detect potential problems with
deployed systems [6]. Over 10,000 of these reports are
received per day, which makes them valuable in under-
standing the broad characteristics of protection storage
workloads. They include information about storage us-
age, compression, file counts and ages, caching statistics
and other metrics. Among other things, they can help us
understand the distribution of deduplication rates, capac-
ity usage, churn and file-level statistics.
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For our analysis, we chose autosupports from a one-
week period. From the set of autosupports, we exclude
some systems based on certain validation criteria: a sys-
tem must have been in service more than 3 months and
have more than 2.5% of its capacity used. The remain-
ing set consists of more than 10,000 systems with system
ages ranging from 3 months to 7 years and gives a broad
view of the usage characteristics of backup systems.

We consider these statistics in the aggregate; there is
no way to subdivide the 10,000 systems by content type,
backup software, or other similar characteristics. In ad-
dition, we must acknowledge some possible bias in the
results. This is a study of EMC Data Domain customers
who voluntarily provide autosupport data (the vast ma-
jority of them do); these customers tend to use the most
common brands of backup software and typically have
medium to large computing environments to protect.

3.2 Collecting Content Metadata

In this study, we work with deduplicated stores which en-
able us to collect content metadata more efficiently. On
deduplicated systems a chunk may be referenced many
times, but the detailed information about the chunk need
be stored just once. Figure 1 shows a schematic of a
deduplicated store. We collect the file recipes (listing
of chunk fingerprints) for each file and then collect the
deduplicated chunk metadata from the storage contain-
ers, as well as sub-chunk fingerprints (labeled “sub-fps”)
as described below. The file recipe and per-chunk meta-
data can be later combined to create a per-file “trace”
comprised of a list of detailed chunk statistics as de-
picted on the bottom right of the figure. (Note that this
“trace” is not a sequence of I/O operations but rather a
sequence of file chunk references that have been written
to a backup appliance, from oldest to newest.) Details
about the trace, including its efficient generation, are de-
scribed in §3.2.3.

In this way, the collection time and storage needed for
the trace data is proportional to the deduplicated size.
This can lead to almost a 10X saving for a typical backup
storage system with 10X deduplication. In addition,
some of the data analysis can be done on the dedupli-
cated chunk data. This type of efficiency becomes very
important when dealing with underlying datasets of hun-
dreds of terabytes in size. These systems will have tens
of billions of chunks and even the traces will be hundreds
of gigabytes in size.

3.2.1 Content Fields Collected

For the content metadata snapshots, we collect the fol-
lowing information (additional data are not discussed due
to space limitations):

• Per-chunk information such as size, type, SHA-1
hash, subchunk sizes and abbreviated hashes.

Figure 1: Diagram of Data Collection Process

• Per-file information such as file sizes, modification
times, and fingerprints of each chunk in the file.
• Disk layout information such as location and group-

ing of chunks on disk.

One of the main goals for these collections was to look
at throughput and compression characteristics with dif-
ferent system configurations. The systems studied were
already chunked at 8KB on average with the correspond-
ing SHA-1 hash values available. We chose to sub-chunk
each 8KB chunk to, on average, 1KB and collected ab-
breviated SHA-1 hashes for each 1KB sub-chunk. Sub-
chunking allowed us to investigate deduplication rates at
various chunk sizes smaller than the default 8KB, as de-
scribed in §5.1.

3.2.2 Creating Traces from Metadata Snapshots

The collected content metadata can be used to create per-
file traces of chunk references. These traces are the or-
dered list of chunk metadata that comprise a file. For
example, the simplest file trace would contain a file-
ordered list of the chunk fingerprints and sizes that com-
prise the file. More detailed traces might also include
other per-chunk information such as disk location. These
file traces can be run through a simulator or analyzed in
other ways for metrics such as deduplication or caching
efficiency.

The per-file traces can be concatenated together, for
example by file modification time (mtime), to create a
representative trace for the entire dataset. This can be
used to simulate reading or writing all or part of the sys-
tem contents; our analyses in §5 are based on such traces.

For example, to simulate a write workload onto a new
system, we could examine the sequence of fingerprints in
order and pack new (non-duplicate) chunks together into
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storage containers. The storage containers could then be
used as the unit of caching for later fingerprints in the
sequence [34]. This layout represents a pristine storage
system, but in reality, chunk locality is often fragmented
because garbage collection of deleted files causes live
chunks from different containers to be merged into new
containers. Instead of using the pristine layout, we could
use the container layout of chunks as provided by the
metadata snapshot from the production system, which
gives a more realistic caching analysis.

