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Abstract

Reliably erasing data from storage media (sanitizing the
media) is a critical component of secure data manage-
ment. While sanitizing entire disks and individual files is
well-understood for hard drives, flash-based solid state
disks have a very different internal architecture, so it
is unclear whether hard drive techniques will work for
SSDs as well.

We empirically evaluate the effectiveness of hard
drive-oriented techniques and of the SSDs’ built-in san-
itization commands by extracting raw data from the
SSD’s flash chips after applying these techniques and
commands. Our results lead to three conclusions:
First, built-in commands are effective, but manufactur-
ers sometimes implement them incorrectly. Second,
overwriting the entire visible address space of an SSD
twice is usually, but not always, sufficient to sanitize the
drive. Third, none of the existing hard drive-oriented
techniques for individual file sanitization are effective on
SSDs.

This third conclusion leads us to develop flash trans-
lation layer extensions that exploit the details of flash
memory’s behavior to efficiently support file sanitization.
Overall, we find that reliable SSD sanitization requires
built-in, verifiable sanitize operations.

1 Introduction

As users, corporations, and government agencies store
more data in digital media, managing that data and access
to it becomes increasingly important. Reliably remov-
ing data from persistent storage is an essential aspect of
this management process, and several techniques that re-
liably delete data from hard disks are available as built-in
ATA or SCSI commands, software tools, and government
standards.

These techniques provide effective means of sanitiz-
ing hard disk drives (HDDs) — either individual files they
store or the drive in their entirety. Software methods typ-
ically involve overwriting all or part of the drive multiple

times with patterns specifically designed to obscure any
remnant data. The ATA and SCSI command sets include
“secure erase” commands that should sanitize an entire
disk. Physical destruction and degaussing are also effec-
tive.

Flash-based solid-state drives (SSDs) differ from hard
drives in both the technology they use to store data (flash
chips vs. magnetic disks) and the algorithms they use
to manage and access that data. SSDs maintain a layer
of indirection between the logical block addresses that
computer systems use to access data and the raw flash
addresses that identify physical storage. The layer of in-
direction enhances SSD performance and reliability by
hiding flash memory’s idiosyncratic interface and man-
aging its limited lifetime, but it can also produce copies
of the data that are invisible to the user but that a sophis-
ticated attacker can recover.

The differences between SSDs and hard drives make it
uncertain whether techniques and commands developed
for hard drives willl be effective on SSDs. We have de-
veloped a procedure to determine whether a sanitization
procedure is effective on an SSDs: We write a structured
data pattern to the drive, apply the sanitization technique,
dismantle the drive, and extract the raw data directly
from the flash chips using a custom flash testing system.

We tested ATA commands for sanitizing an entire
SSD, software techniques to do the same, and software
techniques for sanitizing individual files. We find that
while most implementations of the ATA commands are
correct, others contain serious bugs that can, in some
cases, result in all the data remaining intact on the drive.
Our data shows software-based full-disk techniques are
usually, but not always, effective, and we have found evi-
dence that the data pattern used may impact the effective-
ness of overwriting. Single-file sanitization techniques,
however, consistently fail to remove data from the SSD.

Enabling single-file sanitization requires changes to
the flash translation layer that manages the mapping be-
tween logical and physical addresses. We have devel-



oped three mechanisms to support single-file sanitization
and implemented them in a simulated SSD. The mecha-
nisms rely on a detailed understanding of flash memory’s
behavior beyond what datasheets typically supply. The
techniques can either sacrifice a small amount of perfor-
mance for continuous sanitization or they can preserve
common case performance and support sanitization on
demand.

We conclude that the complexity of SSDs relative to
hard drives requires that they provide built-in sanitiza-
tion commands. Our tests show that since manufacturers
do not always implement these commands correctly, the
commands should be verifiable as well. Current and pro-
posed ATA and SCSI standards provide no mechanism
for verification and the current trend toward encrypting
SSDs makes verification even harder.

The remainder of this paper is organized as follows:
Section 2 describes the sanitization problem in detail.
Section 3 presents our verification methodology and re-
sults for existing hard disk-oriented techniques. Sec-
tion 4 describes our FTL extensions to support single-file
sanitization, and Section 5 presents our conclusions.

2 Sanitizing SSDs

The ability to reliably erase data from a storage device
is critical to maintaining the security of that data. This
paper identifies and develops effective methods for eras-
ing data from solid-state drives (SSDs). Before we can
address these goals, however, we must understand what
it means to sanitize storage. This section establishes
that definition while briefly describing techniques used
to erase hard drives. Then, it explains why those tech-
niques may not apply to SSDs.

2.1 Defining ‘“‘sanitized”

In this work, we use the term “sanitize” to describe the
process of erasing all or part of a storage device so that
the data it contained is difficult or impossible to recover.
Below we describe five different levels of sanitization
storage can undergo. We will use these terms to catego-
rize and evaluate the sanitization techniques in Sections 3
and 4.

The first level is logical sanitization. Data in log-
ically sanitized storage is not recoverable via standard
hardware interfaces such as standard ATA or SCSI com-
mands. Users can logically sanitize an entire hard drive
or an individual file by overwriting all or part of the
drive, respectively. Logical sanitization corresponds
to “clearing” as defined in NIST 800-88 [25], one of
several documents from governments around the world
[11, 26,9, 13, 17, 10] that provide guidance for data de-
struction.

The next level is digital sanitization. It is not possible
to recover data from digitally sanitized storage via any

digital means, including undocumented drive commands
or subversion of the device’s controller or firmware. On
disks, overwriting and then deleting a file suffices for
both logical and digital sanitization with the caveat that
overwriting may not digitally sanitize bad blocks that the
drive has retired from use. As we shall see, the complex-
ity of SSDs makes digitally sanitizing them more com-
plicated.

