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Abstract
Deduplication technologies are increasingly being de-
ployed to reduce cost and increase space-efficiency in
corporate data centers. However, prior research has not
applied deduplication techniques inline to the request
path for latency sensitive, primary workloads. This is
primarily due to the extra latency these techniques intro-
duce. Inherently, deduplicating data on disk causes frag-
mentation that increases seeks for subsequent sequential
reads of the same data, thus, increasing latency. In addi-
tion, deduplicating data requires extra disk IOs to access
on-disk deduplication metadata. In this paper, we pro-
pose an inline deduplication solution, iDedup, for pri-
mary workloads, while minimizing extra IOs and seeks.

Our algorithm is based on two key insights from real-
world workloads: i) spatial locality exists in duplicated
primary data; and ii) temporal locality exists in the access
patterns of duplicated data. Using the first insight, we se-
lectively deduplicate only sequences of disk blocks. This
reduces fragmentation and amortizes the seeks caused by
deduplication. The second insight allows us to replace
the expensive, on-disk, deduplication metadata with a
smaller, in-memory cache. These techniques enable us
to tradeoff capacity savings for performance, as demon-
strated in our evaluation with real-world workloads. Our
evaluation shows that iDedup achieves 60-70% of the
maximum deduplication with less than a 5% CPU over-
head and a 2-4% latency impact.

1 Introduction

Storage continues to grow at an explosive rate of over
52% per year [10]. In 2011, the amount of data will sur-
pass 1.8 zettabytes [17]. According to the IDC [10], to
reduce costs and increase storage efficiency, more than
80% of corporations are exploring deduplication tech-
nologies. However, there is a huge gap in the current ca-
pabilities of deduplication technology. No deduplication

systems exist that deduplicate inline with client requests
for latency sensitive primary workloads. All prior dedu-
plication work focuses on either: i) throughput sensitive
archival and backup systems [8, 9, 15, 21, 26, 39, 41];
or ii) latency sensitive primary systems that deduplicate
data offline during idle time [1, 11, 16]; or iii) file sys-
tems with inline deduplication, but agnostic to perfor-
mance [3, 36]. This paper introduces two novel insights
that enable latency-aware, inline, primary deduplication.

Many primary storage workloads (e.g., email, user di-
rectories, databases) are currently unable to leverage the
benefits of deduplication, due to the associated latency
costs. Since offline deduplication systems impact la-
tency the least, they are currently the best option; how-
ever, they are inefficient. For example, offline systems
require additional storage capacity to absorb the writes
prior to deduplication, and excess disk bandwidth to per-
form reads and writes during deduplication. This ad-
ditional disk bandwidth can impact foreground work-
loads. Additionally, inline compression techniques also
exist [5, 6, 22, 38] that are complementary to our work.

The challenge of inline deduplication is to not increase
the latency of the already latency sensitive, foreground
operations. Reads are affected by the fragmentation
in data layout that naturally occurs when deduplicating
blocks across many disks. As a result, subsequent se-
quential reads of deduplicated data are transformed into
random IOs resulting in significant seek penalties. Most
of the deduplication work occurs in the write path; i.e.,
generating block hashes and finding duplicate blocks. To
identify duplicates, on-disk data structures are accessed.
This leads to extra IOs and increased latency in the write
path. To address these performance concerns, it is nec-
essary to minimize any latencies introduced in both the
read and write paths.

We started with the realization that in order to improve
latency a tradeoff must be made elsewhere. Thus, we
were motivated by the question: Is there a tradeoff be-
tween performance and the degree of achievable dedu-



plication? While examining real-world traces [20], we
developed two key insights that ultimately led to an an-
swer: i) spatial locality exists in the duplicated data; and
ii) temporal locality exists in the accesses of duplicated
data. The first observation allows us to amortize the
seeks caused by deduplication by only performing dedu-
plication when a sequence of on-disk blocks are dupli-
cated. The second observation enables us to maintain an
in-memory fingerprint cache to detect duplicates in lieu
of any on-disk structures. The first observation mitigates
fragmentation and addresses the extra read path latency;
whereas, the second one removes extra IOs and lowers
write path latency. These observations lead to two con-
trol parameters: i) the minimum number of sequential
duplicate blocks on which to perform deduplication; and
ii) the size of the in-memory fingerprint cache. By ad-
justing these parameters, a tradeoff is made between the
capacity savings of deduplication and the performance
impact to the foreground workload.

This paper describes the design, implementation and
evaluation of our deduplication system (iDedup) built to
exploit the spatial and temporal localities of duplicate
data in primary workloads. Our evaluation shows that
good capacity savings are achievable (between 60%-70%
of maximum) with a small impact to latency (2-4% on
average). In summary, our key contributions include:
• Insights on spatial and temporal locality of dupli-

cated data in real-world, primary workloads.
• Design of an inline deduplication algorithm that

leverages both spatial and temporal locality.
• Implementation of our deduplication algorithm in an

enterprise-class, network attached storage system.
• Implementation of efficient data structures to reduce

resource overheads and improve cacheability.
• Demonstration of a viable tradeoff between perfor-

mance and capacity savings via deduplication.
• Evaluation of our algorithm using data from real-

world, production, enterprise file system traces.
The remainder of the paper is as follows: Section 2

provides background and motivation of the work; Sec-
tion 3 describes the design of our deduplication system;
Section 4 describes the system’s implementation; Sec-
tion 5 evaluates the implementation; Section 6 describes
related work, and Section 7 concludes.

