
Extracting Flexible, Replayable Models from Large Block Traces
V. Tarasov1, S. Kumar1, J. Ma2, D. Hildebrand3, A. Povzner3, G. Kuenning2, and E. Zadok1

1Stony Brook University, 2Harvey Mudd College, and 3IBM Almaden Research

Abstract
I/O traces are good sources of information about real-

world workloads; replaying such traces is often used to
reproduce the most realistic system behavior possible.
But traces tend to be large, hard to use and share, and
inflexible in representing more than the exact system
conditions at the point the traces were captured. Often,
however, researchers are not interested in the precise de-
tails stored in a bulky trace, but rather in some statisti-
cal properties found in the traces—properties that affect
their system’s behavior under load.

We designed and built a system that (1) extracts many
desired properties from a large block I/O trace, (2) builds
a statistical model of the trace’s salient characteristics,
(3) converts the model into a concise description in the
language of one or more synthetic load generators, and
(4) can accurately replay the models in these load gener-
ators. Our system is modular and extensible. We exper-
imented with several traces of varying types and sizes.
Our concise models are 4–6% of the original trace size,
and our modeling and replay accuracy are over 90%.

1 Introduction
Traces are a time-honored way to collect information
about real-world workloads. The information contained
in traces allows a workload to be characterized using fac-
tors such as the exact size and offset of each I/O request,
read/write ratio, ordering of requests, etc. By replaying
a trace, users can evaluate real-world system behavior,
optimize a system based on that behavior, and compare
the performance of different systems [21, 23, 25, 34].

Despite the benefits of traces, they are hard to use in
practice. A trace collected on one system cannot easily
be scaled to match the characteristics of another. It is dif-
ficult to modify traces systematically, e.g., by changing
one workload parameter but leaving all others constant.
Traces are hard to describe and compare in terms that are
easily understood by system implementors. Large trace
files are time-consuming to distribute and can affect the
system’s behavior during replay by polluting the page
cache or causing an I/O bottleneck [20].

In reviewing related work, we observed that in many
cases replaying the exact trace is not required. Instead,
it is often sufficient to use a synthetic workload gener-
ator that accurately reproduces certain specific proper-
ties. For example, a particular system might be more
sensitive to the read-write ratio than to operation size.
In this situation one does not really need to replay the
trace precisely; a synthetic workload that emulates that

read-write ratio would suffice. Of course, this example
is simplistic, and in many cases one would be interested
in more complex combinations of the workload parame-
ters. However, the general idea that only some properties
of the trace affect system behavior remains valid.

Because many systems respond only to a few pa-
rameters, researchers have developed many benchmarks
and synthetic workload generators, such as IOzone [7],
Filebench [12], and Iometer [33], which avoid many
of the deficiencies of traces. But it can be difficult to
configure a benchmark so that it produces a realistic
workload; simple ones are not sufficiently flexible, while
powerful ones like Filebench offer so many options that
it can be daunting to select the correct settings.

In this work we propose to fill the gap between traces
and benchmarks by converting traces into the languages
of the benchmarks. We focus here on block traces due to
their relative simplicity, but we plan to extend this work
to other trace types, e.g., file system and NFS.

Our system creates a universal representation of the
trace, expressed as a multi-dimensional matrix in which
each dimension represents the statistical distribution of
a trace parameter or a function. Each parameter is cho-
sen to represent a specific workload property. We imple-
mented the most commonly used properties, such as I/O
size, inter-arrival time, seek distance, read-write ratio,
etc. End users can easily add new ones as desired. For
each benchmark, a small plugin converts the universal
trace matrix into the specific benchmark’s language.

Many workloads vary significantly during the tracing
period. To address this issue, our system supports trace
chunking across time. Within each chunk, the workload
is considered to be stable and uniform and is expressed
as a separate matrix. We use chunk deduplication to save
space in periods where the workload is the same.

We evaluated the accuracy of our system by generat-
ing models from several publicly available traces. We
first replayed each trace on a test system, observing
throughput, latency, I/O queue length and utilization,
power consumption, request sizes, CPU and memory us-
age, and the numbers of interrupts and context switches.
Then we emulated the trace by running benchmarks with
generated parameters on the same system, collected the
same observations, and compared the results.

Our error was less than 10% on average, and 15% at
most; it can be controlled by varying several parameters.
For a basic set of metrics, we converted a 1.4GB trace to
the Filebench language in only 30s. The resulting trace
description was 60MB, or 23.3× smaller.