The next level of sanitization is analog sanitization.
Analog sanitization degrades the analog signal that en-
codes the data so that reconstructing the signal is effec-
tively impossible even with the most advanced sensing
equipment and expertise. NIST 800-88 refers to analog
sanitization as “purging.”

An alternative approach to overwriting or otherwise
obliterating bits is to cryptographically sanitize storage.
Here, the drive uses a cryptographic key to encrypt and
decrypt incoming and outgoing data. To sanitize the
drive, the user issues a command to sanitize the storage
that holds the key. The effectiveness of cryptographic
sanitization relies on the security of the encryption sys-
tem used (e.g., AES [24]), and upon the designer’s abil-
ity to eliminate “side channel” attacks that might allow
an adversary to extract the key or otherwise bypass the
encryption.

The correct choice of sanitization level for a partic-
ular application depends on the sensitivity of the data
and the means and expertise of the expected adversary.
Many government standards [11, 26, 9, 13, 17, 10] and
secure erase software programs use multiple overwrites
to erase data on hard drives. As a result many individuals
and companies rely on software-based overwrite tech-
niques for disposing of data. To our knowledge (based
on working closely with several government agencies),
no one has ever publicly demonstrated bulk recovery of
data from an HDD after such erasure, so this confidence
is probably well-placed..

2.2 SSD challenges

The internals of an SSD differ in almost every respect
from a hard drive, so assuming that the erasure tech-
niques that work for hard drives will also work for SSDs
is dangerous.

SSDs use flash memory to store data. Flash memory is
divided into pages and blocks. Program operations apply
to pages and can only change 1s to Os. Erase operations
apply to blocks and set all the bits in a block to 1. As a
result, in-place update is not possible. There are typically
64-256 pages in a block (see Table 5).

A flash translation layer (FTL) [15] manages the map-
ping between logical block addresses (LBAs) that are
visible via the ATA or SCSI interface and physical pages

1Of course, there may have been non-public demonstration.



of flash memory. Because of the mismatch in granular-
ity between erase operations and program operations in
flash, in-place update of the sector at an LBA is not pos-
sible.

Instead, to modify a sector, the FTL will write the new
contents for the sector to another location and update the
map so that the new data appears at the target LBA. As a
result, the old version of the data remains in digital form
in the flash memory. We refer to these “left over” data as
digital remnants.

Since in-place updates are not possible in SSDs, the
overwrite-based erasure techniques that work well for
hard drives may not work properly for SSDs. Those
techniques assume that overwriting a portion of the LBA
space results in overwriting the same physical media that
stored the original data. Overwriting data on an SSD re-
sults in logical sanitization (i.e., the data is not retrievable
via the SATA or SCSI interface) but not digital sanitiza-
tion.

Analog sanitization is more complex for SSDs than for
hard drives as well. Gutmann [20, 19] examines the prob-
lem of data remnants in flash, DRAM, SRAM, and EEP-
ROM, and recently, so-called “cold boot” attacks [21] re-
covered data from powered-down DRAM devices. The
analysis in these papers suggests that verifying analog
sanitization in memories is challenging because there are
many mechanisms that can imprint remnant data on the
devices.

The simplest of these is that the voltage level on an
erased flash cell’s floating gate may vary depending on
the value it held before the erase command. Multi-level
cell devices (MLC), which store more than one bit per
floating gate, already provide stringent control the volt-
age in an erased cell, and our conversations with industry
[1] suggest that a single erasure may be sufficient. For
devices that store a single bit per cell (SLC) a single era-
sure may not suffice. We do not address analog erasure
further in this work.

The quantity of digital remnant data in an SSD can be
quite large. The SSDs we tested contain between 6 and
25% more physical flash storage than they advertise as
their logical capacity. Figure 1 demonstrates the exis-
tence of the remnants in an SSD. We created 1000 small
files on an SSD, dismantled the drive, and searched for
the files’ contents. The SSD contained up to 16 stale
copies of some of the files. The FTL created the copies
during garbage collection and out-of-place updates.

Complicating matters further, many drives encrypt
data and some appear to compress data as well to im-
prove write performance: one of our drives rumored to
use compression is 25% faster for writes of highly com-
pressible data than incompressible data. This adds an
additional level of complexity not present in hard drives.

Unless the drive is encrypted, recovering remnant data
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Figure 1: Multiple copies This graph shows The FTL

duplicating files up to 16 times. The graph exhibits a
spiking pattern which is probably due to the page-level
management by the FTL.
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Figure 2: Ming the Merciless Our custom FPGA-based
flash testing hardware provides direct access to flash
chips without interference from an FTL.

from the flash is not difficult. Figure 2 shows the FPGA-
based hardware we built to extract remnants. It cost
$1000 to build, but a simpler, microcontroller-based ver-
sion would cost as little as $200, and would require only
a moderate amount of technical skill to construct.

These differences between hard drives and SSDs po-
tentially lead to a dangerous disconnect between user
expectations and the drive’s actual behavior: An SSD’s
owner might apply a hard drive-centric sanitization tech-
nique under the misguided belief that it will render the
data essentially irrecoverable. In truth, data may remain
on the drive and require only moderate sophistication to
extract. The next section quantifies this risk by applying
commonly-used hard drive-oriented techniques to SSDs
and attempting to recover the “deleted” data.