2 Background and motivation

Thus far, the majority of deduplication research has tar-
geted improving deduplication within the backup and
archival (or secondary storage) realm. As shown in Ta-
ble 1, very few systems provide deduplication for latency
sensitive primary workloads. We believe that this is due
to the significant challenges in performing deduplication

Type Offline Inline

Primary, NetApp ASIS [1],
latency EMC Celerra [11], iDedup
sensitive StorageTank [16], (This paper)

Secondary, EMC DDFS [41],
throughput EMC Cluster [8]
sensitive DeepStore [40],

(No motivation NEC HydraStor [9],
for systems in Venti [31], SiLo [39],
this category) Sparse Indexing [21],

ChunkStash [7],
Foundation [32],
Symantec [15],
EMC Centera [24],
GreenBytes [13]

Table 1: Table of related work:. The table shows how this pa-
per, iDedup, is positioned relative to some other relevant work.
Some primary, inline deduplication file systems (like ZFS [3])
are omitted, since they are not optimized for latency.

without affecting latency, rather than the lack of benefit
deduplication provides for primary workloads. Our sys-
tem is specifically targeted at this gap.

The remainder of this section further describes the dif-
ferences between primary and secondary deduplication
systems and describes the unique challenges faced by
primary deduplication systems.

2.1 Classifying deduplication systems
Although many classifications for deduplication systems
exist, they are usually based on internal implementation
details, such as the fingerprinting (hashing) scheme or
whether fixed sized or variable sized blocks are used. Al-
though important, these schemes are usually orthogonal
to the types of workloads their system supports. Similar
to other storage systems, deduplication systems can be
broadly classified as primary or secondary depending on
the workloads they serve. Primary systems are used for
primary workloads. These workloads tend to be latency
sensitive and use RPC based protocols, such as NFS [30],
CIFS [37] or iSCSI [35]. On the other hand, secondary
systems are used for archival or backup purposes. These
workloads process large amounts of data, are throughput
sensitive and are based on streaming protocols.

Primary and secondary deduplication systems can be
further subdivided into inline and offline deduplication
systems. Inline systems deduplicate requests in the write
path before the data is written to disk. Since inline dedu-
plication introduces work into the critical write path, it
often leads to an increase in request latency. On the other
hand, offline systems tend to wait for system idle time to
deduplicate previously written data. Since no operations
are introduced within the write path; write latency is not
affected, but reads remain fragmented.
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Content addressable storage (CAS) systems (e.g., [24,
31]) naturally perform inline deduplication, since blocks
are typically addressed by their fingerprints. Both
archival and CAS systems are sometimes used for pri-
mary storage. Likewise, a few file systems that perform
inline deduplication (e.g., ZFS [3] and SDFS [36]) are
also used for primary storage. However, none of these
systems are specifically optimized for latency sensitive
workloads while performing inline deduplication. Their
design for maximum deduplication introduces extra IOs
and does not address fragmentation.

Primary inline deduplication systems have the follow-
ing advantages over offline systems:
1. Storage provisioning is easier and more efficient: Of-

fline systems require additional space to absorb the
writes prior to deduplication processing. This causes
a temporary bloat in storage usage leading to inaccu-
rate space accounting and provisioning.

2. No dependence on system idle time: Offline sys-
tems use idle time to perform deduplication without
impacting foreground requests. This is problematic
when the system is busy for long periods of time.

3. Disk-bandwidth utilization is lower: Offline systems
use extra disk bandwidth when reading in the staged
data to perform deduplication and then again to write
out the results. This limits the total bandwidth avail-
able to the system.

For good reason, the majority of prior deduplication
work has focused on the design of inline, secondary
deduplication systems. Backup and archival workloads
typically have a large amount of duplicate data, thus
the benefit of deduplication is large. For example, re-
ports of 90+% deduplication ratios are not uncommon
for backup workloads [41], compared to the 20-30% we
observe from our traces of primary workloads. Also,
since backup workloads are not latency sensitive, they
are tolerant to delays introduced in the request path.

2.2 Challenges of primary deduplication

The almost exclusive focus on maximum deduplication
at the expense of performance has left a gap for la-
tency sensitive workloads. Since primary storage is usu-
ally the most expensive, any savings obtained in primary
systems has high cost advantages. Due to their higher
cost ($/GB), deduplication is even more critical for flash
based systems; nothing precludes our techniques from
working with these systems. In order for primary, in-
line deduplication to be practical for enterprise systems,
a number of challenges must be overcome:
• Write path: The metadata management and IO re-

quired to perform deduplication inline with the write
request increases write latency.

a) Fragmentation with random seeks 

b) Sequences, with amortized seeks 
Figure 1: a) Increase in seeks due to increased fragmenta-
tion. b) The amortization of seeks using sequences. This figure
shows the amortization of seeks between disk tracks by using
sequences of blocks (threshold=3).

• Read path: The fragmentation of otherwise sequen-
tial writes increases the number of disk seeks re-
quired during reads. This increases read latency.

• Delete path: The requirement to check whether a
block can be safely deleted increases delete latency.

All of these penalties, due to deduplication, impact the
performance of foreground workloads. Thus, primary
deduplication systems only employ offline techniques to
avoid interfering with foreground requests [1, 11, 16].

Write path: For inline, primary deduplication, write
requests deduplicate data blocks prior to writing those
blocks to stable storage. At a minimum, this involves
fingerprinting the data block and comparing its signature
within a table of previously written blocks. If a match
is found, the metadata for the block, e.g., the file’s block
pointer, is updated to point to the existing block and no
write to stable storage is required. Additionally, a ref-
erence count on the existing block is incremented. If a
match is not found, the block is written to stable storage
and the table of existing blocks is updated with the new
block’s signature and its storage location. The additional
work performed during write path deduplication can be
summarized as follows:

• Fingerprinting data consumes extra CPU resources.
• Performing fingerprint table lookups and managing

the table persistently on disk requires extra IOs.
• Updating a block’s reference count requires an up-

date to persistent storage.

