
Lifetime Management of Flash-Based SSDs Using

Recovery-Aware Dynamic Throttling

Sungjin Lee, Taejin Kim, Kyungho Kim∗, and Jihong Kim

Seoul National University, Korea

{chamdoo, taejin1999, jihong}@davinci.snu.ac.kr
∗Samsung Electronics, Korea

kyungho21.kim@samsung.com

Abstract

NAND flash-based solid-state drives (SSDs) are increas-

ingly popular in enterprise server systems because of

their advantages over hard disk drives such as higher

performance and lower power consumption. How-

ever, the limited and unpredictable lifetime of SSDs

remains to be a serious obstacle to wider adoption of

SSDs in enterprise systems. In this paper, we pro-

pose a novel recovery-aware dynamic throttling tech-

nique, called READY, which guarantees the SSD life-

time required by the enterprise market while exploiting

the self-recovery effect of floating-gate transistors. Un-

like a static throttling technique, the proposed technique

makes throttling decisions dynamically based on the pre-

dicted future write demand of a workload so that the

required SSD lifetime can be guaranteed with less per-

formance degradation. The proposed READY technique

also considers the self-recovery effect of floating-gate

transistors which improves the endurance of SSDs, en-

abling to guarantee the required lifetime with less write

throttling. Our experimental results show that the pro-

posed READY technique can improvewrite performance

by 4.4x with less variations on the write time over the ex-

isting static throttling technique while guaranteeing the

required SSD lifetime.

1 Introduction

NAND flash memory has been widely used in mobile

embedded systems like mobile phones, MP3 players, and

laptop computers because of its low-power consump-

tion, high mobility, and high performance. Recently,

as the price-per-byte of NAND flash memory is falling,

NAND flash-based solid-state drives (SSDs) are increas-

ingly popular in enterprise servers as well, replacing

hard disk drives. However, the poor write endurance of

NAND flash memory is still regarded as a main barrier

for a wide adoption of flash-based SSDs in the enterprise

market. In order for SSDs to be broadly adopted in the

enterprise environment, two key problems on the SSD

lifetime need to be addressed properly.

The first problem is that the endurance of flash de-

vices is rapidly decreasing. The endurance of flash-based

SSDs is directly related to the number of program/erase

(P/E) cycles allowed to memory cells, which are made

from floating-gate transistors. Due to the charge trapping

characteristic of a floating-gate transistor [1, 2], NAND

flash memory is gradually impaired as the number of

P/E cycles increases and becomes unreliable beyond a

maximum number of P/E cycles. As the semiconductor

process is scaled down and with multi-level cell (MLC)

technology, the endurance of a floating-gate transistor is

significantly degraded. For example, the maximum num-

ber of P/E cycles of single-level cell (SLC) flash memory

fabricated in a 70 nm process is about 100K P/E cycles.

For 2-bitMLC flash memory fabricated in the 2x nm pro-

cess, the maximumnumber of P/E cycles decreases to 3K

P/E cycles [3, 4, 5] while, for 3-bit MLC flash memory,

this number is only a few hundred cycles [6].

The second problem is the unpredictable lifetime of

flash devices. Since the endurance of SSDs is dependent

upon the number of P/E cycles, the SSD lifetime is de-

termined by extra data written by garbage collection and

wear-leveling as well as by the number of bytes written

by applications. This means that, unlike HDDs, the SSD

lifetime is a function of a workload. Therefore, even if

the endurance of SSDs seems sufficient, the lifetime of

SSDs strongly depends on the write intensiveness of the

workload. For example, SSDs may achieve the required

lifetime if a small number of write requests are required

from applications. On the other hand, the same SSDs

will fail much earlier if they are used in a write inten-

sive environment. In particular, as cost-effective MLC-

based SSDs are becoming popular in the enterprise mar-

ket where write requests are intensive [7, 8], it is a chal-

lenge to guarantee a minimum SSD lifetime of 3-5 years,

which enterprise customers often require [9].



In this paper, we overcome these technical difficulties

by proposing a recovery-aware dynamic throttling tech-

nique, called READY. A basic concept of READY is to

throttle write performance by adding throttling delays to

write requests, so as to guarantee the required SSD life-

time. With dynamic throttling, the IOPS and bandwidth

of SSDs is reduced to a certain extent. From the appli-

cation prospective, applications’ execution times are in-

creased as if they run on top of a slower device. As a

result, the amount of write traffic sent to a storage device

is reduced, lessening the wearing-rate of SSDs.

The dynamic throttling technique inevitably reduces

the overall write performance. In order to mitigate per-

formance degradation, we carefully determine throttling

delay by predicting future write demands and distribute

the predicted delay over the entire SSD lifetime so that

better write response time can be obtained with less

variations on the response time. In addition, the pro-

posed dynamic throttling technique takes into account

the self-recovery characteristic of a floating-gate transis-

tor. Because of the physical characteristics of NAND

flash memory, the damage caused by repetitive P/E cy-

cles can be partially recovered during the idle period

between two consecutive P/E cycles, improving the en-

durance of a floating-gate transistor [1, 2, 10, 11, 12].

By considering the endurance improvement by the self-

recovery effect, the proposed READY technique can be

more optimistic on the total number of data written,

thus employing a smaller throttling delay. Our evalua-

tion results show that the proposed throttling technique

improves the average write response time by 4.4x with

less variations over an existing static throttling technique

while guaranteeing the SSD lifetime.

This paper is organized as follows. In Section

2, we briefly explain the endurance characteristics of

NAND flash memory. Section 3 describes the proposed

recovery-aware dynamic throttling technique in detail. In

Section 4, we evaluate the effectiveness of the proposed

recovery-aware dynamic throttling technique using en-

terprise benchmarks. Section 5 describes related work

on improving the SSD endurance. Finally, Section 6 con-

cludes with summary and directions for future work.

2 Endurance Characteristics of Flash

Memory

In NAND flash memory, program/erase (P/E) opera-

tions inevitably cause damage to floating-gate transis-

tors, reducing the overall endurance of memory cells.