512-Byte ATA Sector 88-byte fingerprint SSD Ctlr # SECURITY SEC. ERASE
Fingerprint 0 88 bytes) “Magic” Header (8 bytes) # & Type ERASE UNIT UNIT ENH
Fingerprint 1 (88 bytes) Generation # (8 bytes) A I-MLC || Not Sgpported Not Supported
Fngerrini 2 (@3 bytes) LBA (8 bytes) B 2-SLC Fa?led* Not Supported
Fngominta (88 byies) lteration # (8 bytes) C 1-MLC Failedt Not Supported
el 4 Cheok b D 3-MLC Failed} Not Supported
Fingerprint 4 (88 bytes) ecksum (4 bytes)
: GUD @ bytos) E 4-MLC Encryptedi Encryptedi
Padding (72 bytes) , F 5-MLC Success Success
Bit Pattern (44 bytes)
- G 6-MLC Success Success
H 7-MLC Success Success
Figure 3: Fingerprint structure The easily-identified I 8-MLC Success SUCCEss
fingerprint simplifies the task of identifying and recon- Ix 9-TLC Not Supported | Not Supported
structine remnant data Kx 10-MLC || Not Supported | Not Supported
& ’ Lx | 11-MLC || Not Supported | Not Supported

3 Existing techniques

This section describes our procedure for testing sanitiza-
tion techniques and then uses it to determine how well
hard drive sanitization techniques work for SSDs. We
consider both sanitizing an entire drive at once and se-
lectively sanitizing individual files. Then we briefly dis-
cuss our findings in relation to government standards for
sanitizing flash media.

3.1 Validation methodology

Our method for verifying digital sanitization operations
uses the lowest-level digital interface to the data in an
SSD: the pins of the individual flash chips.

To verify a sanitization operation, we write an iden-
tifiable data pattern called a fingerprint (Figure 3) to the
SSD and then apply the sanitization technique under test.
The fingerprint makes it easy to identify remnant digi-
tal data on the flash chips. It includes a sequence num-
ber that is unique across all fingerprints, byte patterns to
help in identifying and reassembling fingerprints, and a
checksum. It also includes an identifier that we use to
identify different sets of fingerprints. For instance, all
the fingerprints written as part of one overwrite pass or
to a particular file will have the same identifier. Each
fingerprint is 88 bytes long and repeats fives times in a
512-byte ATA sector.

Once we have applied the fingerprint and sanitized the
drive, we dismantle it. We use the flash testing system
in Figure 2 to extract raw data from its flash chips. The
testing system uses an FPGA running a Linux software
stack to provide direct access to the flash chips.

Finally, we assemble the fingerprints and analyze them
to determine if the sanitization was successful. SSDs
vary in how they spread and store data across flash chips:
some interleave bytes between chips (e.g., odd bytes on
one chip and even bytes on another) and others invert
data before writing. The fingerprint’s regularity makes
it easy to identify and reassemble them, despite these
complications. Counting the number of fingerprints that
remain and categorizing them by their IDs allows us to

xDrive reported success but all data remained on drive

FSanitization only successful under certain conditions

iDrive encrypted, unable to verify if keys were deleted
*USB mass storage device does not support ATA security [30]

Table 1: Built-in ATA sanitize commands Support for
built-in ATA security commands varied among drives,
and three of the drives tested did not properly execute
a sanitize command it reported to support.

measure the sanitization’s effectiveness.

3.2 Whole-drive sanitization

We evaluate three different techniques for sanitizing an
entire SSD: issuing a built-in sanitize command, repeat-
edly writing over the drive using normal IO operations,
and degaussing the drive. Then we briefly discuss lever-
aging encryption to sanitize SSDs.

3.2.1 Built-in sanitize commands

Most modern drives have built-in sanitize commands that
instruct on-board firmware to run a sanitization proto-
col on the drive. Since the manufacturer has full knowl-
edge of the drive’s design, these techniques should be
very reliable. However, implementing these commands
is optional in the drive specification standards. For in-
stance, removable USB drives do not support them as
they are not supported under the USB Mass Storage De-
vice class [30].

The ATA security command set specifies an “ERASE
UNIT” command that erases all user-accessible areas on
the drive by writing all binary zeros or ones [3]. There is
also an enhanced “ERASE UNIT ENH” command that
writes a vendor-defined pattern (presumably because the
vendor knows the best pattern to eliminate analog rem-
nants). The new ACS-2 specification [4], which is still
in draft at the time of this writing, specifies a “BLOCK
ERASE” command that is part of its SANITIZE feature
set. It instructs a drive to perform a block erase on all
memory blocks containing user data even if they are not
user-accessible.



We collected 12 different SSDs and determined if they
supported the security and sanitize feature sets. If the
SSD supported the command, we verified effectiveness
by writing a fingerprint to the entire drive several times
and then issuing the command. Overwriting several
times fills as much of the over-provision area as possi-
ble with fingerprint data.

Support and implementation of the built in commands
varied across vendors and firmware revisions (Table 1).
Of the 12 drives we tested, none supported the ACS-2
“SANITIZE BLOCK ERASE” command. This is not
surprising, since the standard is not yet final. Eight of the
drives reported that they supported the ATA SECURITY
feature set. One of these encrypts data, so we could not
verify if the sanitization was successful. Of the remain-
ing seven, only four executed the “ERASE UNIT” com-
mand reliably.

Drive B’s behavior is the most disturbing: it reported
that sanitization was successful, but a/l the data remained
intact. In fact, the filesystem was still mountable. Two
more drives suffered a bug that prevented the ERASE
UNIT command from working unless the drive firmware
was recently reset, otherwise the command would only
erase the first LBA. However, they accurately reported
that the command failed.

The wide variance among the drives leads us to con-
clude that each implementation of the security com-
mands must be individually tested before it can be trusted
to properly sanitize the drive.

In addition to the standard commands, several drive
manufacturers also provide special utilities that issue
non-standard erasure commands. We did not test these
commands, but we expect that results would be similar
to those for the ATA commands: most would work cor-
rectly but some may be buggy. Regardless, we feel these
non-standard commands are of limited use: the typical
user may not know which model of SSD they own, let
alone have the wherewithal to download specialized util-
ities for them. In addition, the usefulness of the utility
depends on the manufacture keeping it up-to-date and
available online. Standardized commands should work
correctly almost indefinitely.

