
Recon: Verifying File System Consistency at Runtime

Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng,
Shaun Benjamin, Ashvin Goel, Angela Demke Brown

University of Toronto

Abstract
File system bugs that corrupt file system metadata on disk
are insidious. Existing file-system reliability methods,
such as checksums, redundancy, or transactional updates,
merely ensure that the corruption is reliably preserved.
The typical workarounds, based on using backups or re-
pairing the file system, are painfully slow. Worse, the re-
covery is performed long after the original error occurred
and thus may result in further corruption and data loss.

We present a system called Recon that protects file sys-
tem metadata from buggy file system operations. Our ap-
proach leverages modern file systems that provide crash
consistency using transactional updates. We define declar-
ative statements called consistency invariants for a file
system. These invariants must be satisfied by each trans-
action being committed to disk to preserve file system in-
tegrity. Recon checks these invariants at commit, thereby
minimizing the damage caused by buggy file systems.

The major challenges to this approach are specifying
invariants and interpreting file system behavior correctly
without relying on the file system code. Recon provides
a framework for file-system specific metadata interpreta-
tion and invariant checking. We show the feasibility of
interpreting metadata and writing consistency invariants
for the Linux ext3 file system using this framework. Re-
con can detect random as well as targeted file-system cor-
ruption at runtime as effectively as the offline e2fsck file-
system checker, with low overhead.

1 Introduction
It is no surprise that file systems have bugs [20, 29, 31].
Modern file systems are designed to support a range of en-
vironments, from smart phones to high-end servers, while
delivering high performance. Further, they must handle a
large number of failure conditions while preserving data
integrity. Ironically, the resulting complexity leads to bugs
that can be hard to detect even under heavy testing. These
bugs can cause silent data corruption [20, 19], random ap-
plication crashes, or even worse, security exploits [30].

Unlike hardware errors and crash failures, it is much
harder to recover from data corruption caused by bugs
in file-system code. Hardware errors can be handled
by using checksums and redundancy for error detection
and recovery [4, 10]. Crash failure recovery can be
performed using transactional methods, such as journal-
ing [12], shadow paging [14], and soft updates [9]. Mod-

ern file systems, such as ZFS, are carefully designed to
handle a wide range of disk faults [32]. However, the ma-
chinery used for protecting against disk corruption (e.g.,
checksums, replication and transactional updates) does
not help if the file system code itself is the source of an
error, in which case these mechanisms only serve to faith-
fully preserve the incorrect state.

File system bugs that cause severe metadata corrup-
tion appear regularly. We compiled a list of bugs in the
Linux ext3 and the recently deployed btrfs file systems,
by searching for “ext3 corruption” and “btrfs corruption”
in various distribution-specific bug trackers or mailing
lists. Based on the bug description and discussions, we
removed bugs that did not cause metadata inconsistency,
or were not reproducible, or were reported by a single user
only. Table 1 summarizes the remaining bugs. Note that
ext3, despite its maturity and widespread use, shows con-
tinuing reports of corruption bugs. One recent example is
not yet closed, while another closed only in 2010 and af-
fected the ext2, ext3 and ext4 file systems. These reports
likely under-represent the problem because the bugs that
cause metadata corruption may be fail silent, i.e., the error
is not reported at the time of the original corruption. By
the time the inconsistencies appear, the damage may have
escalated, making it harder to pinpoint the problem.

When metadata corruption is discovered, it requires
complex recovery procedures. Current solutions fall in
two categories, both of which are unsatisfactory. One
approach is to use disaster recovery methods, such as
a backup or a snapshot, but these can cause significant
downtime and loss of recent data. Another option is to
use an offline consistency check tool (e.g., e2fsck) for
restoring file system consistency. While a consistency
check can detect most failures, it requires the entire disk
to be checked, causing significant downtime for large file
systems. This problem is getting worse because disk ca-
pacities are growing faster than disk bandwidth and seek
time [13]. Furthermore, the consistency check is run after
the fact, often after a system crash occurs or even less fre-
quently with journaling file systems. Thus an error may
propagate and cause significant damage, making repair a
non-trivial process [11]. For example, Section 5 shows
that a single byte corruption may cause repair to fail.

To minimize the need for offline recovery methods, our
aim is to verify file-system metadata consistency at run-
time. Metadata is more vulnerable to corruption by file

FS Source Bug Title Closed

ext3 http://lwn.net/Articles/2663/ ext3 corruption fix 2002-06

ext3 kerneltrap.org/node/515 Linux: Data corrupting ext3 bug in 2.4.20 2002-12

ext3 Redhat, #311301 panic/ext3 fs corruption with RHEL4-U6-re20070927.0 2007-11

ext3 https://lkml.org/lkml/2008/12/6/88 Re: [2.6.27] filesystem (ext3) corruption (access beyond end) 2008-06

ext3 Debian, #425534 linux-2.6: ext3 filesystem corruption 2008-09

ext3 Debian, #533616 linux-image-2.6.29-2-amd64: occasional ext3 filesystem corruption 2009-06

ext3 Redhat, #515529 ENOSPC during fsstress leads to filesystem corruption on ext2, ext3, and ext4 2010-03

ext3 https://lkml.org/lkml/2011/6/16/99 ext3: Fix fs corruption when make_indexed_dir() fails 2011-06

ext3 Redhat, #658391 Data corruption: resume from hibernate always ends up with EXT3 fs errors Not yet

btrfs https://lkml.org/lkml/2009/8/21/45 btrfs rb corruption fix 2009-08

btrfs https://lkml.org/lkml/2010/2/25/376 [2.6.33 regression] btrfs mount causes memory corruption 2010-02

btrfs https://lkml.org/lkml/2010/11/8/248 DM-CRYPT: Scale to multiple CPUs v3 on 2.6.37-rc* ? 2010-09

btrfs https://lkml.org/lkml/2011/2/9/172 [PATCH] btrfs: prevent heap corruption in btrfs_ioctl_space_info() 2011-02

btrfs https://lkml.org/lkml/2011/4/26/304 btrfs updates (slab corruption in btrfs fitrim support) 2011-04

Table 1: File system bugs causing data corruption. All Red Hat and Debian bugs are rated high-severity. The severity
level of bugs obtained from mailing lists is not known.

system bugs because the file system directly manipulates
the contents of metadata blocks. Metadata corruption may
also result in significant loss of user data because a file
system operating on incorrect metadata may overwrite ex-
isting data or render it inaccessible.

We present a system called Recon that aims to pre-
serve metadata consistency in the face of arbitrary file-
system bugs. Our approach leverages modern file systems
that provide crash consistency using transactional meth-
ods, such as journaling [28, 6, 27] and shadow paging file
systems [14, 4, 16]. Recon checks that each transaction
being committed to disk preserves metadata consistency.
We derive the checks, which we call consistency invari-
ants, from the consistency rules used by the offline file
system checker. A key challenge is to correctly interpret
file system behavior without relying on the file system
code. Recon provides a block-layer framework for inter-
preting file system metadata and invariant checking.

An important benefit of Recon is its ability to convert
fail-silent errors into detectable invariant violations, rais-
ing the possibility of combining Recon with file system
recovery techniques such as Membrane [26], which are
unable to handle silent failures.

Our current implementation of Recon shows the feasi-
bility of interpreting metadata and writing consistency in-
variants for the widely used Linux ext3 file system. Recon
checks ext3 invariants corresponding to most of the con-
sistency properties checked by the e2fsck offline check
program. It detects random and type-specific file-system
corruption as effectively as e2fsck, with low memory and
performance overhead. At the same time, our approach
does not suffer from the limitations of offline checking
described earlier because corruption is detected immedi-
ately. The rest of the paper describes our approach in de-
tail and presents the results of our initial evaluation.