At the device level, memory cells are gradually worn

out as charges get trapped in the interface and oxide

layers of a floating-gate transistor during P/E cycles.

This charge trapping increases the threshold voltage of
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Figure 1: The achievable number of P/E cycles depend-

ing on the different idle times.

a floating-gate, which indicates a logical bit value of a

cell, and the cell becomes unreliable when the thresh-

old voltage is higher than a certain voltage margin, e.g.,

0.65V for MLC flash memory [1]. According to [1, 10],

the increase, δVtrap, in a threshold voltage because of

charge trapping approximately scales with P/E cycles in

a power-law fashion as follows:

δVtrap = Ait ·N
0.62 +Bot ·N

0.3, (1)

where N is the number of P/E cycles. Ait and Bot are

constant and set to 2.97 × 10−3 and 2.0 × 10−2, re-

spectively. Usually, NAND flash memory vendors do

not reveal important parameters for their recent products.

Thus, in this work, Ait and Bot for 20 nm MLC flash

memory are obtained by scaling up values for 90 nm

MLC flash memory, which are available to the public,

so that the number of P/E cycles approximately matches

3K at the point where δVtrap is 0.65V.

A floating-gate transistor also has a self-recovery

property which heals the damage of a cell by detrapping

charges captured in the oxide of a cell. This recovery (or

detrapping) process occurs during the idle time between

P/E cycles on the same cell, and its effect in general in-

creases as the logarithm of the idle time, i.e., detrapping

∝ ln(t), where t is the length of the idle time. Accord-

ing to [1, 10, 13], the decrease, δVdetrap, in a threshold

voltage due to charge detrapping can be expressed as fol-

lows:

δVdetrap = Ce · δVtrap · ln(
t

t0
), (2)

where Ce is a recovery efficiency and set to 5.63× 10−2

according to [2]. t0 is 1 hour.
Besides the length of the idle time, there are other fac-

tors that affect the cell recovery, such as an external tem-

perature and a programmed threshold voltage. In this

work, the temperature is assumed to be a room temper-

ature 25◦C because the external ambient temperature of

a storage device is typically maintained at the room tem-

perature [14]. The programmed threshold voltage is not

taken into account in this study because its effect on the

damage recovery is relatively negligible.
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(c) Recovery-aware dynamic throttling

Figure 2: A comparison of three difference throttling

policies: no throttling, static throttling, and recovery-

aware dynamic throttling.

According to [1], the effective increase, δVth, in a

threshold voltage can be expressed as follows:

δVth = δVtrap − δVdetrap. (3)

Based on Eq. (3), we have plotted the achievable P/E

cycles of 20 nm MLC flash memory in Figure 1, de-

pending on the average idle times between two consec-

utive P/E cycles on the same block. The maximum P/E

cycles without the recovery effect are 3K. As expected,

the achievable P/E cycles are gradually increased in pro-

portional to the length of the idle time. Note that re-

cent studies that measured the effective P/E cycles of

real NAND flash parts also reported that the endurance

of NAND flash memory is higher than P/E cycles in

datasheets [15, 16].

The detrapping phenomenon of a floating-gate transis-

tor has a positive effect on improving the endurance (or

increasing P/E cycles) of flash-based SSDs. However,

most studies use a fixed number of P/E cycles, e.g., 3K

P/E cycles, provided by flash manufacturers as a primary

factor to manage the lifetime of SSDs. Therefore, the

benefit of the damage recovery is not fully utilized. Un-

like other studies, our recovery-aware dynamic throttling

technique takes advantage of the self-recovery effect in

managing the lifetime of SSDs to lessen the performance

penalty caused by write throttling.

3 Recovery-Aware Dynamic Throttling

In this section, we describe the proposed recovery-aware

dynamic throttling technique. We first introduce the need

for dynamic throttling in flash-based SSDs using a sim-

ple motivational example and then explain the main func-

tions of the proposed throttling technique in detail.

3.1 Basic Idea

Figure 2 shows a motivational example of dynamic throt-

tling in SSDs. The maximum number, Cssd, of bytes

that can be written to the SSD is proportional to the SSD

capacity and the number of P/E cycles allowed to each

block. Cssd is thus easily calculated with the following

equation: SSD capacity× P/E cycles [17]. For example,

if the SSD capacity is 128 GB and the number of P/E

cycles is 3K, Cssd becomes 375 TB. Suppose that a life-

time, Tssd, to be guaranteed is 1.5768 ·108 seconds, i.e.,
5 years. In the example of Figure 2(a) which does not use

write throttling, the required lifetime cannot be satisfied

because the number,Wwork, of bytes written to the SSD

exceeds Cssd before Tssd.

To ensure the lifetime warranty of the SSD, some

SSD vendors recently have started to adopt static throt-

tling [18, 19], which is shown in Figure 2(b). Static

throttling guarantees the required lifetime by limiting the

maximum bandwidth of the SSD to a certain fixed value,

which is denoted by Bstatic. Static throttling determines

the value ofBstatic based on the assumption of the worst

case scenario where the number of bytes written per sec-

ond is always larger thanCssd/Tssd. In this case,Bstatic

must be fixed to Cssd/Tssd to ensure the required life-

time. The drawback of this approach is that it is likely

to underutilize the maximum endurance of the SSD, i.e.,

Wwork < Cssd at Tssd, because of its assumption that

the SSD must provide the Bstatic bandwidth although

actual workloads may not be that intensive all the time.

In addition, due to this conservative assumption, the I/O

response time is degraded with static throttling.

In order to overcome the limitation of the static throt-

tling technique, we propose a recover-aware dynamic

throttling technique, READY, which is depicted in Fig-

ure 2(c). By dynamically throttling write requests ac-

cording to the characteristics of a workload and the re-

maining SSD lifetime, the proposed READY technique

fully utilizes the given endurance of the SSD up to the

maximum, while minimizing performance degradation.