1

2 Background and Motivation
Statistics Matter. Trace replay is a common evalua-
tion technique because, unlike any other testing method,
by definition traces represent reality. However, this real-
ism comes at a price: the trace represents one instance of
one system at one point in time. The next day’s workload
will inevitably be different, as will the same workload on
a system with different hardware, competing workloads,
etc. In the worst case, these variations might cause a sys-
tem to be unintentionally optimized for an atypical oper-
ating point. Even if a trace accurately represents a target
workload, rapid changes in hardware performance make
it difficult to evaluate a design on a modern machine us-
ing measurements and traces captured on a different sys-
tem only a few years earlier.

Our key observation is that for many purposes, statis-
tics are what matter. The exact ordering of operations,
their precise timing, the blocks or files accessed, and
many other details recorded in a trace are variable and
would change if it were re-recorded. Thus, when we re-
play a trace, we do not necessarily want to reproduce
every detail as precisely as possible; instead, we would
like to accurately represent its statistical properties.

An advantage of thinking of traces statistically is that
they become much more flexible. For example, a trace
collected a decade ago would record accesses to only
a fraction of the blocks on a modern disk, and at a very
different rate. Compared to a bulky trace, a statistical de-
scription is much simpler to scale to a modern machine
and therefore provides a convenient abstraction for per-
forming systematic evaluation of many systems.

Generating a good description requires representative
trace properties to be selected. In general, the most ap-
propriate properties depend on the system being tested,
so it is impossible to create a complete list. For most
purposes, however, the parameters of interest are well
defined and widely adopted, e.g., I/O rate and distribu-
tion, read/write ratio. Thus, a statistical model of a trace
should be able to capture those parameters, and should
be able to describe them in sufficient detail so that no
important information is lost. In particular, we should
not reduce complex, empirically observed distributions
to overly simple mathematical models, such as Poisson
arrival processes, without justification.

Some workloads may also exhibit nonstandard, or
even undiscovered, properties that might alter system
behavior. It is therefore advisable to preserve the orig-
inal traces to ensure these properties are retained. A
workload generator can be adapted to include such char-
acteristics once they are identified.

System Response. To evaluate a system empirically,
workloads are applied and appropriate metrics measure
its response. Performance is often characterized by

throughput, latency, CPU utilization, I/O queue length,
and memory usage [39,45]. Power consumption charac-
terizes energy efficiency [29, 36].

In many papers, these metrics are summarized by
statistics such as averages or distributions. But as we
argue above, it is often possible to accurately evaluate
these metrics without resorting to a full and detailed
trace replay. If the system response to a trace emula-
tion is similar to that of a full replay, then emulation can
replace full replay without biasing the results.

To evaluate the accuracy of our trace extraction and
modeling system, we surveyed papers in Usenix FAST
conferences from 2008–2011 and noted that the fre-
quently used metrics fell into four categories: (1)
throughput and latency; (2) I/O utilization and average
I/O queue length; (3) CPU utilization and memory us-
age; and (4) power consumption. Most of the surveyed
papers included 1–2 of these metrics, but in our study we
evaluate all four types to ensure a comprehensive com-
parison. We claim that if all response metrics are similar,
then the trace is modeled properly. We feel that our set
of metrics is sufficiently representative and comprehen-
sive to produce reliable results. There is still a chance
that an unmeasured response parameter may differ; but
our system is modular and easily extensible to emulate
any additional metrics one desires.

Replay Methods. We use system response to evaluate
our trace emulation accuracy. However, a system’s re-
sponse depends on the replay method, and varies based
on the goal of the study. To study peak performance,
traces are often accelerated [31, 40, 44, 48]. For power
efficiency, traces are usually replayed verbatim to pre-
serve realistic idle periods [5, 9]. To stress specific sub-
systems, a subset of the trace is sometimes replayed [38].
Our workload models can emulate existing trace-replay
methods as well as more sophisticated ones.

3 Design
Our five design goals, in decreasing priority, are:

1. Accuracy: Ensure that trace replay and trace emu-
lation yield matching evaluation results.

2. Flexibility: First, leverage existing powerful work-
load generators, rather than creating new ones.
Therefore, traces should be translated into models
that can be accurately described using the capabili-
ties of existing benchmarks. Second, allow users to
choose anything from accurate yet bulky models to
smaller but less precise ones.