2 Approach
The Recon system interposes between the file system and
the storage device at the block layer and checks a set of
consistency invariants before permitting metadata writes
to reach the disk. We derive the invariants from the rules
used by the file system checker. As an example, the e2fsck
program checks that file system blocks are not doubly al-
located. Our invariants check this property at runtime and
thus prevent file-system bugs from causing any double al-
location corruption on disk.

Figure 1 shows the architecture of the Recon system.
Recon provides a framework for caching metadata blocks
and an API for checking file-system specific invariants us-
ing its metadata cache. A separate cache is maintained
because the file system cache is untrusted and because it
allows checking the invariants efficiently. Besides ext3,
we have also examined the consistency properties of the
Linux btrfs file system and implemented several btrfs in-
variants. The paper describes our initial experience with
adapting our system for btrfs.

Our approach addresses three challenges: 1) when
should the consistency properties be checked, 2) what
properties should be checked, and 3) how should they be
checked. Below, we describe these challenges and how
we address them. The caching framework and the file-
system specific Recon APIs are described in Section 4.

2.1 When to Check Consistency?
The in-memory copies of metadata may be temporarily
inconsistent during file system operation and so it is not
easy to check consistency properties at arbitrary times. In-
stead, checks can be performed when the file system itself
claims that metadata is consistent. For example, journal-
ing and shadow-paging file systems are already designed

Reconrecon_write,
recon_commit

recon_read

Kernel

User
FS request

disk

File System

Block Layer

Metadata
Write Cache

Ext3_Recon

Btrfs_Recon

FS Recon API

Metadata
Read Cache

Figure 1: The Recon Architecture

to ensure crash consistency using transactional methods,
wherein disk blocks from one or more operations, such as
the creation of a directory and a file write, are grouped into
transactions. Transaction commits are well-defined points
at which the file system believes that it is consistent, and
hence transaction boundaries serve as convenient vantage
points for verifying consistency properties. Recon checks
transactions before they commit, thereby ensuring that a
committed transaction is consistent, even in the face of
arbitrary file system bugs.1

Checking consistency for shadow paging systems is
relatively straightforward because all transaction data is
written to disk before the commit block. For example,
btrfs writes all blocks in a transaction, and then commits
the transaction by writing its superblock. Recon checks
each transaction before the superblock is written to disk.

Checking consistency for journaling file systems is
more complicated because transaction data is written to
disk both before and after the commit block. For ex-
ample, ext3 writes metadata to disk in several steps: 1)
write metadata to journal, 2) write commit block to jour-
nal, at which point the transaction is committed, 3) write
(or checkpoint) metadata to its final destination on disk,
and 4) free space in the journal.

During Step 1, Recon copies metadata blocks into its
write cache, giving it a view of all the updates in a trans-
action. Then it checks the ext3 transaction in Step 2, i.e.,
before the commit block is written to the journal, which
ensures that all blocks in the transaction are checked for
consistency before they become durable. Checking con-
sistency after commit could lead to checkpointing a cor-

1Implementing consistency invariants for soft update file systems [9]
that provide consistency after each write but do not use transactions
should be possible but will likely be more complicated.

rupt block, and furthermore it would not be possible to
undo such corruption. Besides checking consistency at
commit, we also need to verify the checkpointing process.
This step requires checking that all the committed blocks
and their contents are checkpointed correctly.

2.2 What Consistency Properties to Check?
Identifying the correct consistency properties is challeng-
ing because the behavior of the file system is not for-
mally specified. Fortunately, we can derive an informal
specification of metadata consistency properties from of-
fline file-system consistency checkers, such as the Linux
e2fsck program. For example, Gunawi et al. found that
the Linux e2fsck program checks 121 properties that are
common to both ext2 and ext3 file systems and some ext3
journal properties and optional features [11].

These consistency properties define what it means to
have consistent metadata on disk. Our aim is to ensure
that any metadata committed to disk will maintain these
same consistency properties. Unfortunately, consistency
properties are global statements about the file system. For
example, a simple check implemented by e2fsck is that
the deletion times of all used inodes are zero. Determin-
ing the in-use status of all inodes, and checking the dele-
tion time of all used inodes is infeasible at every trans-
action commit. Similarly, another consistency property is
that all live data blocks are marked in the block bitmap.
Checking these global properties requires a full disk scan.

Instead, we derive a consistency invariant from each
consistency property. The invariant is a local assertion
that must hold for a transaction to preserve the corre-
sponding file system consistency property. For example,
consider the “all live data blocks are marked in the block
bitmap” property. The corresponding consistency invari-
ant is that a transaction that makes a data block live (i.e.,
by adding a pointer to the block) must also contain a corre-
sponding bit-flip (from 0 to 1) in the block bitmap within
the same transaction, i.e., the invariant is “block pointer
set from 0 to N⇔ bit N set in bitmap”. This invariant can
be checked by examining only the updated blocks, i.e., the
updated pointer block and the updated block bitmap must
be part of the same transaction. We describe this invariant
in more detail in Section 3.2.

We structure a consistency invariant as an implication,
A⇒ B. The premise A always involves an update to some
data structure field, and hence checking the invariant is
triggered by a change in that field. When such an update
occurs then the conclusion B must be true to preserve the
invariant. If a converse B⇒ A invariant also exists, then
we refer to the two invariants as a biconditional invariant
A⇔ B, as shown in the example above.

We rely on the ability to convert consistency proper-
ties requiring global information into invariants that can
be checked using information “local” to the transaction,

as described in the previous example. Such a transfor-
mation must be possible because file systems keep them-
selves consistent without examining the entire disk state.
In other words, our invariant checking should not require
much more data than the file system itself needs for its
operations. Section 5 shows that this is indeed the case
because Recon has low overheads.

Finally, our invariant checking approach relies on an
inductive argument. It assumes that the file system is con-
sistent before each transaction. If the updates in the trans-
action meet the consistency invariants, the file system will
remain consistent after the transaction. Likewise, if an in-
variant is violated, there is potential for data loss or in-
correct data being returned to applications. Section 2.4
provides more details about our assumptions.

2.3 How to Check Consistency Invariants?
Consistency invariants are expressed in terms of logical
file-system data structures, such as current and updated
values of block pointers, bits in block bitmap, etc.. How-
ever, Recon needs to observe physical blocks below the
file system because it cannot trust a buggy file system to
provide the correct logical data structure information. We
bridge this semantic gap by inferring the types of metadata
blocks when they are read or written, which allows pars-
ing and interpreting them, similar to semantically smart
disks [24]. Then Recon checks invariants on the typed
blocks at commit points, as described below.

Metadata interpretation Block typing and metadata
interpretation depend on the idea that file systems access
metadata by following a graph of pointers. For example,
a pointer to a block is read before the pointed-to block is
read, which we call the pointer-before-block assumption.
These pointers may be explicit block pointers or are im-
plied by the structure of the file system. For example, ext3
will read an inode containing a pointer to an indirect block
before reading the indirect block. When an inode block is
read, Recon copies it into its read cache and then parses
the inodes in the block to create a mapping from a block to
its type for any metadata blocks pointed to by the inodes.
In this case, Recon creates a block-type mapping associat-
ing the “indirect block” type with the block pointed to by
the EXT3_IND_BLOCK pointer in the inode. As a result,
Recon recognizes an indirect block when it is read.

Similarly, the block group descriptor (BGD) tables in
ext3 describe the locations of inode blocks and inode and
block allocation bitmaps. The BGD tables must be read
before any of the blocks that they point to, allowing Re-
con to create block-type mappings for inode and bitmap
blocks. This block-type identification is bootstrapped us-
ing the superblock, which exists at a known location.

When a metadata block is newly allocated in a transac-
tion, Recon does not yet know its type. In this case, there

must exist an updated metadata block in the transaction
with a known type that points to this unclassified block
directly or indirectly, or else the newly allocated block
would not be reachable in the file system. By following
the path of pointers from the known metadata block to
the newly allocated block, Recon can always create block-
type mappings for newly allocated blocks.