READY is also aware of the endurance improvement by

the self-recovery characteristic of memory cells. There-

fore, the data that can be written to the SSD increase by

∆Cssd, so the maximum number of writable bytes be-

comes C
′

ssd (= Cssd + ∆Cssd). This allows us to guar-

antee the required lifetime with less throttling overheads.

In designing a dynamic throttling policy, we focus on

two aspects of the design requirements of SSDs. The

first is to determine a throttling delay as low as possible

so that Wwork is close to C
′

ssd at the time of Tssd. If

Wwork = C
′

ssd before Tssd, we cannot guarantee the re-

quired lifetime as shown in Figure 2(a). If Wwork <
C

′

ssd at Tssd, write performance significantly deterio-

rates, underutilizing the available endurance of the SSD



Figure 3: Three main functions of READY.

like static throttling as depicted in Figure 2(b). The sec-

ond is to distribute a throttling delay over every write

request as evenly as possible. Otherwise, response time

variations can be large, thus lowering the quality of the

user experience significantly.

To effectively deal with these design issues, the pro-

posed dynamic throttling technique has been designed

with three main functions as shown in Figure 3. The

write demand predictor is in charge of predicting future

write demands, which indicate the number of bytes that is

written to SSDs, by monitoring previous write demands.

Once the future demand for writes has been predicted,

the throttling delay estimator determines a throttling de-

lay by considering both the future write demand and the

remaining lifetime of SSDs. The epoch-capacity regu-

lator throttles write performance by applying a throttling

delay to each write request so that the target SSD lifetime

will be reached.

3.2 Estimation of Future Write Demands

In designing a dynamic throttling policy, it is important

to estimate the number of bytes that will be written to the

SSD in advance because the SSD performance must be

throttled properly if the write demand is expected to be

too high. The role of the write demand predictor is to

predict future write demands by monitoring the previous

write demands of a workload.

For this purpose, in READY, the entire lifetime, Tssd,

of the SSD is divided into epochs. At the beginning

of each epoch, the write demand predictor estimates the

number of bytes that is to be written during the epoch

based on the number of bytes actually written to the

SSD during the latest epoch. If the data of wi−1 have

been written during the (i − 1)-th epoch, the write de-

mand predictor predicts that the same number of bytes

will be written to the SSD during the i-th epoch. That

is, wi ≈ wi−1. This approach is motivated by previous

observations [20] that showed that enterprise workloads

often exhibit cyclic behavior with periods between sev-

eral minutes and several days. Although that work did

not address I/O demands in storage devices, it showed

that a strong cyclical behavior is frequently observed in
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Figure 4: Write demand differences with different epoch

lengths for exchange and proxy.

enterprise applications. This means that if the length of

an epoch is properly decided to include the cyclic period

of a workload, the write demand observed in the latest

epoch can be used as a factor that indicates future write

demands.

To confirm our hypothesis, we have analyzed the char-

acteristic of write demands using enterprise traces. We

have compared the difference in write demands between

two consecutive epochs while varying the length of an

epoch from 1 minute to 2 hours. Our analysis has been

performed with several enterprise traces from the MSR-

Cambridge and MS-Production traces [21, 22]. Figure 4

shows our investigation results for the two traces, proxy

and exchange. Here, the X-axis represents the write

demand difference between the predicted write demand

and the actual one in percentage. For example, if the pre-

dicted demand is 100 MB and the actual one is 95 MB,

the write demand difference between them is 5%. The

Y-axis is the cumulative density function (CDF) of the

write demand difference of the epochs. The smaller the

difference, the better the accuracy of future write demand

prediction is.

As shown in Figure 4, when the length of an epoch

is decided properly, it is possible to achieve high accu-

racy in predicting future write demands. In the case of

exchange, for about 85% of the epochs, the write de-

mand difference of less than 30% is obtained with the

epoch length of 30 minutes. For proxy, the epoch

length of 30 minutes shows the best accuracy in estimat-

ing future write demands. This result clearly shows that

the epoch-based write demand prediction is useful to es-

timate future write demands. Note that other methods,

such as a moving average, are also applicable for esti-



(a) wi > ci

(b) wi < ci

Figure 5: A change in a throttling delay.

mating future write demands.

Since the best epoch length may be different depend-

ing on a workload and its characteristic (which changes

with time), the proposed READY technique selects the

epoch length dynamically adapting to a changing work-

load. We will discuss this issue in Section 3.5.

3.3 Calculation of Throttling Delay

The throttling delay estimator adaptively changes a throt-

tling delay at every epoch by monitoring the write de-

mand and the remaining SSD lifetime. At the first epoch,

i.e., the 0-th epoch, a throttling delay, tdelay0 , is set to 0.

Then, at the beginning of each i-th epoch, the delay es-

timator increases or decreases a throttling delay, tdelayi ,

based on the expected write demand and the capacity of

each epoch. The expected write demand indicates the

number,wi, of bytes that is supposed to be written during

the i-th epoch. The capacity of an epoch is the number,

ci, of bytes allowed to be written during the i-th epoch.

In this work, wi is equal to the number, wi−1, of bytes

written during the (i− 1)-th epoch under the assumption

of wi ≈ wi−1. The capacity, ci, of the i-th epoch is de-

termined by dividing the remaining capacity, Cr, of the

SSD by the number of remaining epochs. Here, the re-

maining capacity,Cr, represents the number of bytes that

can be written to the SSD until it becomes unreliable.

Ifwi is equal to ci, we don’t need to change a throttling
delay for the i-th epoch. Therefore, tdelayi is the same

as tdelayi−1 , which is the throttling delay of the (i − 1)-
th epoch. However, if wi is larger than ci as shown in

Figure 5(a), it is necessary to increase a throttling delay

because the data to be written to the SSD are expected to

be larger than the capacity allocated to the epoch. The

increase, ∆tdelayi , in a throttling delay can be expressed

as follows:

∆tdelayi = tepoch ·
(wi

ci
− 1

)/

n if wi > ci, (4)

where n is the number of pages allowed to be written

to the SSD during the i-th epoch, i.e., ci/page size, and
tepoch is the epoch length. To make the data written dur-

ing the i-th epoch equal to ci, (wi − ci) of the data must

be delayed to the next epoch as shown in Figure 5(a).