3.2.2 Overwrite techniques

The second sanitization method is to use normal IO com-
mands to overwrite each logical block address on the
drive. Repeated software overwrite is at the heart of
many disk sanitization standards [11, 26, 9, 13, 17, 10]
and tools [23, 8, 16, 5]. All of the standards and tools
we have examined use a similar approach: They sequen-
tially overwrite the entire drive with between 1 and 35 bit
patterns. The US Air Force System Instruction 5020 [2]
is typical: It first fills the drive with binary zeros, then
binary ones, and finally an arbitrary character. The data

SSD Seq. 20 Pass Rand. 20 Pass

Init: Seq. \ Rand. Seq. \ Rand.
A >20 N/Ax% N/Ax N/Ax
B 1 N/Ax% N/Ax N/Ax
C 2 2 2 2
D 2 2 N/Ax N/Ax*
F 2 121 hrx 121 hr.x 121 hrx
J 2 70 hr.x 70 hr.x 70 hr.x
K 2 140 hr.x 140 hr.x 140 hr.x
L 2 58 hr.x 58 hr.x 58 hr.x

xInsufficient drives to perform test
* Test took too long to perform, time for single pass indicated.

Table 2: Whole-disk software overwrite. The number
in each column indicates the number of passes needed to
erase data on the drive. Drives G through I encrypt, so
we could not conclude anything about the success of the
techniques.

is then read back to confirm that only the character is
present.

The varied bit patterns aim to switch as many of the
physical bits on the drive as possible and, therefore, make
it more difficult to recover the data via analog means.

Bit patterns are potentially important for SSDs as well,
but for different reasons. Since some SSDs compress
data before storing, they will write fewer bits to the flash
if the data is highly compressible. This suggests that
for maximum effectiveness, SSD overwrite procedures
should use random data. However, only one of the drives
we tested (Drive G) appeared to use compression, and
since it also encrypts data we could not verify sanitiza-
tion.

Since our focus is on digital erasure, the bit patterns
are not relevant for drives that store unencrypted, un-
compressed data. This means we can evaluate overwrite
techniques in general by simply overwriting a drive with
many generations of fingerprints, extracting its contents,
and counting the number of generations still present on
the drive. If k generations remain, and the first genera-
tion is completely erased, then k passes are sufficient to
erase the drive.

The complexity of SSD FTLs means that the usage
history before the overwrite passes may impact the ef-
fectiveness of the technique. To account for this, we pre-
pared SSDs by writing the first pass of data either se-
quentially or randomly. Then, we performed 20 sequen-
tial overwrites. For the random writes, we wrote every
LBA exactly once, but in a pseudo-random order.

Table 2 shows the results for the eight non-encrypting
drives we tested. The numbers indicate how many gen-
erations of data were necessary to erase the drive. For
some drives, random writes were prohibitively slow, tak-
ing as long as 121 hours for a single pass, so we do not



perform the random write test on these drives. In most
cases, overwriting the entire disk twice was sufficient to
sanitize the disk, regardless of the previous state of the
drive. There were three exceptions: about 1% (1 GB)
of the data remained on Drive A after twenty passes. We
also tested a commercial implementation of the four-pass
5220.22-M standard [12] on Drive C. For the sequential
initialization case, it removed all the data, but with ran-
dom initialization, a single fingerprint remained. Since
our testing procedure destroys the drive, we did not per-
form some test combinations.

Overall, the results for overwriting are poor: while
overwriting appears to be effective in some cases across a
wide range of drives, it is clearly not universally reliable.
It seems unlikely that an individual or organization ex-
pending the effort to sanitize a device would be satisfied
with this level of performance.

3.2.3 Degaussing

We also evaluated degaussing as a method for erasing
SSDs. Degaussing is a fast, effective means of destroy-
ing hard drives, since it removes the disks low-level for-
matting (along with all the data) and damages the drive
motor. The mechanism flash memories use to store data
is not magnetism-based, so we did not expect the de-
gausser to erase the flash cells directly. However, the
strong alternating magnetic fields that the degausser pro-
duces will induce powerful eddy currents in chip’s metal
layers. These currents may damage the chips, leaving
them unreadable.

We degaussed individual flash chips written with our
fingerprint rather than entire SSDs. We used seven chips
(marked with T in Table 5) that covered SLC, MLC and
TLC (triple-level cell) devices across a range of process
generation feature sizes. The degausser was a Security,
Inc. HD-3D hard drive degausser that has been evalu-
ated for the NSA and can thoroughly sanitize modern
hard drives. It degaussed the chips by applying a rotating
14,000 gauss field co-planar to the chips and an 8,000
gauss perpendicular alternating field. In all cases, the
data remained intact.

3.2.4 Encryption

Many recently-introduced SSDs encrypt data by default,
because it provides increased security. It also provides a
quick means to sanitize the device, since deleting the en-
cryption key will, in theory, render the data on the drive
irretrievable. Drive E takes this approach.

The advantage of this approach is that it is very fast:
The sanitization command takes less than a second for
Drive E. The danger, however, is that it relies on the con-
troller to properly sanitize the internal storage location
that holds the encryption key and any other derived val-
ues that might be useful in cryptanalysis. Given the bugs

we found in some implementations of secure erase com-
mands, it is unduly optimistic to assume that SSD ven-
dors will properly sanitize the key store. Further, there is
no way verify that erasure has occurred (e.g., by disman-
tling the drive).

A hybrid approach called SAFE [29] can provide both
speed and verifiability. SAFE sanitizes the key store and
then performs an erase on each block in a flash storage
array. When the erase is finished, the drive enters a “ver-
ifiable” state. In this state, it is possible to dismantle the
drive and verify that the erasure portion of the sanitiza-
tion process was successful.