3. Extensibility: Allow the model to include addi-
tional properties chosen by the user.

4. Conciseness: The resulting model should be much
smaller than the original trace.

5. Speed: The time to translate large traces should be
reasonable even on a modest machine.

2

Feature Extraction. The first step in our model-
building process is to extract important features from
the trace. We first discuss how we extract parameters
from workloads whose statistical characteristics do not
change over time, i.e., stationary workloads. Then we
describe how to emulate a non-stationary workload.

Each block trace record has a set of fields to describe
the parameters of a given request. Fields may include the
operation type, offset or block number, I/O size, times-
tamp, etc. Our translator is field-oblivious: it considers
every parameter as a number. We designate these param-
eters as an n-dimensional vector ~p = (p1, p2, ..., pn).
We define a feature function vector on ~p:

~f = (f1(~p, s1), f2(~p, s2), ..., fm(~p, sm)) = ~f(~p, sf)

Each feature function represents an analysis of some
property of the trace; si represents private state data for
the i-th feature function, which lets us define features
across multiple trace entries and parameters.

For example, assume that p1 and p2 represent the I/O
size and offset fields, respectively. We can then define
the simple feature functions f1—just the I/O size itself—
and f2—the logarithmic inter-arrival distance (offset dif-
ference between two consecutive requests):

f1 = f1(~p, s1) = p1

f2 = f2(~p, s2) = log(p2 − s2.prev offset)

In our translator, the user first chooses a set of m fea-
ture functions. Evaluating these functions on a single
trace record results in a vector that represents a point in
an m-dimensional feature space. The translator divides
the feature space into buckets of user-specified size, and
collects a histogram of feature occurrences in a multi-
dimensional matrix—the feature matrix—that explicitly
captures the relevant statistics of the workload, and im-
plicitly records their correlations.

For example, using the two feature functions above,
plus a third that encodes the operation (0 for reads, 1 for
writes), the resulting feature matrix might look like the
one in Figure 1. In this case, the trace held 52 requests
of size less than 4KB and inter-arrival distance less than
1KB; of those, 38 were reads and 14 were writes.

By choosing a set of feature functions, users can ad-
just the workload representation to capture any impor-
tant trace features. By selecting an appropriate bucket
granularity, users can control the accuracy of the repre-
sentation, trading off precision for computational com-
plexity in the translator and matrix size. Stage 1 in Fig-
ure 2 shows the translator’s role in the overall design.

Once the feature matrix has been created, the transla-
tor can perform a number of additional operations on it:
projection, summation along dimensions, computation
of conditional probabilities, and normalization. These

operations can be used by the benchmark plugins (de-
scribed below) to calculate parameters. For example,
using the matrix in Figure 1, a plugin might first sum
across the distance-vs.-size plane to calculate the total
numbers of reads and writes, normalize these to find
P(read), and then generate benchmark code to condition-
alize I/O size on the operation type.

Clearly, the choice of feature functions affects the
quality of the emulation; currently the investigator must
do this based on the insight into the particular system of
interest, e.g., whether it has been optimized for certain
workloads that can be reflected in an appropriate fea-
ture function. We have implemented a library of over
a dozen standard feature functions based on those com-
monly found in the literature [10, 11, 26, 30], including
operation type, I/O size, offset distribution, inter-arrival
distance, inter-arrival time, process identifier, etc. New
feature functions can easily be added as needed to cap-
ture specialized system characteristics.

Benchmark Plugins. Once a feature matrix has been
constructed from a trace, it is possible to use it directly as
input to a workload generator. However, our goal in this
research is not to create yet another generator. Instead,
we believe that it is best to build on the work of others
by using existing workload generators and benchmarks.
This approach allows us to easily reuse all the exten-
sive facilities that these benchmarks provide. Many ex-
isting benchmarks offer a way to configure the workload
that they generate; some offer command-line configura-
tion parameters (e.g., IOzone [7] and Iometer [33]) while
others offer a more extensive language for that purpose
(e.g., Filebench [12] and fio [13]).

Most existing benchmarks use statistical models to
generate a workload. Some of them use average parame-

Inter−arrival

distance

10

60

0

1

4

0

2

8

(logscale, KB)

I/O Size

(KB)

4 8 12 16
2

1O
pe

ra
tio

n
(r
/w

)

38

38

14 15

100 791

100 791

50

12

499

27

32

12

412

198

000

95

99

Figure 1: Workload representation using a feature matrix

3

Filebench plugin

IOzone plugin

FIO plugin

Workload description

in corresponding

language− trace

− feature functions vector

Deduplicator

1

4

2 3

65

........
threshholds

Translator

1 2 3 4 5 6

merged

{p}

f

matrix granularity

chunking resolution

metrics

comparison

Feature Matrices

1
2

3

Universal Workload
Representation Benchmark Plugins

Figure 2: Overall System Design

ter values; others use more complex distributions. In all
cases, our feature matrices contain all the information
needed to control the models used by these benchmarks.
A simple plugin translates the feature matrix into a spe-
cific benchmark’s parameters or language. For some
benchmarks, the expressiveness of the parameters might
limit the achievable accuracy, but even then the plugin
will help choose the best settings to emulate the original
trace’s workload. Stage 3 in Figure 2 demonstrates the
role of the benchmark plugins in the overall design.