To simulate a read workload, we would examine
the sequence of fingerprints in order and measure
cache efficiency by analyzing how many container or
compression-region loads are required to satisfy the read.
Compression-regions are the minimal unit of read, since
the group of chunks have to be uncompressed together,
but reading whole containers may improve efficiency.
While reading the entire dataset trace would be a com-
plete restore of all backups, perhaps more realistically,
only the most recent full backup should be read to simu-
late a restore.

To approximate the read or write of one full backup
of the trace requires knowledge of what files correspond
to a backup. Since we don’t have the backup file cat-
alog, we are not able to determine a full backup at file
granularity. Instead we divide the trace into a number
of equal sized intervals, with the interval size based on
the deduplication rate. For instance, if the deduplication
rate is 10X then we estimate that there are about 10 full
backups on the system, i.e., the original plus 9 identical
copies. In this example we would break the trace into
10 intervals approximating about one backup per inter-
val. This is an approximation: in practice, the subse-
quent backups after the first will not be identical but will
have some data change. But this is a reasonable approach
for breaking the caching analysis into intervals, which al-
lows for warming the cache and working on an estimated
most-recent backup copy.

3.2.3 Efficient Analysis of Filesystem Metadata

The file trace data collected could be quite large,
sometimes more than a terabyte in size, and analyzing
these large collections efficiently is a challenge. Often
the most efficient way to process the information is by
use of out-of-core sorting. For instance, to calculate
deduplication ratios we sort by fingerprint so that
repeated chunks are adjacent, which then allows a single
scan to calculate the unique chunk count. As another
example, to calculate caching effectiveness we need to
associate fingerprints with their location on disk. We
first sort by fingerprint and assign the disk location of
the first instance to all duplicates, then re-sort by file
mtime and offset to have a time-ordered trace of chunks,
with container locations, to evaluate.

Even the process of merging file recipes with their
associated chunk metadata to create a file trace would
be prohibitively slow without sorting. We initially im-
plemented this merge in a streaming fashion, looking
up chunk locations and pre-fetching neighboring chunks
into a cache, much as an actual deduplication system
would handle a read. But the process was slow because
of the index lookups and random seeks on an engineering
workstation with a single disk. Eventually we switched
this process to also use out-of-core sorting. We use a
four-step process of (1) sorting the file recipes by finger-
print, (2) sorting the chunk metadata collection by finger-
print, (3) merging the two sets of records, and (4) sorting
the final record list by logical position within the file.
This generates a sequence of chunks ordered by position
within the file, including all associated metadata.

4 Trends Across Backup Storage Systems
We have analyzed the autosupport information from
more than 10,000 production deduplicated filesystems,
taken from an arbitrary week, July 24, 2011. We com-
pare these results with published primary storage work-
loads from Microsoft Corp. [22]. The authors of that
study shared their data with us, which allows us to graph
their primary workload results alongside our backup stor-
age results. The Microsoft study looked at workstation
filesystem characteristics for several different time peri-
ods; we compare to their latest, a one month period in
2009 which aggregates across 857 workstations.

Backup storage file characteristics are significantly
different from the Microsoft primary workload. Data-
protection systems have generally larger, fewer and
shorter lived files. This is an indication of more churn
within the system but also implies more data sequential-
ity. The following subsections detail some of these dif-
ferences. In general, figures present both a histogram
(probability distribution) and a cumulative distribution
function (CDF), and when counts are presented they are
grouped into buckets representing ranges, on a log scale,
with labels centered under representative buckets.

4.1 File Size

A distinguishing characteristic between primary and
backup workloads is file size. Figure 2 shows the file size
distribution, weighted by bytes contained in the files, for
both primary and backup filesystems. For backup this
size distribution is about 3 orders of magnitude larger
than for primary files. This is almost certainly the result
of backup software combining individual files together
from the primary storage system into “tar-like” collec-
tions. Larger files reduce the likelihood of whole-file
deduplication but increase the stream locality within the
system. Notice that for backup files a large percentage
of the space is used by files hundreds of gigabytes in
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Figure 2: File size

size. Small file optimizations that make sense for pri-
mary storage such as embedding data in inodes or use
of disk block fragments may not make sense for backup
filesystems where large allocation units can provide more
efficient metadata use.

4.2 File and Directory Count

File and directory counts are typically much lower in
backup workloads. Similar to the effect of large file
sizes, having a low file count (Figure 3(a)) results from
having larger tar-type concatenations of protected files.
The low directory count (Figure 3(b)) is a result of
backup applications using catalogs to locate files. This is
different from typical user-organized filesystems where
a directory hierarchy is used to help order and find
data. Looking at the ratio of file to directory count (Fig-
ure 3(c)), we can see again that backup workloads tend
to use a relatively flat hierarchy with several orders of
magnitude more files per directory.