For example, suppose a block is allocated to an indirect
block of a file. If the file already existed then its inode
block must have been read and updated in the transac-
tion. Since the inode block was read previously, Recon
knows its type and can determine the type of the newly
allocated indirect block. Similarly, if the file did not exist
then its parent directory must have existed and been up-
dated, which helps determine the types of the (possibly
newly allocated) inode block and then the indirect block.
Determining the types of newly allocated blocks may re-
quire multiple passes over the blocks updated in the trans-
action. At the end, all new metadata blocks must be typed
or else the pointer-before-block assumption is violated.

Commit processing At commit, Recon uses the block-
type mapping to determine the data structures in each of
the (updated) transaction blocks, available in the Recon
write cache. These data structures are compared with their
previous versions, which are derived from the Recon read
cache, at the granularity of data structure fields. Each field
update generates a logical change record with the format
[type, id, field, oldval, newval].

The type specifies a data structure (e.g., inode, directory
block). The id is the unique identifier of a specific object
of the given type (e.g. inode number). The (type, id) pair
allows locating the specific data structure in the file sys-
tem image. The field is a field in the structure (e.g. inode
size field) or a key from a set (e.g. directory entry name).
The oldval and newval are the old and new values of the
corresponding field. These records are generated for ex-
isting, newly allocated and deallocated metadata blocks.
When an item is newly created or allocated, the oldval is
φ (a sentinel value). Similarly, when an item is destroyed
or deallocated, the newval is φ .

Figure 2 shows an example of a set of change records
associated with an ext3 transaction in which a single
write operation increases the size of a file from one block
to two blocks. Change records serve as an abstraction,
cleanly separating the interpretation of physical metadata
blocks from invariant checking on logical data structures.
We show how invariants are implemented using change
records in Section 3. When all invariants are checked suc-
cessfully, the transaction is allowed to commit.

2.4 Fault Model
Our goal is to preserve file-system metadata consistency
in the presence of arbitrary file-system bugs. We make

[Inode, 12, block[1], 0, 22717] ; In inode 12, direct block ptr 1 is set to block 22717

[BBM, 22717, 0, 0, 1] ; Block 22717 is marked allocated in block bitmap

[BGD, 0, free_blocks, 1500, 1499] ; In block group 0, nr. of free blocks decreases by 1

[Inode, 12, i_size, 4010, 7249] ; i_size field increases from 4010 to 7249 bytes

[Inode, 12, i_blocks, 8, 16] ; i_blocks is the number of sectors used by file

[Inode, 12, mtime, 1-18-12, 1-20-12] ; timestamp change

[Inode, 12, ctime, 1-16-12, 1-20-12] ; timestamp change

Figure 2: Change records when a block is added to a file

three assumptions to provide this guarantee. First, we
assume that the Recon code and its invariant checks are
correct and immutable and the Recon metadata cache is
protected. If these assumptions are incorrect, it is unlikely
that an inconsistent transaction would pass our checks, be-
cause the file-system bug and our corrupted check would
need to be correlated. However, Recon may generate false
alarms, indicating corruption even when a transaction is
consistent. Such corruption is still an indication of a bug
in the overall system. A hypervisor-based Recon imple-
mentation would provide stronger isolation of the Recon
code and data from the kernel, helping ensure metadata
consistency in the face of arbitrary kernel bugs.

Second, if the ext3 file system writes a metadata block
before Recon knows its type then Recon will assume that
a data block is being written and will allow the opera-
tion. For example, a file system bug may corrupt the block
number in a disk request structure and cause a misdirected
write to a metadata block. Recon will not detect this er-
ror because the write violates our pointer-before-block as-
sumption, and ext3 does not provide any other way to
identify the block being updated.2 As future work, we
plan to retrofit ext3 to allow such identification. Misdi-
rected writes will not cause a problem with btrfs because
its extents are self-identifying [2].

Finally, our inductive assumption about metadata con-
sistency before each transaction (discussed in Section 2.2)
requires correct functioning of the lower layers of the sys-
tem, including the Linux block device layer and all hard-
ware in the data path. It is possible to detect and recover
from errors at these layers by using metadata checksums
and redundancy. This functionality could be implemented
at the block layer for the ext3 file system [10]. The btrfs
file system already provides such functionality [16]. If
these assumptions are not met, offline checking and repair
should be used as a last resort.

3 Consistency Invariants
A file system checker verifies file system consistency by
applying a comprehensive set of rules for detecting and
optionally repairing inconsistencies. We are primarily in-

2We did not observe this problem because our fault injector corrupts
metadata blocks but does not cause misdirected writes (see Section 5.2).

terested in checking consistency properties and can reuse
the rules associated with detecting, but not repairing, in-
consistencies. We have applied our approach to the ext3
and the btrfs file systems. Below, we provide an overview
of the consistency rules for these file systems.

The SQCK system [11] encapsulates the 121 checks of
the ext3 fsck program in a set of SQL queries. Although
there is a close correspondence between SQCK queries
and e2fsck checks, some SQCK queries combine multi-
ple checks. Table 2 provides a breakdown of the number
of rules checked by SQCK for different file-system data
structures. We show 101 rules in Table 2, because the rest
are used for repair. The simplest checks (lines starting
with the word Within) examine individual structures (e.g.,
superblock fields, inode fields, and directory entries ap-
pear valid). Some checks ensure that pointers lie within an
expected range. More complicated checks (lines starting
with the word Between) ensure that block pointers (across
all files) do not point to the same data blocks, and direc-
tories form a connected tree.

We have done a similar classification of the rules
checked by the btrfs checker, as shown in Table 3. Btrfs is
an extent-based, B-tree file system that stores file-system
metadata structures (e.g., inodes, directories, etc.) in B-
tree leaves [16]. It uses a shadow-paging transaction
model for updates and for supporting file-system snap-
shots. Extent allocation information is maintained in an
extent B-tree, which serves the same purpose as ext3
block bitmaps. The roots for all the B-trees are maintained
in a top-level B-tree called the root tree. Although the
btrfs checker is still a work in progress (e.g., it performs
no repair), currently it uses 30 rules for detecting inconsis-
tencies. Of these, the first four rule sets are used to check
the structure of the B-tree, while the rest deal with typical
file-system objects such as inodes and directories.

Next, we provide several examples that show how
we transform the consistency properties for various data
structures shown in Tables 2 and 3 into invariants. An
invariant is implemented by pattern matching change
records. When such a match occurs, some invariants accu-
mulate bookkeeping information then require some final
processing at transaction commit.

Datatype #rules
A Within superblock 23
B Within block group descriptors (BGD) 5
C Within a single inode 28
D Within a single directory 14
E Between inode and directory entries 5
F Between inode and its block pointers 2
G Between inode, inode bitmap, orphan list 3
H Between block bitmap and block pointers 5
I Between block, inode bitmap, BGD table 3
J Between directories 4
K Bad blocks inode 7
L Extended attributes ACL 2

Table 2: Number of Ext3/SQCK rules by datatype

3.1 Ext3 Immutable Fields, Range Checks
The ext3 fsck program checks for valid values in several
fields of the superblock and group descriptor table (rows
A and B in Table 2). Many of these fields are initialized
when a file system is created and should never be mod-
ified by a running file system. Invariants on these fields
are implemented by pattern matching a change record of
the form [Superblock, _, immutable_field, _, _], where
immutable_field is the name of the field that should not
change, and _ matches any value. The existence of this
record indicates that the field was modified, and signals a
violation. Another similar class of consistency properties
requires simple range checks on the values of given fields.

3.2 Ext3 Block Bitmap and Block Pointers
An important consistency properties in ext3 is that no data
block may be doubly allocated, i.e., every block pointer
(whether it is found in a live inode or indirect block) must
be unique or 0. Checking this property would be expen-
sive if we simply scanned all inodes and indirect blocks
searching for another instance of the pointer.