As one can see, the management of deduplication meta-
data, in memory, and on persistent storage, accounts for
the majority of write path overheads. Even though much
previous work has explored optimizing metadata man-
agement for inline, secondary systems (e.g., [2, 15, 21,
39, 41]), we feel that it is necessary to minimize all extra
IO in the critical path for latency sensitive workloads.
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Read path: Deduplication naturally fragments data that
would otherwise be written sequentially. Fragmentation
occurs because a newly written block may be dedupli-
cated to an existing block that resides elsewhere on stor-
age. Indeed, the higher the deduplication ratio, the higher
the likelihood of fragmentation. Figure 1(a) shows the
potential impact of fragmentation on reads in terms of the
increased number seeks. When using disk based storage,
the extra seeks can cause a substantial increase in read
latency. Deduplication can convert sequential reads from
the application into random reads from storage.

Delete path: Typically, some metadata records the us-
age of shared blocks. For example, a table of reference
counts can be maintained. This metadata must be queried
and updated inline to the deletion request. These actions
can increase the latency of delete operations.

3 Design

In this section, we present the rationale that led to our so-
lution, the design of our architecture, and the key design
challenges of our deduplication system (iDedup).

3.1 Rationale for solution

To better understand the challenges of inline deduplica-
tion, we performed data analysis on real-world enterprise
workloads [20]. First, we ran simulations varying the
block size to see its effect on deduplication. We observed
that the drop in deduplication ratio was less than linear
with increasing block size. This implies duplicated data
is clustered, thus indicating spatial locality in the data.
Second, we ran simulations varying the fingerprint table
size to determine if the same data is written repeatedly
close in time. Again, we observed the drop in deduplica-
tion ratio was less than linear with decreasing table size.
This implies duplicated data exhibits notable temporal
locality, thus making the fingerprint table amenable to
caching. Unfortunately, we could not test our hypothe-
sis on other workloads due to the lack of traces with data
duplication patterns.

3.2 Solution overview

We use the observations of spatial and temporal locality
to derive an inline deduplication solution.

Spatial locality: We leverage the spatial locality to per-
form selective deduplication, thereby mitigating the extra
seeks introduced by deduplication for sequentially read
files. To accomplish this, we examine blocks at write
time and attempt to only deduplicate full sequences of
file blocks if and only if the sequence of blocks are i)

sequential in the file and ii) have duplicates that are se-
quential on disk. Even with this optimization, sequential
reads can still incur seeks between sequences. However,
if we enforce an appropriate minimum sequence length
for such sequences (the threshold), the extra seek cost
is expected to be amortized; as shown by Figure 1(b).
The threshold is a configurable parameter in our system.
While some schemes employ a larger block size to lever-
age spatial locality, they are limited as the block size rep-
resents both the minimum and the maximum sequence
length. Whereas, our threshold represents the minimum
sequence length and the maximum sequence length is
only limited by the file’s size.

Inherently, due to our selective approach, only a sub-
set of blocks are deduplicated, leading to lower capacity
savings. Therefore, our inline deduplication technique
exposes a tradeoff between capacity savings and perfor-
mance, which we observe via experiments to be reason-
able for certain latency sensitive workloads. For an op-
timal tradeoff, the threshold must be derived empirically
to match the randomness in the workload. Additionally,
to recover the lost savings, our system does not preclude
executing other offline techniques.

Temporal locality: In all deduplication systems, there
is a structure that maps the fingerprint of a block and its
location on disk. We call this the deduplication meta-
data structure (or dedup-metadata for short). Its size is
proportional to the number of blocks and it is typically
stored on disk. Other systems use this structure as a
lookup table to detect duplicates in the write path; this
leads to extra, expensive, latency-inducing, random IOs.

We leverage the temporal locality by maintaining
dedup-metadata as a completely memory-resident, LRU
cache, thereby, avoiding extra dedup-metadata IOs.
There are a few downsides to using a smaller, in-memory
cache. Since we only cache mappings for a subset of
blocks, we might not deduplicate certain blocks due to
lack of information. In addition, the memory used by the
cache reduces the file system’s buffer cache size. This
can lead to a lower buffer cache hit rate, affecting la-
tency. On the other hand, the buffer cache becomes more
effective by caching deduplicated blocks [19]. These ob-
servations expose another tradeoff between performance
(hit rate) and capacity savings (dedup-metadata size).

3.3 Architecture

In this subsection, we provide an overview of our archi-
tecture. In addition, we describe the changes to the IO
path to perform inline deduplication.
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NVRAM log (written blocks) 

iDedup 
Algorithm 

Client IOs  
(Reads + Writes) 

Dedup 
Metadata 
(Cache)  

Disk 

De-stage 

Log Structured File System 

Network Attached Storage System 

Figure 2: iDedup Architecture. Non-deduplicated blocks (dif-
ferent patterns) in NVRAM buffer are deduplicated by the iD-
edup algorithm before writing them to disk via the file system.

3.3.1 Storage system overview

An enterprise-class network-attached storage (NAS) sys-
tem (as illustrated in Figure 2) is used as the reference
system to build iDedup. For primary workloads, the sys-
tem supports the NFS [30] and CIFS [37] RPC-based
protocols. As seen in Figure 2, the system uses a log-
structured file system [34] combined with non-volatile
RAM (NVRAM) to buffer client writes to reduce re-
sponse latency. These writes are periodically flushed to
disk during the destage phase. Allocation of new disk
blocks occur during this phase and is performed succes-
sively for each file written. Individual disk blocks are
identified by their unique disk block numbers (DBNs).
File metadata, containing the DBNs of its blocks, is
stored within an inode structure. Given our objective to
perform inline deduplication, the newly written (dirty)
blocks need to be deduplicated during the destage phase.
By performing deduplication during destage, the system
benefits by not deduplicating short-lived data that is over-
written or deleted while buffered in NVRAM. Adding in-
line deduplication modifies the write path significantly.

3.3.2 Write path flow

Compared to the normal file system write path, we add
an extra layer of deduplication processing. As this layer
consumes extra CPU cycles, it can prolong the total time
required to allocate dirty blocks and affect time-sensitive
file system operations. Moreover, any extra IOs in this
layer can interfere with foreground read requests. Thus,
this layer must be optimized to minimize overheads. On
the other hand, there is an opportunity to overlap dedu-
plication processing with disk write IOs in the destage

phase. The following steps take place in the write path:
1. For each file, the list of dirty blocks is obtained.
2. For each dirty block, we compute its fingerprint (hash

of the block’s content) and perform a lookup in the
dedup-metadata structure using the hash as the key.