For our initial investigations, we have implemented
plugins for Filebench and IOzone. We chose Filebench
for its flexibility, and IOzone because it is more suitable
for micro-benchmarking. We found that it was easy to
add a plugin for a new benchmark, since only a single
function has to be registered with the translator. The
size of the function depends on the number of feature
functions and the complexity of the target benchmark.

Chunking. Many real-world traces are non-stationary:
their statistical characteristics vary over time. This is es-
pecially true for traces that cover several hours, days,
or weeks. However, most workload generators apply a
stationary load, and cannot vary it over time. We ad-
dress this issue with trace chunking: splitting a trace
into chunks by time, such that the statistics of any given
chunk are relatively stable. Finding chunk boundaries is
difficult, so we first use a constant user-defined chunk
size, measured in seconds. For each chunk, we compute
a feature matrix independently; this results in a sequence
of matrices. We then convert these fixed chunks into
variable-sized ones by feeding the matrices to a dedupli-
cator that merges adjacent similar matrices (Stage 2 in
Figure 2). This optimization works well because many
traces remain stable for extended periods before shifting
to a different workload mode. We normalize the matri-
ces before comparing them, so that the absolute number
of requests in a chunk does not affect the comparison.
We use the maximum distance between matrix cells as a
metric of similarity. When two matrices are found to be
similar, we average their values and use the result to rep-
resent the workloads in the corresponding time chunks.

Besides detecting varying workload phases, the dedu-
plication process also reduces the model size. To achieve
even further compression, we support all-ways dedupli-
cation: every chunk in a trace is deduplicated against

every other chunk (not just adjacent ones).
Along with the matrices, we generate a time-to-

matrices map that serves as an additional input to the
benchmark plugins. If the target benchmark is unable
to support a multi-phase workload, the plugin generates
multiple invocations with appropriate parameters.

In the example in Figure 2, we set the trace duration
to 60s and the initial chunk size to 10s, so the transla-
tor generated six matrices. After all-ways deduplication,
only two remained.

4 Implementation
Traces from different sources often have different for-
mats. We wanted our translator to be efficient and
portable. We chose the efficient and flexible DataSeries
format [2]—recommended by the Storage Networking
Industry Association (SNIA)—and we selected SNIA’s
draft block-trace semantics [37]. We wrote converters
to allow experimentation with existing traces in other
formats. We also created a block-trace replayer for
DataSeries, which supports several commonly used re-
play modes. In total we wrote about 3,700 LoC: 1,500
in the translator, 800 in the converters, 1,000 in the
DataSeries replayer, and 400 in the Filebench and IO-
zone plugins. We plan to release these publicly.

5 Evaluation
To evaluate the accuracy, conversion speed, and com-
pression of our system, we used multiple micro-
benchmarks and a variety of real traces. In this paper
we present evaluation results based on two traces: Fi-
nance1 [28] and MS-WBS [22]. The Finance1 trace
captures the activity of several OLTP applications run-
ning at two large financial institutions. The MS-WBS
traces were collected from daily builds of the Microsoft
Windows Server operating system. The high-level char-
acteristics of the traces are presented in Table 1.

It is fair to assume that the accuracy of our transla-
tor might depend on the system under evaluation. In
our experiments we used a spectrum of block devices:

Characteristic Finance1 MS-WBS
Duration 12 hours 1.5 hours
Reads/Writes (106) 1.2/4.1 0.7/0.6
Avg I/O size 3.5KB 20KB
Seq. Requests 11 % 47%

Table 1: High-level characteristics of the used traces

4

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160

R
e

q
u

e
s
ts

/s
e

c

Time (100 sec)

read-replay write-replay read-emul write-emul

Figure 3: Reads and writes per second, Setup P, Fin1 trace.