The file system maintains this property without examin-
ing the entire disk state by using block allocation bitmaps
(row H in Table 2), with the resulting consistency property
being that “all live data blocks are marked in the block
bitmap”. The corresponding consistency invariant is that
a transaction that makes a data block live (i.e., by adding
a pointer to the block) must also contain a corresponding
bit-flip (from 0 to 1) in the block bitmap within the same
transaction, as shown below.
block pointer set to N from 0⇔ bit N set in bitmap (1)
block pointer set to 0 from N⇔ bit N unset in bitmap (2)

These invariants involve relationships between differ-
ent fields and require matching multiple change records.
The left side of the first invariant is triggered by match-
ing change records of the form [_, _ , block_pointer_field,
0, X], indicating a new pointer to block X. When such a
match occurs, we insert a “new pointer” flag with key X

Datatype #rules
A Within tree block 2
B Between parent and child tree blocks 3
C Between extent tree and extents 3
D Within an extent item in extent tree 2

E Between inodes and file system trees 2
F Between inode and directory entries 4
G Between inodes, inode refs and dir. entries 2
H Within directory entries 1
I Between inode, data extents, checksum tree 6
J Between inode and orphan items 1
K Between root tree and file system trees 3
L Between root tree and orphan items 1

Table 3: Number of Btrfs rules by datatype

into a rule-specific table. The right side of this (bicon-
ditional) invariant is triggered by matching [BBM, Y, _,
0, 1] records, indicating bit Y in the allocation bitmap is
newly set. When this match occurs, we insert a “bit set”
flag with key Y into the same table. During final process-
ing, the implementation verifies that for each key in the
table, both flags are set. Otherwise the invariant has been
violated. For example, in the simple transaction shown in
Figure 2, there is exactly one record matching each of the
left and right sides of Invariant 1 shown above, and the
values of X and Y are both 22717.

Invariants 1 and 2 ensure that when a block pointer is
set, the corresponding bit in the bitmap is also set. How-
ever, we must also ensure that a pointer to the same block
is set only once in a transaction, i.e., we must check for
double allocation within a transaction. To do so, we sim-
ply count the number of times we see a block pointer set
to a given block in the transaction:
block pointer set to N⇒

(count(block pointer==N) in transaction)==1 (3)

3.3 Ext3 Directories
The inter-directory consistency properties essentially en-
sure that the directory tree forms a single, bidirected3

tree (row J in Table 2). This complex consistency prop-
erty requires two biconditional and two regular invariants.
Whenever a directory is linked (or its “..” entry changes),
Invariant 4 checks that the directory’s parent (child) has
the directory as its child (parent). This check also ensures
that a directory does not have multiple parents. When a
directory is unlinked (or moved), Invariant 5 checks that
it is unlinked on both sides (although not shown, we also
check that an unlinked directory is empty). When a direc-
tory’s “.” entry is updated, Invariant 6 checks that the “.”
entry points to itself.

[Dir, C, “..”, _, P]⇔ [Dir, P, nm, _, C] and (nm != “..”) (4)

3A bidirected tree is the directed graph obtained from an undirected
tree by replacing each edge by two directed edges in opposite directions.

[Dir, C, “..”, P, _]⇔ [Dir, P, nm, C, _] and (nm != “..”) (5)
[Dir, D1, “.”, _, D2]⇒ D1==D2 (6)
[Dir, _, “..”, _, P]⇒ is_ancestor(ROOT, P) (7)

Finally, Invariant 7 checks that a directory update does
not cause cycles. Invariants 4 and 5 do not prohibit cy-
cles. For example, suppose that the file system allows the
command “mv /a /a/b” to complete successfully. This up-
date would be allowed by the Invariants 4 and 5, but it
would create a disconnected cycle consisting of a and b.
Invariant 7 checks for cycles when a directory’s parent en-
try (the “..” entry) is updated. It ensures that the chain of
parent directories eventually reaches the root directory, or
a cycle is detected. The is_ancestor() primitive operates
on the Recon metadata caches described in Section 4.

3.4 Btrfs Inode and Directory Entries
Metadata structures in btrfs are indexed by a 17-byte key
consisting of the tuple (objectID, type, offset). ObjectID
is roughly analogous to an inode number in ext3. The type
field determines the type of the structure, and the meaning
of “offset” depends on the type. Each key is unique within
a btrfs tree, so the unique (type, id) pair for our change
records consists of (type, (tree id, objectid, offset)).

A btrfs consistency property is that the inode associ-
ated with a directory item (that is, a btrfs directory entry)
has a directory mode (row F in Table 3). An invariant
derived from this property is that when we add a new di-
rectory item, there must exist an appropriate inode item
after transaction commit. We can represent this as:
[DIR_ITEM, (T, I, _), _, φ , _]⇒

exists(T, I, INODE_ITEM, 0) and
ISDIR(get_item(T, I, INODE_ITEM, 0).mode)

The left hand side matches a directory item within snap-
shot tree T and objectid I that is being newly created. This
invariant asserts that 1) there is a matching inode item, and
2) its mode is of directory type. The exists() primitive re-
turns true if the given item can be found in tree T, and the
get_item primitive obtains the contents of the item, allow-
ing us to check the mode. These primitives operate on the
Recon metadata caches.

4 Implementation
We use the Linux device mapper framework to interpose
on all file system I/O requests at the block layer, as shown
in Figure 1. On a metadata block read, recon_read caches
the block in the Recon read cache. This cache allows ac-
cessing the disk or the pre-update file-system metadata
state efficiently. Its contents are trusted because its blocks
have been verified previously. On a metadata block write,
recon_write caches the updated block in the Recon write
cache. The write cache may contain corrupt data and thus
any code accessing this cache must perform careful vali-
dation. Both caches also store block-specific information

such as the block-type map. Similar to a file system buffer
cache, neither Recon cache persists across reboots.

4.1 Commit Process
At commit, our framework requires that 1) all transac-
tion blocks must have been recorded using recon_write,
and 2) recon_commit is called before the commit block
reaches the disk. We can record blocks and detect com-
mit either from the transaction subsystem (transaction-
layer commit) or at the block layer (block-layer commit).
With transaction-layer commit, the file system’s transac-
tion commit code is modified to invoke recon_write on
the updated metadata blocks, and invoke recon_commit
before writing the commit block. This method is simpler
to implement, but it makes us dependent on the transac-
tion layer code, such as JBD in ext3. In particular, it does
not allow us to verify the ext3 checkpointing process.

With block-layer commit, recon_write could be in-
voked on all block writes. The challenge is to separate
metadata blocks from data blocks because we do not want
to cache every data block. However, we can only identify
newly allocated metadata blocks at commit, making them
hard to distinguish from data on each write. Fortunately,
for ext3, metadata blocks are written to the journal, and
thus we can ignore blocks that are not journaled. This
approach requires interpreting journal writes at the block
layer, which also helps detect commit. While this im-
plementation is more complicated, it removes any depen-
dency on the journaling code. For btrfs, metadata writes
can be easily distinguished because they are directed to
designated regions on disk called btrfs chunks. Btrfs com-
mits occur when the superblock is written, which is easy
to detect because the superblock is in a known location.

We have implemented both transaction-layer and
block-layer commit, but currently we have only evaluated
the transaction-layer commit implementation.

4.2 Cache Pinning and Eviction
We control the amount of memory used by the Re-
con caches with a simple LRU mechanism for replacing
blocks from the read cache when it grows beyond a user-
configurable limit. All read cache blocks are pinned dur-
ing recon_commit processing to simplify implementation.
We expect that recon_commit will run quickly because
the blocks needed for commit processing have likely been
read by the file system recently and so they will not need
to be read from disk to populate the read cache. We pin
the Recon write cache for the duration of the transaction
because we will need these blocks for checking invariants.
This approach is similar to the ext3 file system pinning its
journal blocks for performance. However, we could unpin
a block once it reaches disk, e.g., the journal in ext3.