3.3 Single-file sanitization

Sanitizing single files while leaving the rest of the data
in the drive intact is important for maintaining data se-
curity in drives that are still in use. For instance, users
may wish to destroy data such as encryption keys, finan-
cial records, or legal documents when they are no longer
needed. Furthermore, for systems such as personal com-
puters and cell phone where the operating system, pro-
grams, and user data all reside on the same SSD, sani-
tizing single files is the only sanitization option that will
leave the system in a usable state.

Erasing a file is a more delicate operation than eras-
ing the entire drive. It requires erasing data from one
or more ranges of LBAs while leaving the rest of the
drive’s contents untouched. Neither hard disks nor SSDs
include specialized commands to erase specific regions
of the drive?.

Many software utilities [14, 5, 28, 23] attempt to san-
itize individual files. All of them use the same approach
as the software-based full-disk erasure tools: they over-
write the file multiple times with multiple bit patterns and
then delete it. Other programs will repeatedly overwrite
the free space (i.e., space that the file system has not allo-
cated to a file) on the drive to securely erase any deleted
files.

We test 13 protocols, published as a variety of gov-
ernment standards, as well as commercial software de-
signed to erase single files. To reduce the number of
drives needed to tests these techniques, we tested multi-
ple techniques simultaneously on one drive. We format-
ted the drive under windows and filled a series of 1 GB
files with different fingerprints. We then applied one era-
sure technique to each file, disassembled the drive, and
searched for the fingerprints.

Because we applied multiple techniques to the drive at
once, the techniques may interact: If the first technique
leaves data behind, a later technique might overwrite it.
However, the amount of data we recover from each file

2The ACS-2 draft standard [4] provide a “TRIM” command that
informs drive that a range of LBAs is no longer in use, but this does not
have any reliable effect on data security.



Overwrite operation Data recovered
SSDs | UsB
Filesystem delete 4.3-91.3% 99.4%
Gutmann [19] 0.8-4.3% 71.7%
Gutmann “Lite” [19] 0.02 - 8.7% 84.9%
US DoD 5220.22-M (7) [11] 0.01-4.1% 0.0 - 8.9%
RCMP TSSIT OPS-II [26] 0.01 -9.0% 0.0 -23.5%
Schneier 7 Pass [27] 1.7 - 8.0% 0.0-16.2%
German VSITR [9] 5.3-57% 0.0-9.3%
US DoD 5220.22-M (4) [11] 5.6-6.5% 0.0-11.5%
British HMG IS5 (Enh.) [14] 4.3 -7.6% 0.0 -34.7%
US Air Force 5020 [2] 5.8-73% 0.0 - 63.5%
US Army AR380-19 [6] 6.91-7.07% 1.1%
Russian GOST P50739-95 [14] 7.07 - 13.86% 1.1%
British HMG IS5 (Base.) [14] 6.3 -58.3% 0.6%
Pseudorandom Data [14] 6.16 - 75.7% 1.1%
Mac OS X Sec. Erase Trash [5] 67.0% 9.8%

Table 3: Single-file overwriting. None of the protocols
tested successfully sanitized the SSDs or the USB drive
in all cases. The ranges represent multiple experiments
with the same algorithm (see text).

[ Drive [ Overwrites [ Free Space | Recovered |
C (SSD) 100x 20 MB 87%
C 100x 19,800 MB 79%
C 100x + defrag. 20 MB 86%
L (USB key) 100x 6 MB 64%
L 100x 500 MB 53%
L 100x + defrag. 6 MB 62%

Table 4: Free space overwriting Free space overwrit-
ing left most of the data on the drive, even with varying
amounts of free space. Defragmenting the data had only
a small effect on the data left over (1%).

is a lower bound on amount left after the technique com-
pleted. To moderate this effect, we ran the experiment
three times, applying the techniques in different orders.
One protocol, described in 1996 by Gutmann [19], in-
cludes 35 passes and had a very large effect on mea-
surements for protocols run immediately before it, so we
measured its effectiveness on its own drive.

All single-file overwrite sanitization protocols failed
(Table 3): between 4% and 75% of the files’ contents
remained on the SATA SSDs. USB drives performed no
better: between 0.57% and 84.9% of the data remained.

Next, we tried overwriting the free space on the drive.
In order to simulate a used drive, we filled the drive
with small (4 KB) and large files (512 KB+). Then, we
deleted all the small files and overwrote the free space
100 times. Table 4 shows that regardless of the amount
of free space on the drive, overwriting free space was not
successful. Finally, we tried defragmenting the drive,
reasoning that rearranging the files in the file system
might encourage the FTL to reuse more physical storage
locations. The table shows this was also ineffective.

3.4 Sanitization standards

Although many government standards provide guidance
on storage sanitization, only one [25] (that we are aware
of) provides guidance specifically for SSDs and that is
limited to “USB Removable Disks.” Most standards,
however, provide separate guidance for magnetic media
and flash memory.

For magnetic media such as hard disks, the standards
are consistent: overwrite the drive a number of times,
execute the built-in secure erase command and destroy
the drive, or degauss the drive. For flash memory, how-
ever, the standards do not agree. For example, NIST 800-
88 [25] suggests overwriting the drive, Air Force Sys-
tem Security Instruction 5020 suggests ‘[using] the erase
procedures provided by the manufacturer” [2], and the
DSS Clearing & Sanitization matrix [11] suggests “per-
form[ing] a full chip erase per manufacturer’s datasheet.”