4.3 File Age

Figure 4 shows the distribution of file ages weighted
by their size. For backup workloads the median age
is about 3 weeks. This would correspond to about 1/2
the retention period, implying data retention of about 6
weeks. Short retention periods lead to higher data churn,
as seen next.

4.4 Filesystem Churn

Filesystem churn is a measure of the percentage of
storage that is freed and then written per time period,
for instance in a week. Figure 5 shows a histogram of
the weekly churn occurring across the studied backup
systems.

On average about 21% of the total stored data is freed
and written per week. This high churn rate is driven by
backup retention periods. If a backup system has a 10-
week retention policy, about 10% of the data needs to be
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Figure 3: File and directory counts

written and deleted every week. The median churn rate is
about 17%, corresponding to almost a 6-week retention
period, which correlates well with the median byte age
of about 3 weeks.

This has implications for backup filesystems: such
filesystems must be able not only to write but also re-
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claim large amounts of space on a weekly basis. Stor-
age technologies with limited erase cycles, such as flash
memory, may not be a good fit for this workload without
care to avoid arbitrary overwrites from file system clean-
ing [23].

To some extent, deduplicating storage systems help
alleviate this problem because less physical data needs
to be cleaned and written each week. The ratio of data
written per week to total stored is similar whether those
are calculated from pre-deduplication file size or post-
deduplicated storage size; this is expected as long as the
deduplication ratio is relatively constant over time.

Note also that backup churn rates increase quickly
over time. They follow the same growth rate as the un-
derlying primary data, (i.e., doubling every two years).
To meet the high ingest rates, backup filesystems can
leverage the high data redundancy of backup workloads.
In-line deduplication of file streams can eliminate many
of the disk writes and increase throughput. Doing so ef-
fectively requires efficient caching, which is studied fur-
ther in §5.

4.5 Read vs Write Workload

Data-protection systems are predominately write work-
loads but do require sufficient read bandwidth in order to
stream the full backup to tape, replicate changed data off-
site, and provide for timely restores. Figure 6 shows the
distribution of the ratio of bytes written vs total I/O bytes,
excluding replication and garbage collection. About 50%
of systems have overwhelmingly more writes than reads
(90%+ write). Only about 20% of systems have more
reads than writes.

These I/O numbers underestimate read activity be-
cause they do not include reads for replication. How-
ever, since during replication an equal number of bytes
are read by the source as written by the destination, the
inclusion of these statistics might change the overall per-
centages but not change the conclusion that writes pre-
dominate.

This is the opposite of systems with longer-lived bytes
such as primary workloads, which typically have twice
as many reads as writes [20]. The high write workloads
are again indicative of high-churn systems where large
percentages of the data are written every week.

4.6 Replication

For disaster recovery, backup data is typically replicated
off-site to guard against site-level disasters such as fires
or earthquakes. About 80% of the production systems
replicate at least part of their backup data each week.

Of the systems that replicate, Figure 7 shows the per-
centage of bytes written in the last 7 days that are also
replicated (either to or from the system). On average al-
most 100% of the data is replicated on these systems.
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Figure 4: File age
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Figure 5: Weekly churn

Notice that some systems replicate more data than was
written in this time period. This can be due to several
causes: some systems replicate to more than one desti-
nation and some systems perform cascaded replication
(they receive replicated data and in turn replicate it to
another system).

The high percentage of replicated data increases the
need for read throughput, resulting in a slightly more bal-
anced read to write ratio than one might expect from just
backup operations (write once, read rarely). This implies
that while backup systems must provide excellent write
performance, they cannot ignore the importance of read
performance.

In concurrent work, cache locality for delta compres-
sion is analyzed in the context of replication, including
information from production autosupport results [32].

4.7 Capacity Utilization

Figure 8 shows the distribution of storage usage for both
primary and backup systems. Backup systems skew to-
ward being more full than primary systems, with the
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Figure 7: Percent of data replicated

backup system modal (most frequent) utilization about
60–70% full. In contrast primary systems are about 30–
40% full. The gap in mean utilization may reflect differ-
ences in the goals of the administrators of the two types
of systems: while performance and capacity are both im-
portant in each environment, there is a greater empha-
sis in data protection on dollar-efficient storage, while
primary storage administrators may stress performance.
Also, backup administrators have more flexibility in bal-
ancing the data protection workloads across systems, as
they can shorten retention periods or reduce the domain
of protected data. Achieving higher utilization helps to
optimize the cost of overall backup storage [6].