After commit, the contents of the write cache are
merged into the read cache, thus updating Recon’s view

FS Recon API Invoked on
references Read provides type and id information for data structures in referenced blocks
process_write Commit provides type and id information for newly allocated metadata blocks
process_txn Commit generates change records
txn_check Commit checks invariants using change records and metadata read/write caches

Table 4: File-system specific Recon API

of file-system state, and the write cache is cleared. At this
point, we can unpin the read cache because all the blocks
in the cache are on disk (e.g., either in the journal or the
checkpointed location in ext3). However, our transaction-
layer commit implementation for ext3 does not track the
location of blocks in the journal. To avoid evicting a block
that may be in the journal, we keep a list of most recently
updated blocks in the read cache. This list contains as
many blocks as it takes to fill the journal and we pin these
blocks. Once a block is evicted from this list, it must have
been checkpointed, or else it would have been overwritten
in the journal, and so we can unpin it.

4.3 File-System Specific Processing
Recon invokes file-system specific API functions for
metadata interpretation and invariant checking, as shown
in Table 4. The references function is invoked by re-
con_read to parse a metadata block and create block-type
mappings for pointed-to blocks. This function is also used
to distinguish between data and metadata on the read path.

The rest of the functions in Table 4 are invoked by
recon_commit. The process_write function is similar to
the references function but invoked on all the blocks in
the write cache (i.e., each updated or newly allocated
metadata block). This function must validate the updated
blocks by checking that any pointers, strings and size
fields within the block have reasonable values so that fur-
ther processing is not compromised. Recon ignores un-
known blocks and only processes updated blocks whose
types are known. As unknown blocks become known,
they are added to the queue of blocks being processed.
At the end of write processing, if any unknown blocks re-
main, Recon signals a reachability invariant violation, as
discussed in Section 2.3.

Once the block and data types within blocks are known,
the process_txn function compares updated data structures
with their previous versions to derive a set of change
records. The previous version of a data structure is
uniquely determined by the (type, id) pair of the change
record. In ext3, the type is determined by block type and
the id is typically an inode number or a block number. In
btrfs, the type and id are determined by the tree and the
key, as discussed in Section 3.4.

While the process of comparing data structures is
clearly file-system specific, we found two common cases.
When data structures have fixed size, such as inodes in
ext3 and most items in btrfs, we use a simple byte-level

diff that is driven by tables that describe the layout of
the data structures. These tables are generated from the
data structures using C macros. When data structures
themselves contain sets of smaller items, such as direc-
tory entries in ext3, or extent items in btrfs, we use a set-
intersection method to derive three sets consisting of new
items, deleted items and modified items. Change records
can be generated from these sets, using the identity of the
containing item (e.g., directory inode) and some key as
field name (such as the “name” for directory entries).

The txn_check function implements invariant checking
as described in Section 3 with examples.

4.4 Handling Invariant Violation
The final problem for an online consistency checker like
Recon is dealing with invariant violations. It is important
to ensure that recovery from a violation is correct and so
the safest strategy is to disable all further modifications
to the file system to avoid corruption. The file system
can then be unmounted and restarted manually or trans-
parently to applications [26]. In this case, the file system
is not corrupt but may have lost some data. If the ability
to create a snapshot (e.g., a btrfs snapshot) is available,
then a snapshot could be created immediately, the prob-
lem reported, and then we could continue running the file
system. It is important to isolate the snapshot from the
buggy file system, e.g., by directing all further writes to a
separate partition. In this case, data is preserved but the
file system may be corrupt. Finally, it may be possible to
repair file system data structures dynamically [8].

5 Evaluation
In this section, we evaluate our Recon implementation for
ext3 in terms of its 1) complexity, 2) ability to detect meta-
data corruption at runtime, and 3) its performance impact.
Currently, we are finishing our btrfs implementation, and
we plan to evaluate it in the near future.

5.1 Completeness and Complexity
We have implemented all of the checks performed by the
e2fsck file system checker, as encapsulated by the SQCK
rules, for the mandatory file system features. Overall,
we need only 31 invariants (vs 101 SQCK rules) because
some properties are easier to verify at runtime. For exam-
ple, a large number of fields in the superblock and block
group descriptors are protected with the simple invariant
that they should not be changed by a running file system.

We also avoid explicit range check invariants in several
cases because they are naturally embedded in other in-
variants that must check for setting or clearing of bits in
bitmaps. There are a small number of properties on op-
tional features that we do not check, such as OS-specific
fields in inodes and the extended attributes ACLs.

Our entire system consists of 3.8k lines of C code
(kLOC), as measured by the cloc [7] tool. Of these, 1.5
kLOC are in the generic framework which can be reused
across file systems, 1.5 kLOC are for interpreting the ext3
metadata, and only 0.8 kLOC are involved in checking the
invariants. Our dependence on the journal checkpointing
code adds another 311 lines. The code required to do the
checking is simpler than the file system code for several
reasons. First, within the thread checking a transaction,
we do not need to worry about concurrency, as the buffers
we are examining are under the control of the journal. In
contrast, the file system needs to be servicing multiple
client threads. Second, the implementation of each invari-
ant check is independent of the other checks because each
rule uses its own data structures to keep track of properties
that must be verified. Finally, the implementation of each
rule is usually quite simple, requiring several lines of C to
accumulate the necessary data and a few more (often just
a single boolean expression) to verify.

5.2 Ability to Detect Corruption
Evaluating resiliency against metadata corruption is
tricky. To best represent real-world corruption scenarios,
we would either inject subtle bugs in the file-system or
reproduce known bugs. However, subtle bugs (i.e., bugs
not easily found in a heavily-used file system) are hard
to design or reproduce. Reproducing known bugs is dif-
ficult as they often depend on specific kernel versions,
combinations of loadable modules, concurrency levels, or
workloads. Instead, we settled for deliberately injecting
corruption of bytes within metadata blocks. This mim-
ics the corruption that could result from several types of
bugs (e.g., setting values in arbitrary fields incorrectly)
both within the file system or in the overall kernel. We in-
jected both type-specific corruption, where we target spe-
cific metadata block types and fields, and fully random
corruption where we corrupt a sequence of 1 to 8 bytes
within some number of blocks in a transaction.

Setup We compare Recon against e2fsck by corrupting
metadata just before it is committed to the journal. We
begin each corruption experiment by creating and pop-
ulating a fresh file system, to ensure that there are no
errors initially. Next, we start a process that creates a
background of I/O operations (specifically we run a ker-
nel compile and clean, repeatedly). The corruptor then
sleeps for 20-90 seconds, wakes up, and performs the re-
quested corruption (type-specific or random). We record

31

79

52
59 112 17 72 352

2

2

1

4

25 8 23

31

0%

100%

%
 C

o
rr

u
p

ti
o

n
s

 C
au

gh
t

Detected by both e2fsck only Recon only

inode
(stat)

inode
(blk ptr)

inode
(others)

dir

bgd

bbm

ibm

random

Figure 3: Comparison of corruption detection accuracy

the corruption performed and whether or not Recon de-
tected it. Next, we allow the transaction to commit, and
then immediately prevent any future writes. This step en-
sures that the corruption is limited to the bytes that we
selected, rather than the result of the file system acting
further on corrupt data. Next, we unmount the file sys-
tem, run e2fsck on it, and record whether it found and
repaired any errors. Finally, we run e2fsck a second time
to see if the file system is clean after the repairs, and then
reboot the system for the next experiment. For these ex-
periments, we use a 4 GB file mounted as a loop device
for our file system. This simplified the restoration of the
file system following each corruption experiment.