The total time required to delay (wi − ci) of the data can
be approximated as tepoch · (wi/ci − 1). In our dynamic

throttling policy, a throttling delay is equally distributed

to each page write (refer to Section 3.4), so ∆tdelayi can

be obtained by dividing the total throttling delay by n.
Finally, a throttling delay, tdelayi , for the i-th epoch is

determined as follows: tdelayi = tdelayi−1 +∆tdelayi .

If wi is smaller than ci as shown in Figure 5(b), it

means that the write requests were not intensive enough

to wear out the device before the required lifetime or they

were too throttled during the previous epoch. Therefore,

the throttling delay may be reduced so that more data can

be written to the SSD. The decrease,∆tdelayi , in a throt-

tling delay can be expressed as follows:

∆tdelayi = tepoch ·
( ci
wi

− 1
)/

n if wi < ci. (5)

To increase the number of bytes to be written to the

SSD by (ci − wi) during the i-th epoch, a throttling

delay, tdelayi , for the i-th epoch is reduced by ∆tdelayi

as follows: tdelayi = tdelayi−1 − ∆tdelayi . In the case of

tdelayi−1 < ∆tdelayi , tdelayi is 0. This means that it is not

necessary to apply a throttling delay because the required

lifetime can be guaranteed without write throttling.

Until now, we assumed that the number of P/E cycles

is fixed to a certain number. The achievable P/E cycles,

however, can be increased depending on the amount of

the idle time between two consecutive P/E cycles in a

certain block because of the self-recovery effect of mem-

ory cells. In order to exploit this endurance improve-

ment, the throttling delay estimator first estimates the

number of achievable P/E cycles at the beginning of each

epoch, using the damage and recovery model mentioned

in Section 2. In this work, the number of achievable P/E

cycles is estimated, using the average idle time of ev-

ery block in the SSD. The idle time is actually some-

what different among blocks. However, this difference

is not significant because the wear-leveler of the SSD

makes the P/E cycles of all available blocks evenly dis-

tributed. Therefore, the average idle time can be used

as a useful parameter to estimate the overall endurance

improvement of the SSD. The estimator then calculates

the remaining capacity, Cr, based on the achievable P/E

cycles and distributes it to the remaining epochs. Since

the number of P/E cycles is increased due to the recovery

effect, the capacity, ci, of each epoch is also increased,

allowing more data to be written to the SSD with less

throttling delays.



(a) Without epoch-capacity

enforcement

(b) With pessimistic epoch-

capacity enforcement

Figure 6: An example of epoch-capacity enforcement. A

solid line indicates the unused capacity forwarded to the

next period and a dashed line represents the data delayed

to the next period or epoch.

3.4 Enforcement of Epoch Capacity

Once a throttling delay is decided, we throttle SSD per-

formance by distributing throttling delays across every

write as evenly as possible. This regulation policy is ben-

eficial in minimizing response time variations, but it can-

not guarantee the required lifetime if write demand pre-

diction fails and unexpectedly high write traffic comes

from the host. To resolve this problem, it is necessary

to adopt an epoch-capacity enforcement policy, which

prevents more data than the epoch capacity from being

written to the SSD.

One of the easiest ways to enforce the epoch capac-

ity is to stop writing if the epoch capacity is likely to be

exhausted before the epoch ends. We call such a reg-

ulation strategy the pessimistic epoch-capacity enforce-

ment policy. The pessimistic policy divides one epoch

into periods whose lengths are 1 second each and then

distributes the capacity of an epoch to all periods evenly.

If more data than the period capacity were requested to

write, the epoch-capacity regulator stops writing so that

overflowed requests are to be written in the next period.

If there is an unused capacity in the current period, the

regulator reallocates it to the next period so that it can

be used during the next period. This period-based capac-

ity regulation allows us to maintain the minimum write

throughput when there is unexpectedly high write traffic.

If we stop writing after the epoch capacity is exhausted,

the SSD cannot write any data until the epoch ends with

significant performance degradation. Figure 6 compares

the situations where no epoch-capacity enforcement pol-

icy is used and the pessimistic policy is used. Here, we

assume that the epoch capacity is 4 MB and the number

of periods is 4. As shown in Figure 6(a), the 4.2 MB data

are written to the SSD without epoch-capacity enforce-

ment. With pessimistic epoch-capacity enforcement, the

maximum number of bytes written to the SSD is limited

to 4.0 MB as shown in Figure 6(b).

The weakness of the pessimistic policy is that it does

(a) With pessimistic epoch-

capacity enforcement

(b) With optimistic epoch-

capacity enforcement

Figure 7: A comparison of the pessimistic and opti-

mistic epoch-capacity enforcement policies when the 4

MB data are written during the period p0.

not efficiently handle a bursty I/O pattern which writes a

large number of data within a relatively short period. Fig-

ure 7(a) shows how the pessimistic policy behaves under

a bursty write request. We assume that the capacity of an

epoch is 4 MB and the number of periods is 4. Consider

that the 4 MB data are requested during the period p0
while no write requests are issued during the periods p1,
p2, and p3. In this example, the pessimistic policy throt-

tles write requests for every period except for p3 because
the requested data always exceed the maximum capacity

of the period. However, since the total number of bytes

written during the epoch is equal to 4 MB, throttling for

the periods, p0, p1, and p2, is, in fact, unnecessary.

We resolve this overly restrictive throttling behavior

for bursty write requests by proposing the optimistic

epoch-capacity enforcement policy. Our optimistic pol-

icy maintains a relatively small amount of the spare ca-

pacity for each epoch and forcibly throttles write perfor-

mance only when both the capacity of a period and the

spare capacity are exhausted. Figure 7(b) shows an ex-

ample of the optimistic policy with the same scenario

shown in Figure 7(a). Here, we assume that the spare

capacity is set to 4 MB. As shown in Figure 7(b), un-

necessary throttling can be completely avoided with the

optimistic epoch-capacity enforcement policy.