3. If a duplicate is found, we examine adjacent blocks,
using the iDedup algorithm (Section 3.4), to deter-
mine if it is part of a duplicate sequence.

4. While examining subsequent blocks, some duplicate
sequences might end. In those cases, the length of the
sequence is determined, if it is greater than the con-
figured threshold, we mark the sequence for dedupli-
cation. Otherwise, we allocate new disk blocks and
add the fingerprint metadata for these blocks.

5. When a duplicate sequence is found, the DBN of
each block in the sequence is obtained and the file’s
metadata is updated and eventually written to disk.

6. Finally, to maintain file system integrity in the face of
deletes, we update reference counts of the duplicated
blocks in a separate structure on disk.

3.3.3 Read path flow

Since iDedup updates the file’s metadata as soon as dedu-
plication occurs, the file system cannot distinguish be-
tween a duplicated block and a non-duplicated one. This
allows file reads to occur in the same manner for all files,
regardless of whether they contain deduplicated blocks.
Although sequential reads may incur extra seeks due to
deduplication, having a minimum sequence length helps
amortize this cost. Moreover, if we pick the threshold
closer to the expected sequentiality of a workload, then
the effects of those seeks can be hidden.

3.3.4 Delete path flow

As mentioned in the write path flow, deduplicated blocks
need to be reference counted. During deletion, the ref-
erence count of deleted blocks is decremented and only
blocks with no references are freed. In addition to updat-
ing the reference counts, we also update the in-memory
dedup-metadata when a block is deleted.

3.4 iDedup algorithm
The iDedup deduplication algorithm has the following
key design objectives:
1. The algorithm should be able to identify sequences of

file blocks that are duplicates and whose correspond-
ing DBNs are sequential.

2. The largest duplicate sequence for a given set of file
blocks should be identified.

3. The algorithm should minimize searches in the
dedup-metadata to reduce CPU overheads.
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4. The algorithm execution should overlap with disk IO
during the destage phase and not prolong the phase.

5. The memory and CPU overheads caused by the algo-
rithm should not prevent other file system processes
from accomplishing their tasks in a timely manner.

6. The dedup-metadata must be optimized for lookups.

More details of the algorithm are presented in Sec-
tion 4.2. Next, we describe the design elements that en-
able these objectives.

3.4.1 Dedup-metadata cache design

The dedup-metadata is maintained as a cache with one
entry per block. Each entry maps the fingerprint of a
block to its DBN on disk. We use LRU as the cache
replacement policy; other replacement policies did not
perform better than the simpler LRU scheme.

The choice of the fingerprint influences the size of the
entry and the number of CPU cycles required to compute
it. By leveraging processor hardware assists (for e.g.,
Intel AES [14]) to compute stronger fingerprints (like
SHA-2, SHA-256 [28], etc.), the CPU overhead can be
greatly mitigated. However, longer, 256-bit fingerprints
increase the size of each entry. In addition, a DBN of
32-bits to 64-bits must also be kept within the entry, thus
making the minimum entry size 36 bytes. Given a block
size of 4 KB (typical of many file systems), the cache
entries comprise an overhead of 0.8% of the total size.
Since we keep the cache in memory, this overhead is sig-
nificant as it reduces the number of cached blocks.

In many storage systems, memory not reserved for
data structures is used by the buffer cache. Hence, the
memory used by the dedup-metadata cache comes at the
expense of a larger buffer cache. Therefore, the effect
of the dedup-metadata cache on the buffer cache hit ratio
needs to be evaluated empirically to size the cache.

3.4.2 Duplicate sequence processing

This subsection describes some common design issues in
duplicate sequence identification.

Sequence identification: The goal is to identify the
largest sequence among the list of potential sequences.
This can be done in multiple ways:

• Breadth-first: Start by scanning blocks in order; con-
currently track all possible sequences; and decide on
the largest when a sequence terminates.

• Depth-first: Start with a sequence and pursue it
across the blocks until it terminates; make multiple
passes until all sequences are probed; and then pick
the largest. Information gathered during one pass can
be utilized to make subsequent passes more efficient.

Figure 3: Overlapped sequences. This figure shows an exam-
ple of how the algorithm works with overlapped sequences.

In practice, we observed long chains of blocks during
processing (order of 1000s). Since multiple passes is too
expensive, we use the breadth-first approach.
Overlapped sequences: Choosing between a set of over-
lapped sequences can prove problematic. An example of
how overlapping sequences are handled is illustrated in
Figure 3. Assume a threshold of 4. Scanning from left
to right, multiple sequences match the set of file blocks.
As we process the 7th block, one of the sequences ter-
minates (S1) with a length 6. But, sequences S2 and
S3 have not yet terminated and have blocks overlapping
with S1. Since S1 is longer than the threshold (4), we can
deduplicate the file blocks matching those in S1. How-
ever, by accepting S1, we are rejecting the overlapped
blocks from S2 or S3; this is the dilemma. It is possi-
ble that either S2 or S3 could potentially lead to a longer
sequence going forward, but it is necessary to make a de-
cision about S1. Since it is not possible to know the best
outcome, we use the following heuristic: we determine
if the set of non-overlapped blocks is greater than thresh-
old, if so, we deduplicate them. Otherwise, we defer to
the unterminated sequences, as they may grow longer.
Thus, in the example, we reject S1 for this reason.

3.4.3 Threshold determination

The minimum sequence threshold is a workload property
that can only be derived empirically. The ideal threshold
is one that most closely matches the workload’s natural
sequentiality. For workloads with more random IO, it is
possible to set a lower threshold because deduplication
should not worsen the fragmentation. It is possible to
have a real-time, adaptive scheme that sets the thresh-
old based on the randomness of the workload. Although
valuable, this investigation is beyond this paper’s scope.