Our corruption framework can only corrupt blocks that
the file system is already modifying in some transaction.
In particular, we never corrupt the superblock since the
running file system never includes writes to it. We do
not consider this to be a serious limitation to our test re-
sults since nearly all superblock corruptions would be triv-
ially detected by Recon. Specifically, Recon protects most
fields in the superblock with the invariant that they should
not be modified at all, which is very easy to check.

Results Figure 3 summarizes the results of our corrup-
tion experiments. We show a wide bar and two stacked
bars for each type of metadata corruption and random cor-
ruption. The wide bar shows the percent of corruptions
(Y axis) that were caught by both e2fsck and Recon. The
stacked bars show the percent of corruptions that were de-
tected by only one checker. Numbers in the bars show the
absolute number of corruptions detected.

For inodes, we present 3 sets of bars, representing dif-
ferent types of inode fields. The first group includes fields
that are reported by “stat”, the second group consists of all
the block pointer fields, and the third group consists of ev-
erything else. Our coverage is nearly identical to e2fsck in
all cases. Many of the inode stat fields are unrelated to file
system consistency (e.g. the timestamps and userids) and
are permitted to change arbitrarily, making it hard to de-
tect corruption with either checker. However, both check-

ers are effective at catching corruption of block pointers.
Recon achieves 100% in this case because it checks all
inodes in a block being written to disk while e2fsck ig-
nores unused inodes. Although file system consistency is
not affected by changes to unused inodes, it is still useful
to detect this corruption because it indicates a bug in the
system. For the final set of inode fields, e2fsck detects
an invalid flag setting that Recon does not check in two
runs, while Recon catches corruption of some unused in-
ode flags and a corruption of the dir_acl field that appears
valid when checked by e2fsck after the fact in four runs.

For directory entries (dir), both checkers detect the
same corruptions, with neither checker detecting corrup-
tion of the name field. For the other metadata types,
Recon is more effective than e2fsck at detecting corrup-
tion, largely because it is able to take other runtime be-
havior into account. For example, Recon achieves 100%
detection for block group descriptor (bgd) corruption be-
cause most of these fields should not be changed by a run-
ning file system. Once corruption has reached the disk
however, it is not always possible to distinguish the cor-
rect values from corrupted, but still valid, values. Simi-
larly, Recon detects 100% of the block and inode bitmap
(bbm and ibm, respectively) corruptions while e2fsck has
a lower detection rate because it does not check unused
parts of metadata blocks. For example, e2fsck does not
check bits in the inode bitmap for non-existent inodes, or
bits in the block bitmap for uninitialized block group de-
scriptor table blocks. Recon’s higher coverage on specific
metadata fields leads to higher coverage for fully random
corruption as well. We expect that adding the final set of
ext3 invariants for OS-specific inode fields and extended
attributes will help us detect all ext3 structural consistency
violations. However, neither checker can achieve 100%
accuracy because some of the corruptions hit fields unre-
lated to structural consistency.

After e2fsck performs repair, it still detects errors in
28 out of 731 cases (3.8%), when it is run a second time
on the “repaired” file system. Two of these failures oc-
curred after a single byte was corrupted in a single meta-
data block. In our experiments, we unmount the file sys-
tem and check it with e2fsck immediately after the cor-
rupted transaction is committed to the journal. In reality,
it is likely that the file system would continue operation
with bad data for some time, making the chances of suc-
cessful repair even lower. In these cases, Recon’s ability
to prevent corruption from reaching the on-disk metadata
is particularly valuable.

5.3 Performance
Setup All performance tests were done on a 1 TB ext3-
formatted file system on a machine with 2GB total RAM
and dual 3 GHz Xeon CPUs. We used the Linux port
of FileBench (version 1.4.8.fsl.0.8) with the application

Personality Settings Data Size
Webserver nfiles=250k 3.9 GB
Webproxy nfiles=500k 7.8 GB
Varmail nfiles=250k 3.9 GB
Fileserver nfiles=500k,

filesize=32k
15.6 GB

MS-Networkfs based on [17] 19.9 GB
Table 5: Benchmark Characteristics

emulation workload personalities4. We included the Net-
workfs personality, which supports a more sophisticated
file system model, with a custom profile configured to
match the metadata characteristics from a recent study of
Windows desktops[17]. For Fileserver, we reduced the
default file size to 32k to increase the metadata to data
ratio in the file system. In all other cases, we used de-
fault parameter settings. Table 5 summarizes the basic
characteristics of our benchmarks.5 The metadata load
varies widely across the benchmarks, spanning the range
of Recon cache sizes, causing misses in the cache. In par-
ticular, the Fileserver benchmark uses over 25k directo-
ries. The metadata consumed by directory entry blocks
alone is greater than 100MB. The inodes for the direc-
tories and files would consume approximately 70MB if
they were stored compactly, but ext3 distributes alloca-
tion across different block groups, so unused inodes add
to the metadata overhead. While the Networkfs bench-
mark involves more file data, the total number of files is
lower because of the larger file size distribution.

The benchmarks are run for one hour for all workloads
to ensure that we capture steady-state behavior with Re-
con. We report the performance of Recon compared to
native ext3 for both the initial benchmark setup, which
involves heavy metadata writes (Table 6), and the actual
workload execution (Figure 4).

Our current transaction-layer commit implementation
(described in Section 4) cannot evict blocks from our
metadata cache that have not yet been checkpointed to the
file system. Thus, the metadata cache size must be larger
than the journal size. However, any memory consumed by
Recon’s metadata cache reduces the memory available for
the file system cache by the same amount because Linux
implements a shared page cache. We present results for
three different cache/journal sizes, for both native and Re-
con performance. FileBench emulates workloads using a
variety of random variables for file and operation selec-
tion. Thus, there is natural performance variation across
runs. Since this is representative of behavior “in the wild”,
we report the average of 5 runs with error bars. All tests
are done with cold caches on a freshly booted system.

4The OLTP personality did not work in the version we obtained.
5The full profile used in the experiments is available at

http://csng.cs.toronto.edu/publications/260/get?file=

/publication_files/210/recon-fast2012-workloads.tgz

http://csng.cs.toronto.edu/publications/260/get?file=/publication_files/210/recon-fast2012-workloads.tgz
http://csng.cs.toronto.edu/publications/260/get?file=/publication_files/210/recon-fast2012-workloads.tgz

Cache=64MB, Journal=32MB Cache=128MB, Journal=64MB Cache=256MB, Journal=128MB
Setup (seconds) Ext3 Recon Ratio Ext3 Recon Ratio Ext3 Recon Ratio

Webserver 2171.0±42.8 2903.2±45.7 133.7 1722.0±77.4 1668.6±36.7 96.9 1405.6±24.4 1340.2±29.6 95.3
Webproxy 229.4±26.0 323.0±24.3 140.8 212.8±13.5 243.4±23.5 114.4 227.2±19.5 224.4±24.0 98.8
Varmail 110.2±11.4 110.8±4.4 100.5 118.6±12.3 113.8±16.2 96.0 109.4±9.5 123.0±5.0 112.4
Fileserver 13728.5±694.2 17705.8±413.5 129.0 11487.2±849.8 12906.8±1316.8 112.4 9785.6±491.6 10374.8±928.8 106.0
Networkfs 2096.8±140.4 2113.8±119.2 100.8 1757.4±70.2 1893.0±73.0 107.7 1651.8±113.8 1719.4±31.5 104.1

Table 6: Setup time for benchmarks (lower is better)

Results During the benchmark setup, when many files
are being created, there is a significant cost to Recon, par-
ticularly for small cache sizes. The dominating factor is
I/O time for metadata cache misses because file creation
quickly and repeatedly touches the entire working set of
metadata. However, as the cache size increases, the im-
pact is rapidly reduced. With a 128MB metadata cache,
the added overhead of Recon is within the experimental
error of ext3’s native performance. The impact of Recon
is less noticeable during normal benchmark operations.
With our smallest metadata cache size (64MB), there is a
worst case overhead of only 15% for Fileserver, which is
generally reduced as the cache size increases. The one ex-
ception to this trend is the Networkfs personality (ms_nfs
in Figure 4), where performance degrades with an increas-
ing Recon cache size. We believe this is the result of
memory pressure, as our increased metadata cache size
decreases the amount of memory available to the file sys-
tem buffer cache. Overall, a 128MB metadata cache with
a 64MB journal gives the best results for all workloads,
with only 8% degradation on average. In most cases, file
system throughput with Recon is within the margin of er-
ror of ext3 performance. Given the growth in main mem-
ory sizes, these are quite modest memory requirements for
the reliability benefits that Recon can deliver.