4.8 Deduplication Rates

The amount of data redundancy is one of the key charac-
teristics of filesystem workloads and can be a key driver
of cost efficiency in today’s storage systems. Here we
compare the deduplication rates of backup filesystem
workloads with those of primary storage as reported by
Meyer and Bolosky [22]. Figure 9 indicates that dedupli-

0%

5%

10%

15%

20%

0-10% 20-30% 40-50% 60-70% 80-90%
0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e 

of
 S

ys
te

m
s

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e 

of
 S

ys
te

m
s

Fullness Percentage

Backup
X Median = 65%
O Mean = 61%
Primary
X Median = 40%
O Mean = 43%

Backup 2011 (hist)
Primary 2009 (hist)
Backup 2011 (cdf)
Primary 2009 (cdf)

XOOX

Figure 8: Fullness
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Figure 9: Deduplication

cation rates for backup storage span a wide range across
system and workloads with a mean of 10.9x. This is dra-
matically higher than for primary workloads with a mean
of about 3x in the Microsoft workload. The main differ-
ence is that backup workloads generally retain multiple
copies of data.

Additionally, backups are usually contained within
large tar-type archives that do not lend themselves to
whole-file deduplication. When these larger files are sub-
divided into chunks for deduplication, the chunk size can
have widely varying effects on deduplication effective-
ness (see §5.1).

4.8.1 Compression

Data Domain systems aggregate new unique chunks into
compression regions, which are compressed as a single
unit (approximately 128KB before compression). Since
there is usually spatial locality between chunks that are
written together, the compressibility of the full region is
much greater than what might be achieved by compress-
ing each 8KB chunk in isolation.
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# Snapshot Class Data Type Size
(TB)

Dedup.
Ratio

1-Wk
Dedup.

MedAge
(Weeks)

Retention
Time

Update
Freq.

1 homedirs LT-B Home 201 14.0 3.0 3.49 1–3 years MF
Directories 5 weeks DF

2 database1 B Database 177 5.1 2.7 2.21 1 month MF/DI
3 email B Email 146 9.6 1.1 1.36 15 days DF

4 fileservers B Windows
Fileservers 60 5.9 1.7 5.80 3 months WF/DI

5 mixed1 B Mixed
DB/Email/User 47 6.0 2.4 3.24 1–3

months MF/DI

6 mixed2 B Workstations,
Servers 43 11.0 3.0 9.44 4–6

months WF/DI

7 workstations B Workstations 4.5 7.5 2.3 13.56 4 months WF/DI
8 database2 B Database 3.8 2.2 1.3 0.23 3 days DF

Table 1: Collected Datasets. Class can be B ”Backup,” LT-B or“Long Term Backup.” Retention can be MF “Monthly
Full,” WF “Weekly Full,” DF “Daily Full,” or DI “Daily Incremental.” We report cumulative and one-week dedupli-
cation. MedAge is the mid-point at which half the data is newer or older.
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Figure 10: Local compression

As a result, the effectiveness of post-deduplication
compression in a backup workload will typically be com-
parable to that of a primary workload. Figure 10 shows
the local compression we see across production backup
workloads, with a mean value of almost 2X as the ex-
pected rule of thumb [19]. But as can be seen, there is
also a large variation across systems with some data in-
herently more random than others.

5 Sensitivity Analyses of Deduplicating
Backup Systems

Deduplication has enabled the transition from tape to
disk-based data protection. Storing multiple protected
copies on disk is only cost effective when efficient re-
moval of data redundancy is possible. In addition dedu-
plication provides for higher write throughput (fewer
disk writes), which is necessary to meet the high churn

associated with backup storage (see §4.4). However, read
performance can be negatively impacted by the fragmen-
tation introduced by deduplication [25].

In this section we use trace-driven simulation to evalu-
ate the effect of chunk size on deduplication rates (§5.1)
and to evaluate alternatives for caching the fingerprints
used for detecting duplicates (§5.2). First we describe
the metadata collections, which are used for the sensitiv-
ity analyses, in greater detail. Table 1 lists the data sets
collected and their properties, in decreasing order of pre-
deduplication size. They span a wide range of sizes and
deduplication rates. Most are straightforward “backup”
workloads while one includes some data meant for long-
term retention. They range from traces representing as
little as 4–5TB of pre-deduplicated content up to 200TB.
The deduplication ratio (using the default 8KB target
chunk size) also has a large range, from as little as 2.2
to as much as 14.0; the data sets with the lowest dedupli-
cation have relatively few full backups, with the extreme
case being a mere 3 days worth of daily full backups.

Deduplication over a prolonged period can be substan-
tial if many backups are retained, but how much dedupli-
cation is present over smaller windows, and how skewed
is the stored data? These metrics are represented in the
1-Wk Dedup. and MedAge columns. The former es-
timates the average deduplication seen within a single
week, which typically includes a full backup plus in-
crementals. This is an approximation of the intra-full
deduplication which cannot be determined directly be-
cause the collected datasets do not provide information
about full backup file boundaries. The median age is the
point by which half the stored data was first written, and
it provides a view into the retention and possible dedu-
plication. For instance, half of the data in homedirs had

9



been stored for 3.5 weeks or less. With daily full back-
ups stored 5 weeks we would expect a median age of 2.5
weeks, but the monthly full backups compensate and in-
crease the median.