None of these solutions are satisfactory: Our data
shows that overwriting is ineffective and that the “erase
procedures provided by the manufacturer” may not work
properly in all cases. The final suggestion to perform a
chip erase seems to apply to chips rather than drives, and
it is easy to imagine it being interpreted incorrectly or
applied to SSDs inappropriately. Should the user consult
the chip manufacturer, the controller manufacturer, or the
drive manufacturer for guidance on sanitization?

We conclude that the complexity of SSDs relative to
hard drives requires that they provide built-in sanitiza-
tion commands. Since our tests show that manufacturers
do not always implement these commands correctly, they
should be verifiable as well. Current and proposed ATA
and SCSI standards provide no mechanism for verifica-
tion and the current trend toward encrypting SSDs makes
verification even harder.

Built-in commands for whole disk sanitization appear
to be effective, if implemented correctly. However, no
drives provide support for sanitizing a single file in iso-
lation. The next section explores how an FTL might sup-
port this operation.

4 Erasing files

The software-only techniques for sanitizing a single file
we evaluated in Section 3 failed because FTL complexity
makes it difficult to reliably access a particular physical
storage location. Circumventing this problem requires
changes in the FTL. Previous work in this area [22] used
encryption to support sanitizing individual files in a file
system custom built for flash memory. This approach
makes recovery from file system corruption difficult and
it does not apply to generic SSDs.

This section describes FTL support for sanitizing ar-
bitrary regions of an SSD’s logical block address space.
The extensions we describe leverage detailed measure-
ments of flash memory characteristics. We briefly de-



Chip Name Max Tech | Cap. Page Pages | Blocks | Planes | Dies Die
Cycles | Node | (Gb) | Size (B) | /Block | /Plane /Die Cap (Gb)
CTLC16" || + [43mm | 16 | 8192 [ « 8192 * | 1 [ 16 ]
B-MLC32-4* 5,000 | 34nm | 128 4096 256 2048 2 4 32
B-MLC32-1* 5,000 | 34nm | 32 4096 256 2048 2 1 32
F-MLC16* 5,000 | 41nm | 16 4096 128 2048 2 1 16
A-MLC16* 10,000 * 16 4096 128 2048 2 1 16
B-MLC16* 10,000 | 50 nm | 32 4096 128 2048 2 2 16
C-MLC167 * * 32 4096 * * * 2 16
D-MLCI16* 10,000 * 32 4096 128 4096 1 2 16
E-MLC16"* TBD * 64 4096 128 2048 2 4 16
B-MLC8* 10,000 | 72 nm 8 2048 128 4096 1 1 8
E-MLC4* 10,000 * 8 4096 128 1024 1 2 4
E-SLC8™ 100,000 * 16 4096 64 2048 2 2 8
A-SLC8* 100,000 * 8 2048 64 4096 2 1 8
A-SLC4* 100,000 * 4 2048 64 4096 1 1 4
B-SLC2* 100,000 | 50 nm 2 2048 64 2048 1 1 2
B-SLC4* 100,000 | 72 nm 4 2048 64 2048 2 1 4
E-SLC4* 100,000 * 8 2048 64 4096 1 2 4
A-SLC2* 100,000 * 2 2048 64 1024 2 1 2

*Chips tested for data scrubbing.

TChips tested for degaussing.

* No data available

Table 5: Flash Chip Parameters. Each name encodes the manufacturer, cell type and die capacity in Gbits. Parame-
ters are drawn from datasheets where available. We studied 18 chips from 6 manufacturers.

scribe our baseline FTL and the details of flash behav-
ior that our technique relies upon. Then, we present and
evaluate three ways an FTL can support single-file sani-
tization.

4.1 The flash translation layer

We use the FTL described in [7] as a starting point. The
FTL is page-based, which means that LBAs map to in-
dividual pages rather than blocks. It uses log-structured
writes, filling up one block with write data as it arrives,
before moving on to another. As it writes new data for
an LBA, the old version of the data becomes invalid but
remains in the array (i.e., it becomes remnant data).

When a block is full, the FTL must locate a new,
erased block to continue writing. It keeps a pool of
erased blocks for this purpose. If the FTL starts to
run short of erased blocks, further incoming accesses
will stall while it performs garbage collection by con-
solidating valid data and freeing up additional blocks.
Once its supply of empty blocks is replenished, it re-
sumes processing requests. During idle periods, it per-
forms garbage collection in the background, so blocking
is rarely needed.

To rebuild the map on startup, the FTL stores a reverse
map (from physical address to LBA) in a distributed fash-

ion. When the FTL writes data to a page, the FTL writes
the corresponding LBA to the page’s out-of-band sec-
tion. To accelerate the start-up scan, the FTL stores a
summary of this information for the entire block in the
block’s last page. This complete reverse map will also
enable efficiently locating all copies of an LBA’s data in
our scan-based scrub technique (See Section 4.4).

4.2 Scrubbing LBAs

Sanitizing an individual LBA is difficult because the
flash page it resides in may be part of a block that con-
tains useful data. Since flash only supports erasure at the
block level, it is not possible to erase the LBA’s contents
in isolation without incurring the high cost of copying the
entire contents of the block (except the page containing
the target LBA) and erasing it.

However, programming individual pages is possible,
so an alternative would be to re-program the page to turn
all the remaining 1s into Os. We call this scrubbing the
page. A scrubbing FTL could remove remnant data by
scrubbing pages that contain stale copies of data in the
flash array, or it could prevent their creation by scrubbing
the page that contained the previous version whenever it
wrote a new one.

The catch with scrubbing is that manufacturer
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Figure 4: Testing data scrubbing To determine whether
flash devices can support scrubbing we programmed
them with random data, randomly scrubbed pages one
at a time, and then checked for errors.

datasheets require programming the pages within a block
in order to reduce the impact of program disturb effects
that can increase error rates. Scrubbing would violate
this requirement. However, previous work [18] shows
that the impact of reprogramming varies widely between
pages and between flash devices, and that, in some cases,
reprogramming (or scrubbing) pages would have no ef-
fect.