4 Implementation

In this section, we present the implementation and op-
timizations of our inline deduplication system. The im-
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plementation consists of two subsystems: i) the dedup-
metadata management; and ii) the iDedup algorithm.

4.1 Dedup-metadata management
The dedup-metadata management subsystem is com-
prised of several components:
1. Dedup-metadata cache (in RAM): Contains a pool of

block entries (content-nodes) that contain deduplica-
tion metadata organized as a cache.

2. Fingerprint hash table (in RAM): This table maps a
fingerprint to DBN(s).

3. DBN hash table (in RAM): This table maps a DBN
to its content-node; used to delete a block.

4. Reference count file (on disk): Maintains reference
counts of deduplicated file system blocks in a file.

We explore each of them next.

4.1.1 Dedup-metadata cache

This is a fixed-size pool of small entries called content-
nodes, managed as an LRU cache. The size of this pool
is configurable at compile time. Each content-node rep-
resents a single disk block and is about 64 bytes in size.
The content-node contains the block’s DBN (a 4 B in-
teger) and its fingerprint. In our prototype, we use the
MD5 checksum (128-bit) [33] of the block’s contents as
its fingerprint. Using a stronger fingerprint (like SHA-
256) would increase the memory overhead of each entry
by 25%, thus leading to fewer blocks cached. Other than
this effect, using MD5 is not expected to alter other ex-
perimental results.

All the content-nodes are allocated as a single global
array. This allows the nodes to be referenced by their
array index (a 4 byte value) instead of by a pointer. This
saves 4 bytes per pointer in 64-bit systems. Each content-
node is indexed by three data structures: the fingerprint
hash table, the DBN hash table and the LRU list. This
adds two pointers per index (to doubly link the nodes in
a list or tree), thus totaling six pointers per content-node.
Therefore, by using array indices instead of pointers we
save 24 bytes per entry (37.5%).

4.1.2 Fingerprint hash table

This hash table contains content-nodes indexed by their
fingerprint. It enables a block’s duplicates to be identi-
fied by using the block’s fingerprint. As shown in Fig-
ure 4, each hash bucket contains a single pointer to the
root of a red-black tree containing the collision list for
that bucket. This is in contrast to a traditional hash ta-
ble with a doubly linked list for collisions at the cost of
two pointers per bucket. The red-black tree implemen-
tation is an optimized, left-leaning, red-black tree [12].

Hash  
Buckets  
 

Collision Tree 

Content-node 

Duplicates Tree 
(dup-tree) 

Duplicate 
Content-nodes 

DBN:110 DBN:205 

FP: foo 

Figure 4: Fingerprint Hash Table. The fingerprint hash ta-
ble with hash buckets as pointers to collision trees. Content-
node with fingerprint ‘foo’ has duplicate content-nodes in a tree
(dup-tree) with DBNs 205 and 110.

With uniform distribution, each hash bucket is designed
to hold 16 entries, ensuring an upper-bound of 4 searches
within the collision tree (tree search cost is O(logN)). By
reducing the size of the pointers and the number of point-
ers per bucket, the per-bucket overhead is reduced, thus
providing more buckets for the same memory size.

Each collision tree content-node represents a unique
fingerprint value in the system. For thresholds greater
than one, it is possible for multiple DBNs to have the
same fingerprint, as they can belong to different dupli-
cate sequences. Therefore, all the content-nodes that rep-
resent duplicates of a given fingerprint are added to an-
other red-black tree, called the dup-tree (see Figure 4).
This tree is rooted at the first content-node that maps to
that fingerprint. There are advantages to organizing the
duplicate content-nodes in a tree, as explained in the iD-
edup algorithm section (Section 4.2).

4.1.3 DBN hash table

This hash table indexes content-nodes by their DBNs.
Its structure is similar to the fingerprint hash table with-
out the dup-tree. It facilitates the deletion of content-
nodes when the corresponding blocks are removed from
the system. During deletion, blocks can only be identi-
fied by their DBNs (otherwise the data must be read and
hashed). The DBN is used to locate the corresponding
content-node and delete it from all dedup-metadata.

4.1.4 Reference count file

The refcount file stores the reference counts of all dedu-
plicated blocks on disk. It is ordered by DBN and main-
tains a 32-bit counter per block. When a block is deleted,
its entry in the refcount file is decremented. When the
reference count reaches zero, the block’s content-node
is removed from all dedup-metadata and the block is
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Figure 5: Identification of sequences. This figure shows how
sequences are identified.

marked free in the file system’s metadata. The refcount
file is also updated when a block is written. By dedu-
plicating sequential blocks, we observe that refcount
updates are often collocated to the same disk blocks,
thereby amortizing IOs to the refcount file.

4.2 iDedup algorithm
For each file, the iDedup algorithm has three phases:
1. Sequence identification: Identify duplicate block se-

quences for file blocks.
2. Sequence pruning: Process duplicate sequences

based on their length.
3. Sequence deduplication: Deduplicate sequences

greater than the configured threshold.
We examine these phases next.

4.2.1 Sequence identification

In this phase, a set of newly written blocks, for a particu-
lar file, are processed. We use the breadth-first approach
for determining duplicate sequences. We start by scan-
ning the blocks in order and utilize the fingerprint hash
table to identify any duplicates for these blocks. We fil-
ter the blocks to pick only data blocks that are complete
(i.e., of size 4 KB) and that do not belong to special or
system files (e.g., the refcount file). During this pass, we
also compute the MD5 hash for each block.