5.1 Effect of Varying Chunk Size

The systems studied use a default average chunk size of
8KB, but smaller or larger chunks are possible. Varying
the unit of deduplication has been explored many times
in the past, usually by chunking the data at multiple sizes
and comparing the deduplication achieved [18, 22, 28];
it is also possible to vary the deduplication unit dynam-
ically [4, 17]. The smaller the average chunk size, the
finer-grained the deduplication. When there are long re-
gions of unchanged data, the smaller chunk size has lit-
tle effect, since any chunk size will deduplicate equally
well. When there are frequent changes, spaced closer to-
gether than a chunk, all chunks will be different and fail
to deduplicate. But when the changes are sporadic rel-
ative to a given chunk size, having smaller chunks can
help to isolate the parts that have changed from the parts
that have not.

5.1.1 Metadata Overhead

Since every chunk requires certain metadata to track its
location, the aggregate overhead scales inversely with the
chunk size. We assume a small fixed cost, 30 bytes, per
physical chunk stored in the system and the same cost per
logical chunk in a file recipe (where physical and logi-
cal are post-deduplication and pre-deduplication, respec-
tively). The 30 bytes represent the cost of a fingerprint,
chunk length, and a small overhead for other metadata.

Kruus, et al., described an approach to chunking
data at multiple granularities and then selecting the
most appropriate size for a region of data based on its
deduplication rate [17]. They reported a reduction in
deduplication effectiveness by a factor of 1

(1+ f ) , where
f is defined as the metadata size divided by the average
chunk size. For instance, with 8KB chunks and 30
bytes of metadata per chunk, this would reduce the
effectiveness of deduplication by 0.4%.

However, metadata increases as a function of
both post-deduplication physical chunks and pre-
deduplication logical chunks, i.e., it is a function of
the deduplication rate itself. If the metadata for the file
recipes is stored outside the deduplication system, the
formula for the overhead stated above would be correct.
If the recipes are part of the overhead, we must account
for the marginal costs of each logical chunk, not only the
post-deduplication costs. Since the raw deduplication
D is the ratio of logical to physical size (i.e., D = L/P)
while the real deduplication D′ includes metadata costs
(D′ = L

P+ f P+ f L ), we can substitute L = DP in the latter

equation to get:

D′ =
D

1+ f (1+D)
.

Intuitively, we are discounting the deduplication by the
amount of metadata overhead for one copy of the phys-
ical data and D copies of the logical data. For a dedu-
plication rate of 10X, using this formula, this overhead
would reduce deduplication by 4% rather than 0.4%.

However, as chunks get much smaller, the metadata
costs for increasing the number of chunks can dominate
the savings from a smaller chunksize. We can calculate
the breakeven point at which the net physical space using
chunksize C1 is no greater than using twice that chunk-
size (C2, where C2 = 2C1). First, we note that f1 = 2 f2
since the per-chunk overhead doubles. Then we com-
pare the total space (physical post-deduplication Pi plus
overhead) for both chunk sizes, using a single common
logical size L:

P1 +2 f (L+P1)≤ P2 + f (L+P2).

Since Di = L/Pi we can solve for the necessary D1:

D1 ≥
D2(1+2 f )

1+ f (1−D2)
.

This inequality shows where the improvement in raw
deduplication (not counting metadata) is at least as much
as the increased metadata cost.1 As an example, with the
30 bytes of overhead and 10X raw deduplication at 2KB
chunks, one would need to improve to 11.9X or more
raw deduplication at the 1KB chunk size to fare at least
as well.

5.1.2 Subchunking and Merging Chunks

We are able to take snapshots of fingerprints but not of
content, so it is not possible to rechunk content at many
sizes. While we could chunk data from a system at nu-
merous sizes at the time the snapshot is created, that
would require more processing and more storage than
are feasible. Thus, to permit the analysis of pre-chunked
data, for which we can later store the fingerprints but not
the content, we take a novel approach. To get smaller
chunks than the native 8KB size, during data collection
we read in a chunk at its original size, sub-chunk it at a
single smaller size (1KB), and store the fingerprints and
sizes of the smaller sub-chunks along with the original
chunk metadata. We can then analyze the dataset with
1KB chunks, or merge 1KB chunks into larger chunks

1There is also a point at which the deduplication at one size is so
high that the overhead from doubling the metadata costs would domi-
nate any possible improvement from better deduplication, around 67X
for our 30-byte overhead. Also, the formula applies to a single factor
of two but could be adjusted to allow for other chunk sizes.
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(such as 2KB or 4KB on average). We can also merge
the original 8KB chunks into larger units (powers of two
up to 1MB). To keep the merged chunks distinct from the
native 8KB chunks or the 1KB sub-chunks, we will refer
to merged chunks as mchunks.