To test this hypothesis, we use our flash testing board
to scrub pages on 16 of the chips in Table 5 and measure
the impact on error rate. The chips span six manufac-
turers, five technology nodes and include both MLC and
SLC chips.

Figure 4 describes the test we ran. First, we erase the
block and program random data to each of its pages to
represent user data. Then, we scrub the pages in ran-
dom order. After each scrub we read all pages in the
block to check for errors. Flash blocks are independent,
so checking for errors only within the block is sufficient.
We repeated the test across 16 blocks spread across each
chip.

The results showed that, for SLC devices, scrubbing
did not cause any errors at all. This means that the num-
ber scrubs that are acceptable — the scrub budget — for
SLC chips is equal to the number of pages in a block.

For MLC devices determining the scrub budget is
more complicated. First, scrubbing one page invariably
caused severe corruption in exactly one other page. This
occurred because each transistor in an MLC array holds
two bits that belong to different pages, and scrubbing one
page reliably corrupts the other. Fortunately, it is easy to
determine the paired page layout in all the chips we have
tested, and the location of the paired page of a given page
is fixed for a particular chip model. The paired page ef-
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Figure 5: Behavior under data scrubbing Scrubbing
causes more errors in some chips than others, resulting
in wide variation of scrub budgets for MLC devices.

fect means that the FTL must scrub both pages in a pair
at the same time, relocating the data in the page that was
not the primary target of the scrub.

Figure 5 shows bit error rates for MLC devices as a
function of scrub count, but excluding errors in paired
pages. The data show that for three of the nine chips we
tested, scrubbing caused errors in the unscrubbed data in
the block. For five of the remaining devices errors start to
appear after between 2 and 46 scrubs. The final chip, B-
MLC32-1, showed errors without any scrubbing. For all
the chips that showed errors, error rates increase steeply
with more scrubbing (the vertical axis is a log scale).

It may be possible to reduce the impact of scrubbing
(and, therefore, increase the scrub budget) by carefully
measuring the location of errors caused by scrubbing a
particular page. Program disturb effects are strongest
between physically adjacent cells, so the distribution of
scrubs should affect the errors they cause. As a result,
whether scrubbing page is safe would depend on which
other pages the FTL has scrubbed in the block, not the
number of scrubs.

The data in the figure also show that denser flash de-
vices are less amenable to scrubbing. The chips that
showed no errors (B-MLC16, D-MLC16, and B-MLCS)
are 50 nm or 70 nm devices, while the chips with the
lowest scrub budgets (F-MLC16, B-MLC32-4, and B-
MLC32-1) are 34 or 41 nm devices.

4.3 Sanitizing files in the FTL

The next step is to use scrubbing to add file sanitization
support to our FTL. We consider three different methods
that make different trade-offs between performance and
data security — immediate scrubbing, background scrub-
bing, and scan-based scrubbing.



Name [ Total Accesses | Reads | Description
Patch 64 GB 83% | Applies patches to the Linux kernel from version 2.6.0 to 2.6.29
OLTP 34 GB 80% Real-time processing of SQL transactions
Berkeley-DB Btree 34 GB 34% Transactional updates to a B+tree key/value store

Financial 17 GB 15% Live OLTP trace for financial transactions.

Build 5.5GB 94% Compilation of the Linux 2.6 kernel
Software devel. 1.1 GB 65% 24 hour trace of a software development work station.

Swap 800 MB 84% Virtual memory trace for desktop applications.

Table 6: Benchmark and application traces We use traces from eight benchmarks and workloads to evaluate scrub-

bing.

These methods will eliminate all remnants in the
drive’s spare area (i.e., that are not reachable via a log-
ical block address). As a result, if a file system does
not create remnants on a normal hard drive (e.g., if the
file system overwrite a file’s LBAs when it performs a
delete), it will not create remnants when running on our
FTL.

Immediate scrubbing provides the highest level of se-
curity: write operations do not complete until the scrub-
bing is finished — that is, until FTL has scrubbed the page
that contained the old version of the LBA’s contents. In
most cases, the performance impact will be minimal be-
cause the FTL can perform the scrub and the program in
parallel.

When the FTL exceeds the scrub budget for a block,
it must copy the contents of the block’s valid pages to a
new block and then erase the block before the operation
can complete. As a result, small scrub budgets (as we
saw for some MLC devices) can degrade performance.
We measure this effect below.

Background scrubbing provides better performance by
allowing writes to complete and then performing the
scrubbing in the background. This results in a brief win-
dow when remnant data remains on the drive. Back-
ground scrubbing can still degrade performance because
the scrub operations will compete with other requests for
access to the flash.

Scan-based scrubbing incurs no performance overhead
on normal write operations but adds a command to sani-
tize a range of LBAs by overwriting the current contents
of the LBAs with zero and then scrubbing any storage
that previously held data for the LBAs. This technique
exploits the reverse (physical to logical) address map
that the SSD stores to reconstruct the logical-to-physical
map.

To execute a scan-based scrubbing command, the FTL
reads the summary page from each block and checks if
any of the pages in the block hold a copy of an LBA that
the scrub command targets. If it does, the FTL scrubs
that page. If it exceeds the scrub budget, the FTL will
need to relocate the block’s contents.

We also considered an SSD command that would ap-
ply scrubbing to specific write operations that the op-
erating system or file system marked as ‘“sanitizing.”
However, immediate and background scrubbing work by
guaranteeing that only one valid copy of an LBA exists
by always scrubbing old version when writing the new
version. Applying scrubbing to only a subset of writes
would violate this invariant and allow the creation of
remnants that a single scrub could not remove.