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

P
o
w

e
r

(W
a
tt
)

Time (Seconds)

Replay

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

P
o
w

e
r

(W
a
tt
)

Time (Seconds)

Emulation

Figure 4: Disk power consumption, Setup P, MS-WBS trace.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450
 0

 20

 40

 60

 80

 100

M
e

m
o

ry
 (

M
B

)

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Time (10 sec)

mem-emulation
mem-replay

cpu-emulation
cpu-replay

Figure 5: Memory and CPU usage, Setup P, Fin1 trace.

various disk drives, flash drives, RAIDs, and even vir-
tual block devices. In this paper we present results from
two extremes of the spectrum. In the first experimental
setup—Setup P—we used a Physical machine with an
external SCSI Seagate Cheetah 300GB disk drive con-
nected through an Adaptec 39320 controller. The fact
that the drive was powered externally allowed us to mea-
sure its power consumption using a WattsUp meter [43].

The second experimental setup (Setup V) is an
enterprise-class system that has a Virtual machine run-
ning under the VMware ESX 4.1 Hypervisor. The
VM accesses its virtual disks on an NFS server backed
by a GPFS parallel file system [19, 35]. The VM
runs CentOS 6.0; the ESX and GPFS servers are IBM
System x3650’s, with GPFS using a DS4700 storage
controller. Accuracy metrics were recorded at the
NFS/GPFS server.

On both setups, we first replayed traces and then emu-
lated them using Filebench. In all experiments we set the
chunk size to 20s and enabled all feature functions. We
chose the matrix granularity for each dimension exper-
imentally, by gradually decreasing it until the accuracy

began to drop. During all runs we collected the accuracy
parameters specified in Section 2 using the iostat, vm-
stat, and wattsup tools; we plotted graphs showing the
value of each accuracy parameter versus time for both
replay and emulation. Due to limited space, we only
present the graphs for a few representative accuracy pa-
rameters. However, we give the average and maximum
emulation error for all experiments.

Figure 3 depicts how the throughput—for both reads
and writes—changes with time for the Finance1 trace.
The replay was performed with infinite acceleration; it
took about 5 hours to complete on Setup P. The trace
emulation line closely follows the replay line; the Root
Mean Square (RMS) distance is lower than 6% and the
maximum distance is below 15%. In the beginning of
the run, read throughput was 4 times higher then later
in the trace. By inspecting the model we found that
the workload exhibits high sequentiality in the begin-
ning of the trace. After startup, the read throughput falls
to 50–100 ops/s, which is reasonable for an OLTP-like
workload and our hardware. The write performance is
2–2.5 times higher than for read, due to the controller’s
write-back cache that makes writes more sequential.

Figure 4 depicts disk-drive power consumption in
Setup P during a 10-minute non-accelerated replay and
emulation of the MS-WBS trace. In the first 5 min-
utes trace activity was low, resulting in low power usage.
Later, a burst of random disk requests increased power
consumption by almost 40%. The emulation line devi-
ates from the replay line by an average of 6%.

In Setup V, the GPFS server was caching requests
coming from a virtual machine. As a result, the run time
of the Fin1 trace was only 75 minutes. The memory and
CPU consumption of the GPFS server during this time
are shown in Figure 5. Memory usage rises steadily, in-
creasing by about 500MB by the end of the run, which is
the working-set size of the Fin1 trace. Discrepancies be-
tween replay and emulation are within 10%, but there are
visible deviations at times when the memory usage steps
up. We attribute this to the complexity of the GPFS’s
cache policy, which is affected by a workload parame-
ter that we did not emulate. CPU utilization remained
steadily about 10% for both replay and emulation.

Figure 6 summarizes the errors for all parameters, for
both setups and traces. The maximum emulation error
was below 15% and RMS distance was 10% on average.
Although the maximum discrepancy might seem high,
Figure 3 shows sufficient behavioral accuracy.

The selection of feature matrix dimensions is vital for
achieving high accuracy. If a system is sensitive to a
workload property that is missing in the feature matrix,
accuracy can suffer. For example, disk- and SSD-based
storage systems may have radically different queuing
and prefetching policies. To ensure high-fidelity replays

5

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

Pow
er

E
rr

o
r

(%
)

RMS
Maximum

(a) Setup P, Fin1 trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

Pow
er

E
rr

o
r

(%
)

RMS
Maximum

(b) Setup P, MS-WBS trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(c) Setup V, Fin1 trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(d) Setup V, MS-WBS trace

Figure 6: Root Mean Square (RMS) and maximum relative distances of accuracy parameters for two traces and two systems.

across both types of systems, the feature matrix should
capture the impact of appropriate parameters.