For a given average chunk size, the system enforces
both minimum and maximum sizes. To create an mchunk
within those constraints, we group a minimum number
of chunks (or sub-chunks) to reach the minimum size,
then determine how many additional chunks to include
in the mchunk in a content-aware fashion, similar to how
chunks are created in the first place. For instance, to
merge 1KB chunks into 4KB mchunks (2KB minimum
and 6KB maximum), we would start with enough 1KB-
average chunks to create at least a 2KB mchunk, then
look at the fingerprints of the next N chunks, where the
Nth chunk considered is the last chunk that, if included
in the mchunk, would not exceed the maximum chunk
size of 6KB.

At this point we have a choice among a few possi-
ble chunks at which to separate the current mchunk from
the next one. We need a content-defined method to se-
lect which chunk to use as the breakpoint, similar to the
method used for forming chunks in the first place within
a size range. Here, we select the chunk with the highest
value fingerprint as the breakpoint. Since fingerprints
are uniformly distributed, and the same data will pro-
duce the same fingerprint, this technique produces con-
sistent results (with sizes and deduplication comparable
to chunking the original data), as we discuss next. We
experimented with several alternative selection methods
with similar results.

5.1.3 Evaluation

A key issue in this process is evaluating the error intro-
duced by the constraints imposed by the merging pro-
cess. We performed two sets of experiments on the
sub-chunking and merging. The first was done on full-
content datasets, to allow us to quantify the difference
between ground truth and reconstructed metadata snap-
shots. We used two of the datasets from an earlier dedu-
plication study [8], approximately 5TB each, to com-
pute the “ground truth” deduplication and average chunk
sizes. We compare these to the deduplication rate and
average when merging chunks. (The datasets were la-
beled “workstations” and “email” in the previous study,
but the overall deduplication rates are reported slightly
differently because here we include additional overhead
for metadata; despite the similar naming, these datasets
should not be confused with the collected snapshots in
Table 1.) Table 2 shows these results: the average chunk
size from merging is consistently about 2–3% lower.
For the workstations dataset, the deduplication rate is
slightly higher, presumably due to smaller deduplication
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Figure 11: Deduplication obtained as a function of chunk
size, using the merging technique. Both axes are on a log
scale.

units, while for the email dataset the deduplication rate is
somewhat lower (by 4–7%) with merging than when the
dataset is chunked at a given size. However, the numbers
are all close enough to serve as approximations to natural
chunking.

The second set of experiments, shown in Figure 11,
was performed on a subset of the collected datasets (we
selected a few for clarity and because the trends are so
similar). For these we have no “ground truth” other
than statistics for the original 8K chunks, but we report
the deduplication rates as a function of chunk size as
the size ranges from 1K sub-chunks to 1024KB (1MB)
mchunks. The 1KB sub-chunks are used to merge into
2-4KB mchunks and the 8KB original chunks are used
for the larger ones.

Looking at both the “ground truth” datasets and the
snapshot analyses, we see that deduplication decreases
as the chunk size increases, a result consistent with many
similar studies. For most of the datasets this is an im-
provement of 20–40% for each reduction of a power
of two, though there is some variability. As mentioned
in §5.1.1, there is also a significant metadata overhead
for managing smaller chunks. In Figure 11, we see
that deduplication is consistently worse with the small-
est chunks (1KB) than with 2KB chunks, due to these
overheads: at that size the metadata overhead typically
reduces deduplication by 10–20%, and in one case nearly
a factor of two. Large chunk sizes also degrade dedupli-
cation; in fact, the database1 dataset (not plotted) gets
no deduplication at all for large chunks. Excluding meta-
data costs, the datasets in Table 2 would improve dedu-
plication by about 50% when going from 2KB to 1KB
average chunk size, but when these costs are included the
improvement is closer to 10%; this is because for those
datasets, the improvement in deduplication sufficiently
compensates for the added per-chunk metadata.
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Target Workstations-full Email-full
Size Ground Truth Merged Ground Truth Merged
(KB) Dedup. Avg Size (KB) Dedup. Avg Size (KB) Dedup. Avg Size (KB) Dedup. Avg Size (KB)

1 10.48 1.04 N/A 10.88 1.05 N/A
2 9.29 2.08 9.30 2.02 9.54 2.09 9.19 2.03
4 7.28 4.15 7.28 4.09 7.84 4.18 7.48 4.08
8 5.49 8.34 N/A 6.61 8.33 N/A

16 4.16 16.68 4.17 16.18 5.37 16.64 5.08 16.19
32 3.23 33.33 3.24 32.69 4.18 33.41 3.90 32.66
64 2.59 66.67 2.64 65.62 3.21 66.43 3.03 65.52

Table 2: Comparison of the ground truth deduplication rates and chunk sizes, compared to merging sub-chunks (to
4KB) or chunks (above 8KB), on two full-content snapshots. The target sizes refer to the desired average chunk size.
The ground truth values for 1KB and 8KB average chunk sizes are included for completeness.