The spare capacity must be carefully chosen. Suppose

that the spare capacity is unlimited and there is unexpect-

edly high write traffic. In that case, READY borrows as

much capacity as possible from future epochs without

limitation and then uses it up. If unexpected write de-

mands frequently occur and write demands are gradually

increasing, the SSD is worn out before the required life-

time. On the other hand, if the spare capacity is too small,

unnecessary throttling with a bursty I/O pattern would be

frequently observed due to the lack of spare capacity. In

this work, the spare capacity is empirically set to 10%

of the remaining capacity, Cr, of the SSD. This capac-

ity is sufficient enough to avoid unnecessary throttling in

real-world traces. Furthermore, since the spare capacity

is limited to 10% of Cr, the worn-out of SSDs before the
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Figure 8: Reconstruction of write demand distribution.

target lifetime never occurs.

Suppose that the spare capacity is 10% and there are

n epochs. The capacity of each epoch is c0, ..., cn−1,

respectively. Note that c0 = ... = cn−1 = Cr/n as

mentioned in Section 3.3. The spare capacity for the

0-th epoch is (c1 + ... + cn−1) · 0.1, and thus the to-

tal capacity that can be written during the 0-th epoch is

c0 + (c1 + ...+ cn−1) · 0.1. If n is 3 and Cr is 3 MB, c0
is 1 MB and the spare capacity is 0.2 MB. If the data of

less than c0 have been written during the 0-th epoch, the

remaining capacity, Cr, of the SSD after the 0-th epoch

is equally distributed to the remaining epochs and then

the spare capacity is determined by (c2+ ...+ cn−1) ·0.1
for the 1-st epoch. If the spare capacity, however, is par-

tially used during the 0-th epoch, then c1, ... , cn−1 are

reduced to 90% of their original capacities and only the

unallocated capacity is used as the spare capacity. For

example, in the above example, if the data of 1.1 MB

have been written during the 0-th epoch, c1 and c2 are 0.9
MB and the spare capacity becomes 0.1 MB in the 1-st

epoch. This capacity assignment policy makes the throt-

tling delay estimator slightly increase a throttling delay

with a smaller epoch capacity. The overused capacity is

accordingly reclaimed during the remaining epochs. If

the spare capacity is used up during the 0-th epoch, the

pessimistic policy is used with the reduced epoch capac-

ity, i.e., 0.9 MB, and no spare capacity. This means that

performance degradation caused by the depletion of the

spare capacity is 10% in the worst case.

3.5 Epoch Length Selection

The length of an epoch must be carefully decided. If

the epoch length is chosen improperly, the difference in

write demands between epochs becomes large. Since a

throttling delay is determined by the write demand of the

previous epoch, the incorrect epoch length can make a

large fluctuation in the overall I/O response time of the

SSD. To determine the proper epoch length, we monitor

write demands of a workload and find repeated cycles

that show similar write demands. We then choose that

cycle as the epoch length.

Figure 9: An overall procedure of epoch length selection.

To realize this in READY, we collect information

about write demands, i.e., the number of bytes written

per unit-time window, at runtime. The write demands

collected here, however, include throttling delays that

distort the actual write demands of applications. There-

fore, it is necessary to reconstruct write demand distri-

bution when throttling is not applied. We estimate this

original write demands by rebuilding unit-time windows

without throttling delays as shown in Figure 8.

To find the proper epoch length, we use a simple ap-

proach that attempts to find the best epoch candidate,

which exhibits the smallest fluctuation in write demands,

by creating and evaluating several candidate epochs with

different lengths. Figure 9 shows our approach in choos-

ing an epoch length. We first create a candidate epoch

whose length, k, is one unit-time window, i.e., k = 1. We

then calculate the write-demand difference ratio of two

consecutive epochs i and i+1with the same length. The

write-demand difference ratio, rk(i,i+1), is defined as fol-

lows:

rk(i,i+1) =
|dki+1 − dki |

dki
, (6)

where dki and dki+1 are the number of bytes written dur-

ing the epochs i and i + 1, respectively. For example,

in the example of Figure 9, d10 and d11 are 3 MB and 6

MB, respectively, and thus r1(0,1) = 1.0. We calculate the

average write-demand difference ratio, µk
r , for all avail-

able pairs of two consecutive epochs. In the example of

Figure 9, µ1
r for r

1
(0,1), ..., r

1
(2,3) becomes 1.0.

We then increase the length of a candidate epoch by

one unit-time window and calculate µk+1
r . We repeat this

until the number of epochs with the same length becomes

one. Finally, the length of a candidate epoch whose aver-

age write-demand difference ratio is the smallest is cho-

sen as the epoch length, tepoch. For example, in Figure 9,

µk
r is the smallest when k is 2, and thus the new epoch

length becomes the length of two unit-timewindows. Af-

ter choosing the new epoch length, READY recalculates

a throttling delay using Eq.(4) if dynamic throttling is

necessary. The new epoch length is determined under

the assumption that there are no throttling delays. The

epoch length, tepoch, is thus increased to tepoch · (wi/ci)



to include delays caused by throttling.

Finding the epoch length may take a relatively long

time. To mitigate the computational overhead caused by

epoch length selection, the epoch length is recalculated

when the write-demand difference ratio between the pre-

dicted write demand and the actual one is higher than

0.25 and it occurs three times successively. The length

of a unit-time window is also set to 10 minutes to fur-

ther reduce the computational overhead. In this work,

0.25 is chosen empirically by considering both compu-

tational overhead and the accuracy of write demand pre-

diction. However, this number can be further optimized

in several ways. For example, the write-demand differ-

ence ratio that triggers epoch length recalculation can be

adaptively changed depending on the characteristics of a

workload. If the difference ratio is always smaller than

0.25, we can reduce this number, e.g., 0.15, to find a bet-

ter epoch length. On the other hand, if the difference ra-

tio is much larger than 0.25 all the time, it may be better

to reduce this number, e.g., 0.35, to avoid useless com-

putational overhead.