In Figure 5, the blocks B(n) (n = 1,2,3....) and the
corresponding fingerprints H(n) (n = 1,2,3...) are shown.
Here, n represents the block’s offset within the file (the
file block number or FBN). The minimum length of a du-
plicate sequence is two; so, we examine blocks in pairs;
i.e., B(1) and B(2) first, B(2) and B(3) next and so on.
For each pair, e.g., B(n) and B(n+1) (see Figure 5), we
perform a lookup in the fingerprint hash table for H(n)
and H(n+1), if neither of them is a match, we allocate the
blocks on disk normally and move to the next pair. When
we find a match, the matching content-nodes may have

1 
 
10 
 
25 
 
67 

D1 
[DBNs for B(n)] 

11 
 
38 
 
64 
 
65 
 
68 

D2 
[DBNs for B(n+1)] 

nsearch(11)=> 11 nsearch(12) 
 => 38 

nsearch(37)=>67 

nsearch(68)=> 68 

Figure 6: Sequence identification example. Sequence identi-
fication for blocks with multiple duplicates. D1 represents the
dup-tree for block B(n) and D2 the dup-tree for B(n+1).

more than one duplicate (i.e., a dup-tree) or just a single
duplicate (i.e., just an single DBN). Accordingly, to de-
termine if a sequence exists across the pair, we have one
of four conditions. They are listed below in increasing
degrees of difficulty; they are also illustrated in Figure 5.

1. Both H(n) and H(n+1) match a single content-node:
Simplest case, if the DBN of H(n) is b, and DBN of
H(n+1) is (b+1), then we have a sequence.

2. H(n) matches a single content-node, H(n+1) matches
a dup-tree content-node: If the DBN of H(n) is b;
search for (b+1) in the dup-tree of H(n+1).

3. H(n) matches a dup-tree, H(n+1) matches a single
content-node: Similar to the previous case with H(n)
and H(n+1) swapped.

4. Both H(n) and H(n+1) match dup-tree content-nodes:
This case is the most complex and can lead to multi-
ple sequences. It is discussed in greater detail below.

When both H(n) and H(n+1) match entries with dup-
trees, we need to identify all possible sequences that
can start from these two blocks. The optimized red-
black tree used for the dup-trees has a search primitive,
nsearch(x), that returns ‘x’ if ‘x’ is found; or the next
largest number after ‘x’; or error if ‘x’ is already the
largest number. The cost of nsearch is the same as that
of a regular tree search (O(log N)). We use this primitive
to quickly search the dup-trees for all possible sequences.
This is illustrated via an example in Figure 6.

In our example, we show the dup-trees as two sorted
list of DBNs. First, we compute the minimum and max-
imum overlapping DBNs between the dup-trees (i.e., 10
and 68 in the figure), all sequences will be within this
range. We start with 10, since this is in D1, the dup-
tree of H(n). We then perform a nsearch(11) in D2,
the dup-tree of H(n+1), which successfully leads to a se-
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quence. Since the numbers are ordered, we perform a
nsearch(12) in D2 to find the next largest potential se-
quence number; the result is 38. Next, to pair with 38,
we perform nsearch(37) in D1. However, it results in
67 (not a sequence). Similarly, since we obtained 67 in
D1, we perform nsearch(68) in D2, thus, yielding an-
other sequence. In this fashion, with a minimal number
of searches using the nsearch primitive, we are able to
glean all possible sequences between the two blocks.

It is necessary to efficiently record, manage, and iden-
tify the sequences that are growing and those that have
terminated. For each discovered sequence, we manage it
via a sequence entry: the tuple 〈Last FBN of sequence,
Sequence Size, Last DBN of sequence〉. Suppose, B(n)
and B(n+1) have started a sequence with sequence entry
S1. Upon examining B(n+1) and B(n+2), we find that
S1 grows and a new sequence, S2, is created. In such
a scenario, we want to quickly search for S1 and update
its contents and create a new entry for S2. Therefore,
we maintain the sequence entries in a hash table indexed
by a combination of the tuple fields. In addition, as we
process the blocks, to quickly determine terminated se-
quences, we keep two lists of sequence entries: one for
sequences that include the current block and another for
sequences of the previous block. After sequence identi-
fication for a block completes, if a sequence entry is not
in the current block’s list, then it has terminated.

4.2.2 Sequence pruning

Once we determine the sequences that have terminated,
we process them according to their sizes. If a sequence
is larger than the threshold, we check for overlapping
blocks with non-terminated sequences using the heuris-
tic mentioned in Section 3.4.2, and only deduplicate the
non-overlapped blocks if they form a sequence greater
than the threshold. For sequences shorter than the thresh-
old, the non-overlapped blocks are allocated by assigning
them to new blocks on disk.

4.2.3 Deduplication of blocks

For each deduplicated block, the file’s metadata is up-
dated with the original DBN at the appropriate FBN lo-
cation. The appropriate block in the refcount file is re-
trieved (a potential disk IO) and the reference count of
the original DBN is incremented. We expect the refcount
updates to be amortized across the deduplication of mul-
tiple blocks for long sequences.

5 Experimental evaluation

In this section, we describe the goals of our evaluation
followed by details and results of our experiments.

5.1 Evaluation objectives

Our goal is to show that a reasonable tradeoff exists be-
tween performance and deduplication ratio that can be
exploited by iDedup for latency sensitive, primary work-
loads. In our system, the two major tunable parameters
are: i) the minimum duplicate sequence threshold, and ii)
the in-memory dedup-metadata cache size. Using these
paramaters we evaluate the system by replaying traces
from two real-world, enterprise workloads to examine:
1. Deduplication ratio vs. threshold: We expect a drop

in deduplication rate as threshold increases.
2. Disk fragmentation profile vs. threshold: We expect

the fragmentation to decrease as threshold increases.
3. Client read response time vs. threshold: We expect

the client read response time characteristics to follow
the disk fragmentation profile.

4. System CPU utilization vs. threshold: We expect the
utilization to increase slightly with the threshold.

5. Buffer cache hit rate vs. dedup-metadata cache size:
We expect the buffer cache hit ratio to decrease as the
metadata cache size increases.

We describe these experiments and their results next.