Data and analysis such as this can be useful for assess-
ing the appropriate unit of deduplication when variable
chunk sizes are supported [4, 17].

5.2 Cache Performance Analysis

In deduplicating systems, the performance bottleneck is
often the lookup for duplicate chunks. Systems with hun-
dreds of terabytes of data will have tens of billions of
chunks. With each chunk requiring about 30 bytes of
metadata overhead, the full index will be many hundreds
of gigabytes. On today’s systems, indexes of this size
will not fit in memory and thus require an on-disk index,
which has high access latency [34].

Effective caching techniques are necessary to allevi-
ate this index lookup bottleneck, and indeed there have
been numerous efforts at improving locality (e.g., Data
Domain’s Segment-Informed Stream Locality [34], HP’s
sparse indexing [21], and others). These studies have in-
dicated that leveraging stream locality in backup work-
loads can significantly improve write performance, but
their analyses have been limited to a small number of
workloads and a fixed cache size. Unlike previous stud-
ies, we analyze for both read and write workloads across
a broader range of datasets and examine the sensitivity of
cache performance to cache sizes and the unit of caching.

5.2.1 Caching Effectiveness for Writes

As seen in §4, writes are a predominant workload
for backup storage. Achieving high write throughput
requires avoiding expensive disk index lookups by
having an effective chunk-hash cache. The simplest
caching approach would be to use an LRU cache of
chunk hashes. An LRU cache relies on duplicate chunks
appearing within a data window that is smaller than the
cache size. For backup workloads, duplicate chunks
are typically found once per full backup, necessitating
a cache sized as large as a full backup per client. This is
prohibitively large.

To improve caching efficiency, stream locality hints

can be employed. [21, 34]. Files are typically grouped
in a similar order for each backup, and re-ordering of
intra-file content is rare. The consistent stream-ordering
of content can be leveraged to load the hashes of nearby
chunks whenever an index lookup occurs. One method
of doing so is to pack post-deduplicated chunks from the
same stream together into disk regions.

To investigate caching efficiency, we created a cache
simulator to compare LRU versus using stream locality
hints. The results for writing data are shown in Fig-
ure 12(a). The LRU simulator does per-chunk caching
and its results are reported in the figure with the dotted
blue lines. The stream locality caching groups chunks
into 4MB regions called ”containers” and its results are
reported in that figure with solid black lines. We sim-
ulate various cache sizes from 32MB up to 1TB where
the cache only holds chunk fingerprints (not the chunk
data itself).2 For these simulations, we replay starting
with the beginning of the trace to warm the cache and
then record statistics for the final interval representing
approximately the most recent backup.

Note that deduplication write workloads have two
types of compulsory misses, those when the chunk is in
the system but not represented in the cache (duplicate
chunks), and those for new chunks that are not in the sys-
tem (unique chunks). This graph includes both types of
compulsory misses. Because the misses for new chunks
are included, the maximum hit ratio is the inverse of the
deduplication ratio for that backup.

Using locality hints reduces the necessary cache size
by up to 3 orders of magnitude. Notice that LRU does
achieve some deduplication with a relatively small cache,
i.e., 5-40% of duplicates could be identified with a 32MB

2To make the simulation tractable, we sampled 1 in 8 cache units,
then scaled the memory requirement by the sampling rate. We validated
this sampling against unsampled runs using smaller datasets. The cache
size is a multiple of the cache unit for a type; therefore, data points of
similar cache size do not align completely within Figure 12(a) and (b).
We crop the results of Figure 12(a) at 32MB to align with Figure 12(b).
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Figure 12: Cache results for writing or reading the final portion of each dataset. For writes, the cache consists just of
metadata, while for reads it includes the full data as well and must be larger to have the same hit ratio. Differences in
marks represent the datasets, while differences in color represent the granularity of caching (containers, chunks, or in
the case of reads, compression regions).

cache (dotted blue lines). These duplicates which occur
relatively close together in the logical stream may rep-
resent incremental backups that write smaller regions of
changed data. However, effective caching is not typically
achieved with the LRU cache until the cache size is many
gigabytes in size, likely representing, at that point, a large
portion of the unique chunks in the system. In contrast,
using stream locality hints achieves good deduplication
hit rates with caches down to 32MB in size (solid black
lines across the top of the figure). Since production sys-
tems typically handle tens to hundreds of simultaneous
write streams, each stream with its own cache, keeping
the per-stream cache size in the range of megabytes of
memory is important.