The chunk size and matrix granularity also affect the
model’s accuracy. Our general strategy is to select these
parameters liberally at first (e.g., 100s chunk size and
1MB granularity for I/O size) and then gradually and
repeatedly restrict them (e.g., 10s chunk size, 1KB I/O
size) as needed until the desired accuracy is achieved.
One can always be guaranteed to get high enough accu-
racy if sufficiently small numbers are used.

Conversion Speed and Model Size. The speed of
conversion and the size of the resulting model depend
on the trace length and the translator parameters. On our
2.5GHz server, traces were converted at about 50MB/s,
which is close to the throughput of the 7200RPM disk
drive. The resulting model without deduplication was of
approximately 10–15% size of the original trace. Dedu-
plication removed over 60% of the chunks in both the
Fin1 and MS-WBS traces, resulting in a final model size
reduction of 94–96%. All sizes were measured after
compressing both traces and models using gzip.

6 Related Work
The body of research related to traces is large; we cite
only a representative sample. Many studies have fo-
cused on accurate trace collection with minimum inter-
ference [1, 4, 24, 31, 32]. Other researchers have pro-
posed trace-replaying frameworks at different layers in
the storage stack [3,20,48,48,49]. Since a trace contains
information about the workload applied to the system, a
number of works focused on trace-driven workload char-
acterization [22, 23, 25, 34]. N. Yadwadkar proposed to
identify an application based on its trace [46].

After a workload is characterized, a few researchers
have suggested a workload model that allows them to
generate synthetic workloads with identical characteris-
tics [6, 14–18, 41, 42, 47]. These works address only one
or two workload properties, whereas we present a gen-
eral framework for any number of properties. Also, we
chunk data and generate workload expressions for the

languages of already existing benchmarks.
The two projects most closely related to ours are Dis-

tiller [27] and Chen’s Workload Analyzer [8]. Dis-
tiller’s main goal is to identify important workload prop-
erties. We can use this information to intelligently de-
fine dimensions for our feature matrix. Chen uses ma-
chine learning techniques to identify the dependencies
between workload features. However, the authors do not
emulate traces based on the extracted information.

7 Conclusions and Future Work

We have created a system that extracts flexible workload
models from large I/O traces. Through the novel use of
chunking, we support traces with time-varying statistical
properties. In addition, trace extraction is tunable, allow-
ing model accuracy and size to be traded off against cre-
ation time. Existing I/O benchmarks can readily use the
generated model by implementing a plugin. Our eval-
uation with Filebench and several block traces demon-
strated that the accuracy of generated models approaches
95%, while the model size is less than 6% of the original
trace size. Such concise models allow easy comparison,
scaling and other modifications.

In the future we plan to support file-system-level
traces, build multi-layer models, and add flexibility in
the analysis phase. Our current chunking method is sim-
ple and we want to investigate alternative chunking tech-
niques. We will also work on a graphical tool for manual
trace chunking. To avoid manual selection of the transla-
tor’s parameters, we want to explore various artificial in-
telligence approaches. To further reduce the model size,
we plan to improve the compression ratio by matching
empirical distributions in the feature matrix to explicit
mathematical functions. We recognize that our list of ac-
curacy metrics is not complete and want to experiment
with other accuracy parameters (e.g., latency distribu-
tions). We also plan to develop tools and techniques that
will simplify various operations on our models, such as
time and size scaling, and comparison to other models.

6

References
[1] E. Anderson. Capture, conversion, and analysis of

an intense NFS workload. In Proceedings of the
Seventh USENIX Conference on File and Storage
Technologies (FAST ’09), 2009.

[2] E. Anderson, M. Arlitt, C. Morrey, and A. Veitch.
DataSeries: an efficient, flexible, data format for
structured serial data. ACM SIGOPS Operating
Systems Review, 43(1), January 2009.

[3] E. Anderson, M. Kallahalla, M. Uysal, and
R. Swaminathan. Buttress: A toolkit for flexible
and high fidelity I/O benchmarking. In Proceed-
ings of the Third USENIX Conference on File and
Storage Technologies (FAST ’04), 2004.

[4] A. Aranya, C. P. Wright, and E. Zadok. Tracefs:
a file system to trace them all. In Proceedings of
the Third USENIX Conference on File and Storage
Technologies (FAST ’04), 2004.