4 Experimental Results

In this section, we first describe our experimental settings

and explain enterprise benchmarks used for the evalua-

tions in detail. We then analyze the benefit of the pro-

posed READY technique over the static throttling tech-

nique in terms of SSD lifetime, response time, and re-

sponse time variations.

4.1 Experimental Settings

To evaluate the effectiveness of the proposed READY

technique, we have performed our evaluations using the

DiskSim-based SSD simulator [23]. The flash memory

used for the evaluations was based on 2-bit MLC NAND

flash memory, and each block was composed of 64 4 KB

pages. The page read time and the page write time were

50 µs and 600 µs, respectively, and the block erasure

time was 2 ms. The number of P/E cycles allowed to a

block was initially set to 3K, but it was changed depend-

ing on the length of the idle time based on our recovery

model. The target lifetime of the SSD was set to 5 years.

We have implemented the static and dynamic throt-

tling techniques in the SSD simulator, along with the

damage and recovery model described in Section 2. The

throttling module was implemented between the host in-

terface, e.g., SATA, and the flash translation layer (FTL).

The throttlingmodule interceptedwrite requests destined

for the FTL and then applied a throttling delay if it was

required for the lifetime guarantee. The FTL employed

a page-level address mapping algorithm with a greedy

garbage collection policy and used a hot-cold swapping

Trace Duration
Data written

WAF
SSD

per hour (GB) capacity (GB)

proxy 1 week 4.94 1.93 32

proj 1 week 2.08 1.62 32

exchange 1 day 20.61 2.24 128

map 1 day 23.82 1.68 128

msnfs 6 hours 18.19 2.26 128

Table 1: A summary of traces used for evaluations.

algorithm for wear-leveling [23]. Note that there were no

changes at the FTL level for throttling because the throt-

tling module has been designed to operate independently

regardless of the underlying FTL algorithms.

We compared the performance of five SSD config-

urations: NT, ST, DT, READYPES, and READYOPT.

NT does not use write throttling, so it cannot guaran-

tee the target SSD lifetime if write traffic is very in-

tensive. ST and DT use static throttling and dynamic

throttling, respectively. Note that DT uses the optimistic

epoch-capacity enforcement policy by default. Both

READYPES and READYOPT are different from other

configurations in that they take into account the self-

recovery effect of memory cells. READYPES uses the

pessimistic epoch-capacity enforcement policy, whereas

READYOPT employs the optimistic policy.

4.2 Benchmarks

We have chosen two enterprise traces, proxy and

proj from the MSR-Cambridge benchmark [21] and

have used three production traces, exchange, map,

and msnfs, from the MS-Production benchmark [22].

Table 1 summarizes the traces used for our evalua-

tions. proxy and proj were recorded for one week.

exchange and map contains 24-hour I/O activities,

while msnfs was collected for 6 hours. Because of the

limited duration of the traces, it was impossible to assess

the lifetime guarantee of 5 years with them. For this rea-

son, we performed our evaluations under the assumption

that the same I/O pattern is repeated for 5 years.

The write demand is very different depending on the

traces. proxy and proj exhibit a low write demand

in comparison with exchange, map, and msnfs. The

write amplification factor (WAF), which has a great ef-

fect on the write demand, ranges from 1.62 to 2.26 ac-

cording to the characteristic of I/O references [24]. For

the evaluations, the SSD capacity was configured differ-

ently depending on the traces so that the lifetime of the

SSD is to be a problem. For proxy and proj with a

low write demand, the SSD capacity was set to 32 GB.

For exchange, map, and msnfs with a high write de-

mand, the capacity of the SSD was set to 128 GB.

In practice, this capacity planning is carefully decided

by customers’ requirements. If customers are ready to

pay money to obtain a long lifetime and high perfor-
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Figure 10: A comparison of effective SSD lifetimes for

five traces with different SSD configurations.

mance, an over-provisioned configuration with a larger

capacity SSD is the best choice. If customers require a

low initial cost, but can manage a relatively high opera-

tional cost, a smaller capacity SSD with a shorter target

lifetime, i.e., 3 years, is preferred. For customers who

want reasonable performance with relatively lower cost

and a longer target lifetime, e.g., 5 years, the settings

shown in Table 1 may be a better choice.

All the traces used in this work were collected from

hard disk drives (HDDs) which exhibit much lower

I/O performance than SSDs. Since SSDs increase the

overall I/O rate of the storage subsystem by several

times [25, 26], the number of bytes written to a storage

device during the same time period will be largely in-

creased in comparison with HDDs. That is, ‘data written

per hour (GB)’ shown in Table 1 becomes larger, and

thus READY more aggressively throttles write perfor-

mance because of increased write traffic. Therefore, the

SSD capacity in Table 1 is set relatively conservative for

systems that use SSDs as a secondary storage device.

4.3 Lifetime Analysis

We first analyze the lifetime of the SSD for five respec-

tive traces. Figure 10 shows the effective lifetime of the

SSD with different SSD configurations. Here, the effec-

tive lifetime is the lifetime which is estimated based on

the assumption that the I/O activities of the traces are

repeated for 5 years. Note that the self-recovery effect

of memory cells is taken into account in estimating the

SSD lifetime. As shown in Figure 10, NT cannot guar-

antee the required lifetime of the SSD for all the traces,

except for proj. In our observation, the write demand

of proj is not intensive, and thus the SSD can achieve

the lifetime more than 5 years without write throttling.