4.4 Results

To understand the performance impact of our scrubbing
techniques, we implemented them in a trace-based FTL
simulator. The simulator implements the baseline FTL
described above and includes detailed modeling of com-
mand latencies (based on measurements of the chips in
Table 5) and garbage collection overheads. For these ex-
periments we used E-SLCS to collect SLC data and F-
MLCI16 to for MLC data. We simulate a small, 16 GB
SSD with 15% spare area to ensure that the FTL does
frequent garbage collection even on the shorter traces.

Table 6 summarizes the eight traces we used in our
experiments. They cover a wide range of applications
from web-based services to software development to
databases. We ran each trace on our simulator and report
the latency of each FTL-level page-sized access and trace
run time. Since the traces include information about
when each the application performed each IO, the change
in trace run-time corresponds to application-level perfor-
mance changes.

Immediate and background scrubbing Figure 6
compares the write latency for immediate and back-
ground scrubbing on SLC and MLC devices. For MLC,
we varied the number of scrubs allowed before the FTL
must copy out the contents of the block. The figure nor-
malizes the data to the baseline configuration that does
not perform scrubbing or provide any protection against
remnant data.

For SLC-based SSDs, immediate scrubbing causes no
decrease in performance, because scrubs frequently exe-
cute in parallel with the normal write access.
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Figure 6: Immediate and background scrubbing performance For chips that can withstand at least 64 scrub opera-
tions, both background and immediate scrubbing can prevent the creation of data remnants with minimal performance
impact. For SLC devices (which can support unlimited scrubbing), background scrubbing has almost no effect and

immediate scrubbing increases write latency by about 2.

In MLC devices, the cost of immediate scrubbing can
be very high if the chip can tolerate only a few scrubs be-
fore an erase. For 16 scrubs, operation latency increases
by 6.4x on average and total runtime increases by up to
11.0x, depending on the application. For 64 scrubs, the
cost drops to 2.0x and 3.2, respectively.

However, even a small scrub budget reduces latency
significantly compared relying on using erases (and the
associated copy operations) to prevent remnants. Tm-
plementing immediate sanitization with just erase com-
mands increases operation latency by 130x on average
(as shown by the “Scrub 0” data in Figure 5).

If the application allows time for background opera-
tions (e.g., Build, Swap and Dev), background scrub-
bing with a scrub budget of 16 or 64 has a negligible ef-
fect on performance. However, when the application is-
sues many requests in quick succession (e.g., OLTP and
BDB), scrubbing in the background strains the garbage
collection system and write latencies increase by 126X
for 16 scrubs and 85x for 64 scrubs. In contrast, slow-
down for immediate scrubbing range from just 1.9 to
2.0x for a scrub budget of 64 and from 4.1 to 7.9 for
16 scrubs.

Scrubbing also increases the number of erases re-
quired and, therefore, speeds up program/erase-induced
wear out. Our results for MLC devices show that scrub-
bing increased wear by 5.1x for 16 scrubs per block and
2.0x with 64 scrubs per block. Depending on the appli-
cation, the increased wear for chips that can tolerate only
a few scrubs may or may not be acceptable. Scrubbing
SLC devices does not require additional erase operations.

Finally, scrubbing may impact the long-term integrity
of data stored in the SSD in two ways. First, although
manufactures guarantee that data in brand new flash de-
vices will remain intact for at least 10 years, as the chip
ages data retention time drops. As a result, the increase
in wear that scrubbing causes will reduce data retention
time over the lifetime of the SSD. Second, even when
scrubbing does not cause errors immediately, it may af-
fect the analog state of other cells, making it more likely
that they give rise to errors later. Figure 6 demonstrates
the analog nature of the effect: B-MLC32-4 shows errors
that come and go for eight scrubs.

Overall, both immediate and background scrubbing
are useful options for SLC-based SSDs and for MLC-
based drives that can tolerate at least 64 scrubs per block.
For smaller scrub budgets, both the increase in wear
and the increase in write latency make these techniques
costly. Below, we describe another approach to sanitiz-
ing files that does not incur these costs.

Scan-based scrubbing Figure 7 measures the latency
for a scan-based scrubbing operation in our FTL. We ran
each trace to completion and then issued a scrub com-
mand to 1 GB worth of LBAs from the middle of the de-
vice. The amount of scrubbing that the chips can tolerate
affects performance here as well: scrubbing can reduce
the scan time by as much as 47%. However, even for the
case where we must use only erase commands (MLC-
scrub-0), the operation takes a maximum of 22 seconds.
This latency breaks down into two parts — the time re-
quired to scan the summary pages in each block (0.64 s
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Figure 7: Scan-based scrubbing latency The time to
scrub 1 GB varies with the number of scrubs each block
can withstand, but in all cases the operation takes less
than 30 seconds.

for our SLC SSD and 1.3 s for MLC) and the time to per-
form the scrubbing operations and the resulting garbage
collection. The summary scan time will scale with SSD
size, but the scrubbing and garbage collection time are
primarily a function of the size of the target LBA region.
As a result, scan-based scrubbing even on large drives
will be quick (e.g., ~62 s for a 512 GB drive).

5 Conclusion

Sanitizing storage media to reliably destroy data is an
essential aspect of overall data security. We have em-
pirically measured the effectiveness of hard drive-centric
sanitization techniques on flash-based SSDs. For san-
itizing entire disks, built-in sanitize commands are ef-
fective when implemented correctly, and software tech-
niques work most, but not all, of the time. We found that
none of the available software techniques for sanitizing
individual files were effective. To remedy this problem,
we described and evaluated three simple extensions to an
existing FTL that make file sanitization fast and effec-
tive. Overall, we conclude that the increased complexity
of SSDs relative to hard drives requires that SSDs pro-
vide verifiable sanitization operations.
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