[5] T. Bisson, S.A. Brandt, and D.D.E. Long. A hybrid
disk-aware spin-down algorithm with I/O subsys-
tem support. In Proceedings of the IEEE 2007 Per-
formance, Computing, and Communications Con-
ference (IPCCC), 2007.

[6] P. Bodik, A. Fox, M. Franklin, M. Jordan, and
D. Patterson. Characterizing, modeling, and gener-
ating workload spikes for stateful services. In Pro-
ceedings of the First ACM Symposium on Cloud
Computing (SOCC), 2010.

[7] D. Capps. IOzone file system benchmark. www.

iozone.org.

[8] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz.
Design implications for enterprise storage systems
via multi-dimensional trace analysis. In Proceed-
ings of the 23rd ACM Symposium on Operating
System Principles (SOSP ’11), 2011.

[9] F. Douglis, P. Krishnan, and B. Bershad. Adaptive
disk spin-down policies for mobile computers. In
Proceedings of the Second Symposium on Mobile
and Location-Independent Computing, 1995.

[10] M. Ebling and M. Satyanarayanan. SynRGen: An
extensible file reference generator. In Proceed-
ings of the 1994 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Sys-
tems, 1994.

[11] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer.
Passive NFS tracing of email and research work-
loads. In Proceedings of the Second USENIX Con-
ference on File and Storage Technologies (FAST
’03), 2003.

[12] Filebench. http://filebench.sourceforge.
net.

[13] fio—flexible I/O tester. http://freshmeat.

net/projects/fio/.

[14] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and
D. Patterson. Statistics-driven workload modeling
for the cloud. In Proceedings of the International
Workshop on Information and Software as Services
(WISS), 2010.

[15] G. Ganger. Generating representative synthetic
workloads: an unsolved problem. In Proceed-
ings of Computer Measurement Group Conference
(CMG), 1995.

[16] M. Gomez and V. Santonja. A new approach in the
modeling and generation of synthetic workloads.
In Proceedings of the 8th Symposium on Mod-
eling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2000.

[17] B. Hong and T. Madhyastha. The relevance of
long-range dependence in disk traffic and impli-
cations for trace synthesis. In Proceedings of the
22nd IEEE / 13th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSST),
2005.

[18] B. Hong, T. Madhyastha, and B. Zhang. Cluster-
based input/output trace analysis. In Proceedings
of 24th IEEE International Performance, Comput-
ing, and Communications Conference (IPCCC),
2005.

[19] IBM. IBM scale out metwork attached storage.
www.ibm.com/systems/storage/network/

sonas/.

[20] N. Joukov, T. Wong, and E. Zadok. Accurate and
efficient replaying of file system traces. In Pro-
ceedings of the Fourth USENIX Conference on File
and Storage Technologies (FAST ’05), 2005.

[21] S. Kavalanekar, D. Narayanan, S. Sankar,
E. Thereska, K. Vaid, and B. Worthington.
Measuring database performance in online ser-
vices: a trace-based approach. In Proceedings
of TPC Technology Conference on Performance
Evaluation and Benchmarking (TPC TC), 2009.

[22] S. Kavalanekar, B. Worthington, Q. Zhang, and
V. Sharda. Characterization of storage work-
load traces from production windows servers. In
Proceedings of IEEE International Symposium on
Workload Characterization (IISWC), 2008.

[23] T. Kimbrel, A. Tomkins, R. Patterson, B. Bershad,
P. Cao, E. Felten, G. Gibson, A. Karlin, and K. Li.
A trace-driven comparison of algorithms for paral-
lel prefetching and caching. In Proceedings of the
Second Symposium on Operating Systems Design
and Implementation (OSDI 1996), 1996.

7

[24] A. Konwinski, J. Bent, J. Nunez, and M. Quist.
Towards an I/O tracing framework taxonomy. In
In Proceedings of the International Workshop on
Petascale Data Storage (PDSW), 2007.

[25] G. H. Kuenning, G. J. Popek, and P. Reiher. An
analysis of trace data for predictive file caching in
mobile computing. In Proceedings of the Summer
1994 USENIX Conference, 1994.

[26] Z. Kurmas. Generating and Analyzing Synthetic
Workloads using Iterative Distillation. PhD thesis,
Georgia Institute of Technology, 2004.

[27] Z. Kurmas, K. Keeton, and K. Mackenzie. Synthe-
sizing representative I/O workloads using iterative
distillation. In Proceedings of IEEE/ACM Interna-
tional Symposium on Modeling, Analysis and Sim-
ulation of Computer Telecommunications Systems
(MASCOTS), 2003.