ST and DT do not consider the self-recovery effect of

floating-gate transistors, and therefore they throttle write

performance based on the fixed 3K P/E cycles. Since the

P/E cycles of the SSD are increased due to the effect of

self-recovery, the effective SSD lifetimes with ST andDT

are much longer than the required lifetime. This means

that ST and DT excessively throttle write performance,

underutilizing available P/E cycles of the SSD. This ex-

Trace
SSD

Cssd(TB) C
′

ssd
(TB) Wwork (TB)configuration

proj

NT

93.75

312.6 144.4

ST 403.4 54.2

DT 346.9 93.7

READYPES 312.8 141.0

READYOPT 312.8 141.0

exchange

NT

375

949.3 1918.8

ST 1415.3 348.2

DT 1387.3 374.4

READYPES 1077.8 1077.2

READYOPT 1077.8 1065.6

Table 2: The amount of data written for 5 years for two

traces, proj and exchange.

cessive throttling results in poor write performance in

comparison with READYPES and READYOPT. In par-

ticular, DT dynamically decides a throttling delay in re-

sponse to a changing workload. Therefore, DT maxi-

mizes the utilization of P/E cycles within 3K unlike ST.

We will discuss this issue in detail with Table 2.

READYPES takes advantage of the self-recovery ef-

fect of memory cells. Therefore, it throttles write perfor-

mance so that the effective lifetime of the SSD is close

to the required lifetime for all the traces. Figure 10 also

shows that READYOPT guarantees the required SSD life-

time even though it uses the capacity borrowed from fu-

ture epochs in advance. This clearly shows that the opti-

mistic epoch-capacity enforcement policy properly man-

ages overused epoch capacity so that the given lifetime

is to be satisfied.

Table 2 analyzes the lifetime of the SSD from the

perspective of written data for two traces, proj and

exchange. As mentioned in Section 2, Cssd repre-

sents the number of bytes that can be written to the

SSD according to the NAND flash memory specification,

whereas C
′

ssd is the total number of writable bytes when

the recovery effect is taken into account. Wwork is the

total number of bytes written to the SSD for 5 years.

As expected, ST and DT throttle write performance so

that Wwork becomes close to Cssd. In particular, in the

case of ST, Wwork is about 43% and 8% smaller than

Cssd for proj and exchange, respectively. This is be-

cause ST excessively throttles write performance, assum-

ing that write requests are always intensive. Unlike ST,

DT dynamically changes a throttling delay according to

the write demands of a workload and the remaining life-

time so that Wwork is close to Cssd, allowing more data

to be written to the SSD.

READYPES and READYOPT fully utilize the en-

durance improvement offered by the self-recovery effect,

making Wwork close to C
′

ssd at the target SSD lifetime.

In the case of proj, since the endurance of the SSD is

sufficient enough to guarantee the required 5-year life-

time, throttling is not performed in most cases.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(a) proxy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  2000  3000  4000  5000  6000  7000  8000  9000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(b) proj

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  1500  2000  2500  3000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(c) exchange

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  1500  2000  2500  3000

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(d)map

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  1500  2000  2500  3000  3500

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)

Response Time (usec)

ST
DT

READYPES
READYOPT

(e)msnfs

Figure 12: Cumulative distribution functions (CDFs) of write response times.
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Figure 11: A comparison of average write response times

for five traces with different SSD configurations.

4.4 Performance Analysis

To evaluate the performance benefit of the proposed

READY technique, we measured the average response

time of a page write while running five traces with dif-

ferent SSD configurations. Figure 11 shows the our eval-

uation results. As expected, NT exhibits the best I/O re-

sponse time among all of the evaluated configurations,

but it cannot guarantee the target lifetime as shown in

Figure 10 because it does not throttle write performance.

The average write response time of NT is close to the

page access time, i.e., 600 µsec, with little variation.

Both READYPES and READYOPT throttle write re-

quests to meet the required lifetime, so their performance

is worse than that of NT; they exhibit 1.0x to 2.13x

higher write response time than NT. In the case of proj,

READYPES and READYOPT do not reduce write per-

formance because the required lifetime can be satisfied

without throttling. Therefore, little performance degra-

dation, which is less than 1.9%, is observed in proj.

READYPES and READYOPT achieve 2.57x better perfor-

mance than DT on average. This performance benefit

mainly comes from the increased P/E cycles of the SSD.

Since READYPES and READYOPT are aware of the im-

provement in SSD endurance, they can assign more ca-

pacity to epochs, reducing throttling delays.

DT exhibits 1.7x faster response time over ST on av-

erage. DT determines the epoch capacity periodically

based on the remaining lifetime of the SSD and changes

a throttling delay so that write requests are properly de-

layed in response to future write demands. This epoch

capacity assignment and throttling delay distribution pol-

icy allows us to fully utilize the available endurance of

the SSD. On the other hand, ST neither considers the re-

maining lifetime of the SSD nor the characteristic of a

workload in making a throttling decision. Instead, ST

simply throttles write performance by limiting the maxi-

mum bandwidth of the SSD. Therefore, ST causes many

unnecessary throttling delays.

The response time variation is one of the important

design issues that must be taken into account in design-

ing throttling algorithms. We compared response time

variations between different SSD configurations. Fig-

ure 12 shows the cumulative density functions (CDFs)

of write response times for five traces. As shown in Fig-

ure 12, ST shows significant response time variations for

all the traces because it forcibly stops writing if throt-

tling is needed. On the other hand, by distributing throt-

tling delays to write requests as evenly as possible, NT,

READYPES, and READYOPT greatly reduce variations

on the write response time.

For exchange, msnfs, and map, READYPES incurs

relatively high I/O response time variations in compari-

son with READYOPT. READYPES must stop writing data

when there are a large number of writes within a short



Traces proxy proj exchange map msnfs

Accuracy of write
99.9 33.9 80.5 50.9 100

demand prediction (%)

Table 3: Accuracy of write demand prediction.

period. On the other hand, READYOPT uses the opti-

mistic epoch-capacity enforcement policy, so they handle

a bursty I/O pattern more efficiently without compulso-

rily write throttling.

The write response time of DT ranges from 600 µsec
to several thousand seconds in map and proj unlike

proxy, exchange, and msnfs. The write patterns

of map and proj change greatly with time, and thus

the difference in write demands between two consecu-

tive epochs is relatively large. Since a throttling delay

for a certain epoch is determined by the write demand

of the previous epoch, the difference between throttling

delays is accordingly increased in map and proj. Nev-

ertheless, the response time of DT is more stable than

ST.