6 Related Work
We discuss several areas of research that are closely re-
lated to this work, including methods for 1) handling file
system bugs, 2) checking file system consistency, 3) inter-
preting file system semantics and verification.

6.1 Handling File System Bugs
File system bugs can be detected statically or at runtime.
Bug finding tools, based on model checking [29, 31] and
static analysis [21], have revealed scores of bugs in a vari-
ety of file systems. However, these tools cannot be relied
upon to identify all bugs because they need to perform
exhaustive evaluation. Furthermore, even when a bug is
known, a bug fix may not be easily available, or easy to
deploy in live systems [1]. These limitations can be ad-
dressed by tolerating bugs at runtime.

EnvyFS [3] applies N-version programming for detect-
ing file system bugs. It uses the common VFS interface
to pass each file system request received by the VFS layer
to three child file systems. The results are then compared

 0

 100

 200

 300

 400

 500

O
p
er

at
io

n
s/

S
ec

o
n
d

Performance (Cache Size = 64MB, Journal Size = 32MB)

webserver webproxy varmail fileserver ms_nfs

Ext3
Recon

 0

 100

 200

 300

 400

 500

O
p
er

at
io

n
s/

S
ec

o
n
d

Performance (Cache Size = 128MB, Journal Size = 64MB)

webserver webproxy varmail fileserver ms_nfs

Ext3
Recon

0

100

200

300

400

500

O
p
e
ra

ti
o
n
s/

S
e
co

n
d

B, J ournal Size = 128MB)

webserver webproxy varmail fileserver ms_nfs

Ext3
Recon

Performance (Cache Size = 256M

Figure 4: Performance on FileBench workloads for vary-
ing metadata cache sizes

and the majority result is returned. EnvyFS avoids storing
3 data copies by using a customized single-instance store.
Although EnvyFS is able to detect and in some cases re-
pair errors introduced in child file systems, the run time
overheads are significant because the operations must be
issued to at least two file systems and the results compared
before an answer is returned. Also, subtle differences in
file system semantics can make it hard to compare results.

Membrane [26] proposes tolerating bugs by transpar-
ently restarting a failed file system. It assumes that file
system bugs will lead to detectable, fail-stop crash fail-
ures. However, inconsistencies may have propagated to
the on-disk metadata by the time the crash occurs. Our ap-
proach is complementary to Membrane, rather than wait-

ing for the file system to crash, a restart could be initiated
when Recon detects an inconsistent transaction.

6.2 Checking File System Consistency
SQCK [11] expresses the many complex checks per-
formed by e2fsck as a set of compact SQL queries. It
improves upon the repairs done by e2fsck by correcting
the order in which repairs were performed and by using
redundant file-system metadata ignored by e2fsck.

Chunkfs proposes reducing the consistency check time
by breaking the file system into chunks that can be
checked independently [13]. While this idea is appealing,
unfortunately the chunks are not independent and thus
cannot be checked truly independently. Specifically, path-
names can span chunks, and Chunkfs uses cross-chunk
references to handle hard links and files that are larger
than chunks or need allocation across chunks.

ZFS provides the ability to scrub disks and repair cor-
rupt blocks that have redundant copies [4]. Scrubbing can
detect latent hardware errors but does not necessarily de-
tect software bugs, e.g., if the block has a consistency er-
ror but passes the checksum. NetApp filers can run some
phases of the wafliron check program on an online system,
but this process is resource intensive and time-taking.

6.3 File System Semantics and Verification
Semantically-smart disks use probing to gather detailed
knowledge of file system behavior [24]. This knowledge
is used at the block interface to transparently improve per-
formance or enhance functionality, such as by implement-
ing track-aligned extents and secure delete. This work
builds on several ideas from semantically-smart disks.

The XN storage system of the Xok exokernel is de-
signed to protect library file systems that manage their
own disk blocks [15]. XN uses a file-system specific
function called own(), similar to the Recon references()
function, that returns the blocks controlled by a meta-data
block. This function allows XN to verify that a file system
can only access blocks that are allocated to it. XN can also
use a file-system specific function called reboot() that tra-
verses the entire file-system tree and detects whether the
file system is crash consistent. This work shows that file-
system consistency can be verified at runtime efficiently.
File systems must use an extended block interface (e.g.,
allocate, read, write, deallocate) and provide block type
information to XN and which allows easier verification,
while Recon only requires the basic block interface (e.g.,
read, write) and infers file system information. Also, XN
protects file systems from each other and may allow a file
system to corrupt itself, while our focus is on protecting
the file system from itself. Similar to XN, a type-safe
disk extends the disk interface by exposing primitives for
block allocation [23], which helps enforce invariants such
as preventing accesses to unallocated blocks.

There has been significant work on discovering pro-
gram invariants by capturing variable values at key points
in a program to repair data structures [8] and to patch
buggy deployed software [18]. We plan to apply these
methods to learn file-system invariants and repair updates
that cause invariant violations. Our work is influenced by
runtime verification, a technique that applies formal anal-
ysis to the running system rather than its model [25, 5].

Our system can be viewed as a firewall with a set of
rules that help protect disks from accesses that could com-
promise file-system integrity. Defining and implementing
these rules in a high-level language, such as the Linux ipt-
ables rules [22], is an avenue for future work.

7 Conclusions and Future Work
The Recon system protects file system metadata from
buggy file system operations. It uses two key ideas, using
commit points to verify consistency invariants. Modern
file systems aim to ensure file system consistency at com-
mit points. Consistency invariants are declarative state-
ments that must be satisfied at these points before data is
committed or else the file system may get corrupted. We
reuse the consistency rules used by a file system checker
to derive the invariants. As a result, Recon detects ran-
dom corruption at runtime as effectively as the file system
checker. It has low overhead because the data it interprets
has likely been recently accessed by the file system.

A system that checks the file system is easier to imple-
ment correctly than the file system itself. When check-
ing a transaction, we do not need to worry about concur-
rency because the buffers we are examining are under our
control. In contrast, the file system needs to be servicing
multiple client threads. Also, each invariant is indepen-
dent because it uses its own data structures to keep track
of the properties that must be checked, and we find that
the implementation of each rule usually quite simple. The
bulk of the complexity lies in interpreting metadata struc-
tures. We plan to develop a systematic way to describe
and interpret these structures.

While an offline checker can only make decisions based
on the current file system state, Recon can also observe the
file system operations in progress. We plan to investigate
whether this allows detecting certain operational bugs un-
related to file system consistency, e.g., updates to userid
or timestamp fields.

8 Acknowledgments
We thank the anonymous reviewers and our shepherd,
Junfeng Yang, for many insightful comments. This re-
search was supported by NSERC through the Discovery
Grants program.

References
[1] ARNOLD, J., AND KAASHOEK, M. F. Ksplice: au-

tomatic rebootless kernel updates. In Proceedings
of the ACM SIGOPS European Conference on Com-
puter Systems (Eurosys) (2009), pp. 187–198.