[28] LASS. UMass trace pepository. http://

traces.cs.umass.edu.

[29] T. Li and L. K. John. Run-time modeling and esti-
mation of operating system power consumption. In
Proceedings of the 2003 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Com-
puter Systems, 2003.

[30] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-
Miner: Mining block correlations in storage sys-
tems. In Proceedings of the Third USENIX Confer-
ence on File and Storage Technologies (FAST ’04),
2004.

[31] M. P. Mesnier, M. Wachs, R. R. Sambasivan,
e. Lopez, J. Hendricks, G. R. Ganger, and
D. O’Hallaron. //TRACE: parallel trace replay
with approximate causal events. In Proceedings of
the Fifth USENIX Conference on File and Storage
Technologies (FAST ’07), 2007.

[32] R. Moore. A universal dynamic trace for Linux
and other operating systems. In Proceedings of
the 2001 USENIX Annual Technical Conference
(ATC), 2001.

[33] OSDL. Iometer project. www.iometer.org.

[34] J. Ousterhout, H. Costa, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson. A trace-driven anal-
ysis of the UNIX 4.2 BSD file system. In Proceed-
ings of the Tenth ACM Symposium on Operating
System Principles (SOSP), 1985.

[35] F. Schmuck and R. Haskin. GPFS: A shared-disk
file system for large computing clusters. In Pro-
ceedings of the First USENIX Conference on File
and Storage Technologies (FAST ’02), 2002.

[36] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating
performance and energy in file system server work-
loads extensions. In Proceedings of the Eighth
USENIX Conference on File and Storage Tech-
nologies (FAST ’10), 2010.

[37] Storage Networking Industry Association (SNIA).
Block I/O trace common semantics (working
draft). www.snia.org/sites/default/

files/BlockIOSemantics-v1.0r11.pdf,
February 2010.

[38] C. A. N. Soules, G. R. Goodson, J. D. Strunk,
and G. R. Ganger. Metadata efficiency in ver-
sioning file systems. In Proceedings of the Sec-
ond USENIX Conference on File and Storage Tech-
nologies (FAST ’03), 2003.

[39] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok.
A Nine Year Study of File System and Storage
Benchmarking. ACM Transactions on Storage
(TOS), 4(2):25–80, May 2008.

[40] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin,
M. I. Jordan, and D. A. Patterson. The SCADS di-
rector: scaling a distributed storage system under
stringent performance requirements. In Proceed-
ings of the Nineth USENIX Conference on File and
Storage Technologies (FAST ’11), 2011.

[41] M. Wang, A. Ailamaki, and C. Faloutsos. Captur-
ing the spatio-temporal behavior of real traffic data.
In Proceedings of Performance, 2002.

[42] M. Wang, T. Madhyastha, N. Chan, and S. Pa-
padimitriou. Data mining meets performance eval-
uation: fast algorithms for modeling burst traffic.
In Proceedings of 16th International Conference
on Data Engineering (ICDE), 2002.

[43] Watts up? PRO ES Power Meter. www.

wattsupmeters.com/secure/products.php.

[44] C. Weddle, M. Oldham, J. Qian, A. A. Wang,
P. Reiher, and G. Kuenning. PARAID: a gear-
shifting power-aware RAID. In Proceedings of
the Fifth USENIX Conference on File and Storage
Technologies (FAST ’07), 2007.

[45] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao.
WorkOut: I/O workload outsourcing for boosting
RAID reconstruction performance. In Proceedings
of the Seventh USENIX Conference on File and
Storage Technologies (FAST ’09), 2009.

[46] N. Yadwadkar, C. Bhattacharyya, and K. Gopinath.
Discovery of application workloads from net-
work file traces. In Proceedings of the Eighth
USENIX Conference on File and Storage Tech-
nologies (FAST ’10), 2010.

8

[47] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gau-
tam, Y. Zhang, and S. Nagar. Synthesizing repre-
sentative I/O workloads for TPC-H. In Proceed-
ings of International Sypmposium on High Perfor-
mance Computer Architecture (HPCA), 2004.

[48] N. Zhu, J. Chen, and T. Chiueh. TBBT: scalable
and accurate trace replay for file server evalua-
tion. In Proceedings of the Fourth USENIX Confer-
ence on File and Storage Technologies (FAST ’05),
2005.

[49] N. Zhu, J. Chen, T. Chiueh, and D. Ellard. An NFS
trace player for file system evaluation. Technical
Report TR-14-03, Harvard University, December
2003.

9