5.2 Experimental setup

All evaluation is done using a NetApp R© FAS 3070 stor-
age system running Data ONTAP R© 7.3 [27]. It consists
of: 8 GB RAM; 512 MB NVRAM; 2 dual-core 1.8 GHz
AMD CPUs; and 3 10K RPM 144 GB FC Seagate Chee-
tah 7 disk drives in a RAID-0 stripe. The trace replay
client has a 16-core, Intel R© Xeon R© 2.2 GHz CPU with
16 GB RAM and is connected by a 1 Gb/s network link.

We use two, real-world, CIFS traces obtained from
a production, primary storage system that was collected
and made available by NetApp [20]. One trace contains
Corporate departments’ data (MS Office, MS Access,
VM Images, etc.), called the Corporate trace; it con-
tains 19,876,155 read requests (203.8 GB total read) and
3,968,452 write requests (80.3 GB total written). The
other contains Engineering departments’ data (user home
dirs, source code, etc.), called the Engineering trace; it
contains 23,818,465 read requests (192.1 GB total read)
and 4,416,026 write requests (91.7 GB total written).
Each trace represents ≈ 1.5 months of activity. They are
replayed without altering their data duplication patterns.

We use three dedup-metadata cache sizes: 1 GB,
0.5 GB and 0.25 GB, that caches block mappings for ap-
proximately 100%, 50% and 25% of all blocks written
in the trace respectively. For the threshold, we use refer-
ence values of 1, 2, 4, and 8. Larger thresholds produce
insignificant deduplication savings to be feasible.

Two key comparison points are used in our evaluation:
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Figure 7: Deduplication ratio vs. Threshold. Deduplication
ratio versus threshold for the different cache sizes for Corporate
(top) and Engineering (bottom) traces.

1. The Baseline values represent the system without the
iDedup algorithm enabled (i.e., no deduplication).

2. The Threshold-1 values represent the highest dedu-
plication ratio for a given metadata cache size. Since
a 1 GB cache caches all block mappings, Threshold-1
at 1 GB represents the maximum deduplication pos-
sible (with a 4 KB block size) and is equivalent to a
static offline technique.

5.3 Deduplication ratio vs. threshold

Figure 7 shows the tradeoff in deduplication ratio
(dedup-rate) versus threshold for both the workloads and
different dedup-metadata sizes. For both the workloads,
as the threshold increases, the number of duplicate se-
quences decrease, correspondingly the dedup-rate drops;
there is a 50% decrease between Threshold-1 (24%) and
8 (13%), with a 1 GB cache. Our goal is to maxi-
mize the size of the threshold, while also maintaining
a high dedup-rate. To evaluate this tradeoff, we look
for a range of useful thresholds (> 1) where the drop in
dedup-rate is not too steep; e.g., the dedup-rates between
Threshold-2 and Threshold-4 are fairly flat. To minimize
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Figure 8: Disk fragmentation profile. CDF of number of se-
quential blocks in disk read requests for the Corporate (top)
and Engineering (bottom) traces with a 1G cache.

performance impact, we would pick the largest threshold
that shows the smallest loss in dedup-rate: Threshold-
4 from either graph. Moreover, we notice the drop in
dedup-rate from Threshold-2 to Threshold-4 is same for
0.5 GB and 0.25 GB (≈ 2%), showing a bigger percent-
age drop for smaller caches. For the Corporate work-
load, iDedup achieves a deduplication ratio between 66%
(at Threshold-4, 0.25 GB) and 74% (at Threshold-4,
1 GB) of the maximum possible (≈ 24% at Threshold-
1, 1 GB). Similarly, with the Engineering workload, we
achieve between 54% (at Threshold-4, 0.25 GB) and
62% (at Threshold-4, 1 GB) of the maximum (≈ 23%
at Threshold-1, 1 GB).

5.4 Disk fragmentation profile

To assess disk fragmentation due to deduplication, we
gather the number of sequential blocks (request size) for
each disk read request across all the disks and plot them
as a CDF (cumulative distribution function). All CDFs
are based on the average over three runs. Figure 8 shows
the CDFs for both Corporate and Engineering workloads
for a dedup-metadata cache of 1 GB. Other cache sizes
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show similar patterns. Since the request stream is the
same for all thresholds, the difference in disk IO sizes,
across the different thresholds, reflects the fragmentation
of the file system’s disk layout.

As expected, in both the CDFs, the Baseline shows the
highest percentage of longer request sizes or sequential-
ity; i.e., the least fragmentation. Also, it can observed
that the Threshold-1 line shows the highest amount of
fragmentation. For example, there is a 11% increase in
the number of requests smaller or equal to 8, between
the Baseline and Threshold-1 for the Corporate workload
and 12% for the Engineering workload. All the remain-
ing thresholds (2, 4, 6, 8) show progressively less frag-
mentation, and have CDFs between the Baseline and the
Threshold-1 line; e.g., a 2% difference between Baseline
and Threshold-8 for the Corporate workload. Hence, to
optimally choose a threshold, we suggest the tradeoff is
made after empirically deriving the dedup-rate graph and
the fragmentation profile. In the future, we envision en-
abling the system to automatically make this tradeoff.

5.5 Client response time behavior
Figure 9 (top graph) shows a CDF of client response
times taken from the trace replay tool for varying thresh-
olds of the Corporate trace at 1 GB cache size. We use
response time as a measure of latency. For thresholds of
8 or larger, the behavior is almost identical to the Base-
line (an average difference of 2% for Corporate and 4%
for Engineering at Threshold 8) , while Threshold-2 and
4 (not shown) fall in between. We expect the client re-
sponse time to reflect the fragmentation profile. How-
ever, the impact on client response time is lower due to
the storage system’s effective read prefetching.

As can be seen, there is a slowly shrinking gap
between Threshold-1 and Baseline for larger response
times (> 2ms) comprising ≈ 10% of all requests. The
increase in latency of these requests is due to the frag-
mentation effect and it affects the average response time.
To quantify this better, we plot the difference between the
two curves in the CDF (bottom graph of Figure 9) against
the response time. The area under this curve shows the
total contribution to latency due to the fragmentation ef-
fect. We find that it adds 13% to the average latency and
a similar amount to the total runtime of the workload,
which is significant. The Engineering workload has a
similar pattern, although the effect is smaller (1.8% for
average latency and total runtime).