We evaluated the accuracy of our epoch length selec-

tion method in predicting future write demands. Table 3

shows our evaluation results for five traces. We assume

that epoch length detection is accurate if the difference

between the prediction write demand and the actual one

is smaller than 25%. As shown in Table 3, our method

achieves high accuracy for proxy, exchange, and

msnfs. The accuracy of write demand prediction, how-

ever, is reduced to 50.9% and 33.9% for map and proj,

respectively, due to a high fluctuation in write requests.

We expect that the accuracy of epoch length detection

may be improved with traces recorded for a longer time.

To evaluate the effect of the epoch length selection

method on the SSD response time, we compared the

changes in throttling delays when the fixed epoch length

is used and the epoch length is dynamically determined

according to a workload. For the evaluation, we executed

the exchange trace, which is a 24-hour trace, repeat-

edly. Figure 13 shows our evaluation result. In this fig-

ure, FIXED represents READYOPT with the fixed epoch

length and DYNAMIC is the SSD configuration when

READYOPT uses the proposed epoch length detection

method. The fixed epoch length was set to 10 minutes.

As shown in Figure 13, even though READYOPT gen-

erally works well with exchange, some variations on

throttling delays are observed with FIXED. DYNAMIC

also exhibits variations on response times at the begin-

ning of the execution, but it becomes stable after repeated

write demands are detected as shown in Figure 13(b).

4.5 Detailed Analysis

We performed a detailed analysis of different SSD con-

figurations. Figure 14 represents the throughput of the
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Figure 13: A comparison of throttling delays when the

fixed epoch length is used and the epoch length is dy-

namically determined in the exchange trace.

SSD with the different throttling schemes when intense

I/Os are being served. As mentioned several times be-

fore, ST limits the maximum bandwidth of the SSD by

a certain level, 2.49 MB/s in map. The overall through-

put of the SSD is thus greatly deteriorated with ST as

shown in Figure 14(a). DT works better than ST. Due

to the limited write endurance of the SSD, however,

significant performance degradation cannot be avoided

with DT as depicted in Figure 14(b). READYPES and

READYOPT exhibit much higher performance than ST

and DT by exploiting the improved write endurance of

the SSD benefited from the self-recovery effect of mem-

ory cells. In particular, READYOPT performs better than

READYPES when a large number of data are being writ-

ten to the SSD, e.g., a period of 200 to 350 second in

Figure 14(d). Even when write requests are intensively

issued, READYOPT writes the requested data to the SSD

rather than forcibly throttling the bandwidth of the SSD

by using the spare capacity borrowed from future epochs.

This allows READYOPT to exhibit better write response

time for the traces like map which exhibit a great fluctu-

ation in write requests.

5 Related Work

There have been a lot of studies on improving the en-

durance of flash-based SSDs. Many existing garbage

collection and wear-leveling techniques [27, 28, 29, 30,

31, 32, 33, 34] are designed to improve the lifetime of

SSDs by avoiding useless data migration during a block

recycling process or by distributing P/E cycles of flash

blocks as evenly as possible.

As the endurance of flash memory continuously dete-
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Figure 14: A detailed analysis of four SSD configura-

tions with the map trace.

riorates, several endurance enhancement techniques that

aggressively reduce the number of data written to SSDs

have been proposed. Data de-duplication [26, 35, 36]

and data compression [37, 38] are representative exam-

ples of these policies. Data de-duplication detects du-

plicate data blocks that already exist in a storage device

and then eliminates redundant writes to SSDs for such

blocks. Data compression eliminates repeated bit pat-

terns within a data block, reducingwrites to SSDs. These

techniques are useful in improving the lifetime of SSDs,

but they have some limitations in that none of them guar-

antee the SSD lifetime or make use of the recovery effect

of a memory cell.

More recently, the approaches that exploit the recov-

ery effect of flash devices have received considerable at-

tention. This paper is an improved version of our pre-

liminary work [39]. Mohan et al. investigated the ef-

fect of the damage recovery on the lifetime of SSDs for

enterprise servers [1]. They claimed that the endurance

of NAND flash memory was durable enough even for

I/O intensive enterprise applications because of its recov-

ery ability. However, their investigations were limited

to 90 nm SLC and MLC flash memories which exhibit

good endurance properties. They also did not exploit the

benefit of the recovery effect in ensuring the lifetime of

SSDs. Wu et al. presented an endurance enhancement

technique that boosts recovery speed by heating a flash

chip worn out under high temperature [10]. By leverag-

ing the temperature-accelerated recovery, it improved the

endurance of SSDs up to five times. However, one of the

major drawbacks of this approach is that it requires ex-

tra energy consumption to heat flash chips, lowering the

energy efficiency of a storage device. Unlike Wu’s work,

our study considers the endurance improvement of SSDs

at the room temperature and exploits this benefit to guar-

antee the lifetime of SSDs with less throttling overhead.

6 Conclusions

In this paper, we proposed a recovery-aware dynamic

throttling technique, READY, to overcome two main

problems in realizing the adoption of SSDs in enterprise

server systems: the continuously decreasing endurance

and unpredictable lifetime problems. READY throttles

write performance so that the required lifetime of SSDs

is to be satisfied. In order to guarantee the SSD life-

time with less throttling overhead, READY exploits the

recovery effect of a floating-gate transistor which effec-

tively increases the number of effective P/E cycles of

SSDs. Our evaluation results showed that the proposed

throttling technique guarantees a lifetime warranty, while

achieving a relatively small reduction in write response

time and little response time variation over the static

throttling technique.

READY can be improved in several directions. The

stress and recovery model of this work is based on the

previous studies on the physical characteristics of flash

memory [1, 2, 10]. These studies carefully modeled

the stress and recovery characteristics of flash memory,

but their scopes were limited to NOR or NAND flash

memory fabricated in over 90 nm technology. To build

a more accurate stress and recovery model, we will

perform investigations using real NAND flash parts

which are fabricated in less than 30 nm technology. We

also plan to implement READY in a real SSD platform

to evaluate its effectiveness in real systems.
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