[2] BAIRAVASUNDARAM, L. N., ARPACI-DUSSEAU,
A. C., ARPACI-DUSSEAU, R. H., GOODSON,
G. R., AND SCHROEDER, B. An analysis of data
corruption in the storage stack. Transactions of Stor-
age 4, 3 (2008), 1–28.

[3] BAIRAVASUNDARAM, L. N., SUNDARARAMAN,
S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Tolerating file-system mistakes
with envyfs. In Proceedings of the USENIX Techni-
cal Conference (June 2009).

[4] BONWICK, J., AND MOORE, B. ZFS - The Last
Word in File Systems. http://opensolaris.

org/os/community/zfs/docs/zfs_last.pdf.

[5] CHEN, F., AND ROŞU, G. Mop: an efficient and
generic runtime verification framework. In Proceed-
ings of the ACM OOPSLA (2007), pp. 569–588.

[6] CUSTER, H. Inside the Windows NT File System.
Microsoft Press, 1994.

[7] DANIAL, A. CLOC – Count Lines of Code. http:
//cloc.sourceforge.net/.

[8] DEMSKY, B., AND RINARD, M. C. Goal-directed
reasoning for specification-based data structure re-
pair. IEEE Transactions on Software Engineering
32, 12 (2006), 931–951.

[9] GANGER, G. R., MCKUSICK, M. K., SOULES,
C. A. N., AND PATT, Y. N. Soft updates: a so-
lution to the metadata update problem in file sys-
tems. ACM Transactions on Computer Systems 18,
2 (2000), 127–153.

[10] GUNAWI, H. S., PRABHAKARAN, V., KRISH-
NAN, S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Improving file system reliability
with I/O shepherding. In Proceedings of the Sym-
posium on Operating Systems Principles (SOSP)
(2007), pp. 293–306.

[11] GUNAWI, H. S., RAJIMWALE, A., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
SQCK: A declarative file system checker. In Pro-
ceedings of the Operating Systems Design and Im-
plementation (OSDI) (Dec. 2008).

[12] HAGMANN, R. Reimplementing the Cedar file sys-
tem using logging and group commit. In Proceed-

ings of the Symposium on Operating Systems Prin-
ciples (SOSP) (Nov. 1987).

[13] HENSON, V., VAN DE VEN, A., GUD, A., AND
BROWN, Z. Chunkfs: Using divide-and-conquer to
improve file system reliability and repair. In Pro-
ceedings of the Workshop on Hot Topics in System
Dependability (HotDep) (2006).

[14] HITZ, D., LAU, J., AND MALCOLM, M. File sys-
tem design for an NFS file server appliance. In
Proceedings of the USENIX Technical Conference
(1994).

[15] KAASHOEK, F. M., ENGLER, D. R., GANGER,
G. R., BRICENO, H. M., HUNT, R., MAZIKRES,
D., PINCKNEY, T., GRIMM, R., JANNOTTI, J., ,
AND MACKENZIE, K. Application Performance
and Flexibility on Exokernel Systems. In Proceed-
ings of the Symposium on Operating Systems Prin-
ciples (SOSP) (1997), pp. 52–65.

[16] MASON, C., AND ET AL. Btrfs. http://btrfs.

wiki.kernel.org.

[17] MEYER, D. T., AND BOLOSKY, W. J. A study
of practical deduplication. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (FAST) (2010).

[18] PERKINS, J. H., KIM, S., LARSEN, S., AMA-
RASINGHE, S. P., BACHRACH, J., CARBIN, M.,
PACHECO, C., SHERWOOD, F., SIDIROGLOU, S.,
SULLIVAN, G., WONG, W.-F., ZIBIN, Y., ERNST,
M. D., AND RINARD, M. C. Automatically patch-
ing errors in deployed software. In Proceedings
of the Symposium on Operating Systems Principles
(SOSP) (2009), pp. 87–102.

[19] PRABHAKARAN, V., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Model-based fail-
ure analysis of journaling file systems. In Proceed-
ings of the IEEE Dependable Systems and Networks
(DSN) (2005), pp. 802–811.

[20] PRABHAKARAN, V., BAIRAVASUNDARAM, L. N.,
AGRAWAL, N., GUNAWI, H. S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Iron file systems. In Proceedings of the Symposium
on Operating Systems Principles (SOSP) (2005),
pp. 206–220.

[21] RUBIO-GONZÁLEZ, CINDY, GUNAWI, S., H., LI-
BLIT, B., ARPACI-DUSSEAU, H., R., ARPACI-
DUSSEAU, AND C., A. Error propagation analysis
for file systems. In Proceedings of the ACM SIG-
PLAN conference on programming language design
and implementation (PLDI) (2009), pp. 270–280.

http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf
http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf
http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://btrfs.wiki.kernel.org
http://btrfs.wiki.kernel.org

[22] RUSSELL, R. Iptables. http://en.wikipedia.

org/wiki/Iptables.

[23] SIVATHANU, G., SUNDARARAMAN, S., AND
ZADOK, E. Type-safe disks. In Proceedings of
the Operating Systems Design and Implementation
(OSDI) (2006), pp. 15–28.

[24] SIVATHANU, M., PRABHAKARAN, V., POPOVICI,
F. I., DENEHY, T. E., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Semantically-smart
disk systems. In USENIX Conference on File and
Storage Technologies (FAST) (2003), pp. 73–88.

[25] SOKOLSKY, O., SAMMAPUN, U., LEE, I., AND
KIM, J. Run-time checking of dynamic properties.
Electronic Notes in Theoretical Computer Science
144 (May 2006), 91–108.

[26] SUNDARARAMAN, S., SUBRAMANIAN, S., RA-
JIMWALE, A., ARPACI-DUSSEAU, A. C., ARPACI-
DUSSEAU, R. H., AND SWIFT, M. M. Membrane:
Operating system support for restartable file sys-
tems. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST) (2010).

[27] SWEENEY, A., DOUCETTE, D., HU, W., ANDER-
SON, C., NISHIMOTO, M., AND PECK, G. Scala-
bility in the XFS file system. In Proceedings of the
USENIX Technical Conference (1996), pp. 1–14.

[28] TWEEDIE, S. C. Journalling the ext2fs filesystem.
In Proceedings of the 4th Annual Linux Expo (May
1998).

[29] YANG, J., SAR, C., AND ENGLER, D. Explode: a
lightweight, general system for finding serious stor-
age system errors. In Proceedings of the Operating
Systems Design and Implementation (OSDI) (2006).

[30] YANG, J., SAR, C., TWOHEY, P., CADAR, C.,
AND ENGLER, D. Automatically generating mali-
cious disks using symbolic execution. In Proceed-
ings of the IEEE Symposium on Security and Privacy
(2006), pp. 243–257.

[31] YANG, J., TWOHEY, P., ENGLER, D., AND MUSU-
VATHI, M. Using model checking to find serious
file system errors. ACM Transactions on Computer
Systems 24, 4 (2006), 393–423.

[32] ZHANG, Y., RAJIMWALE, A., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. End-to-end
data integrity for file systems: a ZFS case study. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST) (2010).

http://en.wikipedia.org/wiki/Iptables
http://en.wikipedia.org/wiki/Iptables

	Introduction
	Approach
	When to Check Consistency?
	What Consistency Properties to Check?
	How to Check Consistency Invariants?
	Fault Model

	Consistency Invariants
	Ext3 Immutable Fields, Range Checks
	Ext3 Block Bitmap and Block Pointers
	Ext3 Directories
	Btrfs Inode and Directory Entries

	Implementation
	Commit Process
	Cache Pinning and Eviction
	File-System Specific Processing
	Handling Invariant Violation

	Evaluation
	Completeness and Complexity
	Ability to Detect Corruption
	Performance

	Related Work
	Handling File System Bugs
	Checking File System Consistency
	File System Semantics and Verification

	Conclusions and Future Work
	Acknowledgments