5.6 System CPU utilization vs. threshold
We capture CPU utilization samples every 10 seconds
from all the cores and compute the CDF for these val-
ues. Figure 10 shows the CDFs for our workloads with a
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Figure 9: Client response time CDF. CDF of client response
times for Corporate with a 1 GB cache (top); we highlight
the region where the curves differ. The difference between the
Baseline and Threshold of 1 CDFs (bottom).

1 GB dedup-metadata cache. We expect Threshold-8 to
consume more CPU because there are potentially more
outstanding, unterminated sequences leading to more se-
quence processing and management. As expected, com-
pared to the Baseline, the maximum difference in mean
CPU utilization occurs at Threshold-8, but is relatively
small: ≈ 2% for Corporate and ≈ 4% for Engineering.
However, the CDFs for the thresholds exhibit a longer
tail, implying a larger standard deviation compared to
the Baseline, this is evident in the Engineering case but
less so for Corporate. However, given that the change
is small (< 5%), we feel that the iDedup algorithm has
little impact on the overall utilization. The results are
similar across cache sizes, we chose the maximal 1 GB
one, since that represents maximum work in sequence
processing for the iDedup algorithm.

5.7 Buffer cache hit ratio vs. metadata size

We observed the buffer cache hit ratio for different sizes
of the dedup-metadata cache. The size of the dedup-
metadata cache (and threshold) had no observable ef-

11



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40

P
e
rc

e
n
ta

g
e
 o

f 
C

P
U

 S
a
m

p
le

s

CPU Utilization (%)

Baseline (Mean=10.8%)
Threshold-1 (Mean=11.1%)
Threshold-4 (Mean=12.0%)
Threshold-8 (Mean=12.5%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40

P
e
rc

e
n
ta

g
e

 o
f 

C
P

U
 S

a
m

p
le

s

CPU Utilization (%)

Baseline (Mean=13.2%)
Threshold-1 (Mean=15.0%)
Threshold-4 (Mean=16.6%)
Threshold-8 (Mean=17.1%)

Figure 10: CPU Utilization CDF. CDF across all the cores for
varying thresholds for Corporate (top) and Engineering (bot-
tom) workloads with a 1 GB cache. Threshold-2 is omitted,
since it almost fully overlaps Threshold-4.

fect on the buffer cache hit ratio for two reasons: i) the
dedup-metadata cache size (max of 1 GB) is relatively
small compared to the total memory (8 GB); and ii) the
workloads’ working sets fit within the buffer cache. The
buffer cache hit ratio was steady for the Corporate (93%)
and Engineering (96%) workloads. However, workloads
with working sets that do not fit in the buffer cache would
be impacted by the dedup-metadata cache.

6 Related work

Data storage efficiency can be realized via various com-
plementary techniques such as thin-provisioning (not all
of the storage is provisioned up front), data deduplica-
tion, and compression. As shown in Table 1 and as de-
scribed in Section 2, deduplication systems can be clas-
sified as primary or secondary (backup/archival). Pri-
mary storage is usually optimized for IOPs and latency
whereas secondary storage systems are optimized for
throughput. These systems either process duplicates in-
line, at ingest time, or offline, during idle time.

Another key trade-off is with respect to the deduplica-

tion granularity. In file level deduplication (e.g., [18, 21,
40]), the potential gains are limited compared to dedupli-
cation at block level. Likewise, there are algorithms for
fixed-sized block or variable-sized (e.g., [4, 23]) block
deduplication. Finally, there are content addressable sys-
tems (CAS) that reference the object or block directly by
its content hash; inherently deduplicating them [24, 31].

Although, we are unaware of any prior primary, inline
deduplication systems, offline systems do exist. Some
are block-based [1, 16], while others are file-based [11].

Complementary research has been done on inline
compression for primary data [6, 22, 38]. Burrows et.
al [5] describe an on-line compression technique for pri-
mary storage using a log-structured file system. In addi-
tion, offline compression products also exist [29].

The goals for inline secondary or backup deduplica-
tion systems are to provide high throughput and high
deduplication ratio. Therefore, to reduce the amount
of in-memory dedup-metadata footprint and the number
of metadata IOs, various optimizations have been pro-
posed [2, 15, 21, 39, 41]. Another inline technique, by
Lillibridge et al. [21], leverages temporal locality with
sampling to reduce dedup metadata size in the context of
backup streams.

Deduplication systems have also leveraged flash stor-
age to minimize the cost of metadata IOs [7, 25]. Clus-
tered backup storage systems have been proposed for
large datasets that cannot be managed by a single backup
storage node [8].

7 Conclusion

In this paper, we describe iDedup, an inline deduplica-
tion system specifically targeting latency-sensitive, pri-
mary storage workloads. With latency sensitive work-
loads, inline deduplication has many challenges: frag-
mentation leading to extra disk seeks for reads, dedupli-
cation processing overheads in the critical path, and extra
latency caused by IOs for dedup-metadata management.

To counter these challenges, we derived two insights
by observing real-world, primary workloads: i) there is
significant spatial locality on disk for duplicated data,
and ii) temporal locality exists in the accesses of dupli-
cated blocks. First, we leverage spatial locality to per-
form deduplication only when the duplicate blocks form
long sequences on disk, thereby, avoiding fragmentation.
Second, we leverage temporal locality by maintaining
dedup-metadata in an in-memory cache to avoid extra
IOs. From our evaluation, we see that iDedup offers sig-
nificant deduplication with minimal resource overheads
(CPU and memory). Furthermore, with careful threshold
selection, a good compromise between performance and
deduplication can be reached, thereby, making iDedup
well suited to latency sensitive workloads.
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