5.2.2 Caching Effectiveness for Reads

Read performance is also important in backup systems to
provide fast restores of data during disaster recovery. In

this subsection, we present a read caching analysis simi-
lar to that of the previous subsection.

There are three main differences between the read and
write cache analysis. The first is that read caches con-
tain the data whereas the write caches only needs the
chunk fingerprints. The second is that reads have only
one kind of compulsory miss, those due to cache misses,
while writes can also miss due to the first appearance
of a chunk. The third is that in addition to analyzing
stream locality hints at the container level (which rep-
resents 4MB of chunks) we also analyze stream locality
at the compression-region level, a 128KB grouping of
chunks.

Figure 12(b) shows the comparison of LRU with
stream locality hints at the container and compression-
region granularity for read streams. The effectiveness
of using stream locality hints is even more exaggerated
here than for write workloads. Stream locality hints still
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allow cache sizes of less than 32MB for container level
caching (solid black lines), but chunk-level LRU (dotted
blue lines) now requires up to several terabytes of cache
(chunk data) to achieve effective hit rates. There is now
a 4-6 order of magnitude difference in required cache
sizes. Compression-region caching (dashed green lines)
is as effective as container-level for 6 of the datasets,
but 2 show significantly degraded hit ratios. These
two datasets are from older systems which apparently
have significant fragmentation at the compression-region
level, which is smoothed out at the container level.

Fragmentation has two implications on performance.
One is that data that appear consecutively in the logical
stream can be dispersed physically on disk, impacting
read performance [25]. Another is that the unit of trans-
fer may not correspond to the unit of access; e.g., one
may read a large unit such as a container just to access
a small number of chunks. The impact of fragmentation
on performance is the subject of recent and ongoing work
(e.g., SORT [33]).

6 Conclusion
We have conducted a large-scale study of deduplicated
backup storage systems to discern their main character-
istics. The study looks both broadly at autosupport data
from over 10,000 deployed systems and in depth at con-
tent metadata snapshots from a few representative sys-
tems. The broad study examines filesystem characteris-
tics such as file sizes, ages and churn rates while the de-
tailed study focuses on deduplication and caching effec-
tiveness. We contrast these results with those of primary
filesystems from Microsoft [22].

As can be seen from §4, backup filesystems tend
to have fewer, larger and shorter-lived files. Back-
ups typically comprise either large repositories, such as
databases, or large concatenations of protected files (e.g.,
tarfiles). As backup systems ingest these primary data
stores on a repeating schedule they must delete and clean
an equal amount of older data to maintain within capacity
limits. This high data churn, averaging 21% of total stor-
age per week leads to some unique demands of backup
storage. They must sustain high write throughput and
scale as primary capacity grows. This is not a trivial task
as primary capacity scales with Kryder’s law (about 100x
per decade) but disk, network, and interconnect through-
put have not scaled nearly as quickly [13]. To keep up
with such workloads requires data reduction techniques,
with deduplication being an important component of any
data protection system. Additional techniques for reduc-
ing the ingest to a backup system, such as change-block
tracking, are also important as systems scale further.

Backup workloads have two properties that help meet
these challenging throughput demands. One is that the
data is highly redundant between full backups. The other

is that the data exhibits a lot of stream locality; that is,
neighboring chunks of data tend to remain nearby across
backups [34]. As seen in §5.2, leveraging these two
qualities allows for very efficient caching, with dedu-
plication hit rates of about 90% (including compulsory
misses from new chunks).

Another interesting point is that backup storage work-
loads typically have higher demands for writing than
reading. Primary storage workloads, which have less
churn and longer-lived data, are skewed to relatively
more read than write workload (2:1 as a typical met-
ric [20]). However backup storage must be able to ef-
ficiently support read workloads, as well, to process ef-
ficient restores when needed and to replicate data off-
site for disaster recovery. Optimizing for reads requires a
more sequential disk layout and can be at odds with high
deduplication rates, but effective backup systems must
balance between both demands, which is an interesting
area of future work.

The shift from tape-based backup to disk-based,
purpose-built backup appliances has been swift and con-
tinues at a rate of almost 80% annually. By 2015 it is
projected that disk-based deduplicating appliances will
protect over 8EB of data [16]. Scaling write through-
put at the same rate as data is growing, optimizing data
layout, and providing efficiencies in capacity usage are
challenging and exciting problems. The workload char-
acterizations presented in this paper are a first step at bet-
ter understanding a vital, unique, and under-served area
in file systems research and we hope that it will stimulate
further exploration.
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