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Abstract 
We collected file system content data from 857 desktop 

computers at Microsoft over a span of 4 weeks.  We 

analyzed the data to determine the relative efficacy of 

data deduplication, particularly considering whole-file 

versus block-level elimination of redundancy.  We 

found that whole-file deduplication achieves about 

three quarters of the space savings of the most aggres-

sive block-level deduplication for storage of live file 

systems, and 87% of the savings for backup images.  

We also studied file fragmentation finding that it is not 

prevalent, and updated prior file system metadata stud-

ies, finding that the distribution of file sizes continues 

to skew toward very large unstructured files. 

1   Introduction 
File systems often contain redundant copies of infor-

mation: identical files or sub-file regions, possibly 

stored on a single host, on a shared storage cluster, or 

backed-up to secondary storage.  Deduplicating storage 

systems take advantage of this redundancy to reduce the 

underlying space needed to contain the file systems (or 

backup images thereof).  Deduplication can work at 

either the sub-file [10, 31] or whole-file [5] level.  More 

fine-grained deduplication creates more opportunities 

for space savings, but necessarily reduces the sequential 

layout of some files, which may have significant per-

formance impacts when hard disks are used for storage 

(and in some cases [33] necessitates complicated tech-

niques to improve performance).  Alternatively, whole-

file deduplication is simpler and eliminates file-

fragmentation concerns, though at the cost of some oth-

erwise reclaimable storage. 

Because the disk technology trend is toward improved 

sequential bandwidth and reduced per-byte cost with 

little or no improvement in random access speed, it’s 

not clear that trading away sequentiality for space sav-

ings makes sense, at least in primary storage. 

In order to evaluate the tradeoff in space savings be-

tween whole-file and block-based deduplication, we 

conducted a large-scale study of file system contents on 

desktop Windows machines at Microsoft. Our study 

consists of 857 file systems spanning 162 terabytes of 

disk over 4 weeks.  It includes results from a broad 

cross-section of employees, including software devel-

opers, testers, management, sales & marketing, tech-

nical support, documentation writers and legal staff.  

We find that while block-based deduplication of our 

dataset can lower storage consumption to as little as 

32% of its original requirements, nearly three quarters 

of the improvement observed could be captured through 

whole-file deduplication and sparseness.  For four 

weeks of full backups, whole file deduplication (where 

a new backup image contains a reference to a duplicate 

file in an old backup) achieves 87% of the savings of 

block-based.  We also explore the parameter space for 

deduplication systems, and quantify the relative bene-

fits of sparse file support.  Our study of file content is 

larger and more detailed than any previously published 

effort, which promises to inform the design of space-

efficient storage systems. 

In addition, we have conducted a study of metadata and 

data layout, as the last similar study [1] is now 4 years 

old.  We find that the previously observed trend toward 

storage being consumed by files of increasing size con-

tinues unabated; half of all bytes are in files larger than 

30MB (this figure was 2MB in 2000). Complicating 

matters, these files are in opaque unstructured formats 

with complicated access patterns.  At the same time 

there are increasingly many small files in an increasing-

ly complex file system tree.  

Contrary to previous work [28], we find that file-level 

fragmentation is not widespread, presumably due to 

regularly scheduled background defragmenting in Win-

dows [17] and the finding that a large portion of files 

are rarely modified (see Section 4.4.2). For more than a 

decade, file system designers have been warned against 

measuring only fresh file system installations, since 

aged systems can have a significantly different perfor-

mance profile [28]. Our results show that this concern 

may no longer be relevant, at least to the extent that the 

aging produces file-level fragmentation. Ninety-six 



percent of files observed are entirely linear in the block 

address space. To our knowledge, this is the first large 

scale study of disk fragmentation in the wild. 

We describe in detail the novel analysis optimizations 

necessitated by the size of this data set.  

2   Methodology 
Potential participants were selected randomly from Mi-

crosoft employees. Each was contacted with an offer to 

install a file system scanner on their work computer(s) 

in exchange for a chance to win a prize. The scanner 

ran autonomously during off hours once per week from 

September 18 – October 16, 2009. We contacted 10,500 

people in this manner to reach the target study size of 

about 1000 users. This represents a participation rate of 

roughly 10%, which is smaller than the rates of 22% in 

similar prior studies [1, 9]. Anecdotally, many potential 

participants declined explicitly because the scanning 

process was quite invasive. 

2.1   File system Scanner 
The scanner first took a consistent snapshot of fixed 

device (non-removable) file systems with the Volume 

Shadow Copy Service (VSS) [20]. VSS snapshots are 

both file system and application consistent
1
.  It then 

recorded metadata about the file system itself, including 

age, capacity, and space utilization. The scanner next 

processed each file in the snapshot, writing records to a 

log. It recorded Windows file metadata [19], including 

path, file name and extension, time stamps, and the file 

attribute flags. It recorded any retrieval and allocation 

pointers, which describe fragmentation and sparseness 

respectively. It also recorded information about the 

whole system, including the computer’s hardware and 

software configuration and the time at which the 

defragmentation tool was last run, which is available in 

the Windows registry. We took care to exclude from 

study the pagefile, hibernation file, the scanner itself, 

and the VSS snapshots it created. 

During the scan, we recorded the contents of each file 

first by breaking the file into chunks using each of two 

chunking algorithms (fixed block and Rabin finger-

printing [25]) with each of 4 chunk size settings (8K-

64K in powers of two) and then computed and saved 

hashes of each chunk. We found whole file duplicates 

in post-processing by identifying files in which all 

                                                           
1
 “Application consistent” means that VSS-aware appli-

cations have an opportunity to save their state cleanly 

before the snapshot is taken. 

chunks matched.  In addition to reading the ordinary 

contents of files we also collected a separate set of 

scans where the files were read using the Win32 Back-

upRead API [16], which includes metadata about the 

file and would likely be the format used to store file 

system backups. 

We used salted MD5 [26] as our hash algorithm, but 

truncated the result to 48 bits in order to reduce the size 

of the data set.  The Rabin-chunked data with an 8K 

target chunk size had the largest number of unique 

hashes, somewhat more than 768M.  We expect that 

about two thousand of those (0.0003%) are false 

matches due to the truncated hash. 

Another process copied the log files to our server at 

midnight on a random night of the week to help smooth 

the considerable network traffic. Nevertheless, the cop-

ying process resulted in the loss of some of the scans. 

Because the scanner placed the results for each of the 

32 parameter settings into separate files and the copying 

process worked at the file level, for some file systems 

we have results for some, but not all of the parameter 

settings. In particular, larger scan files tended to be par-

tially copied more frequently than smaller ones, which 

may result in a bias in our data where larger file sys-

tems are more likely to be excluded. Similarly, scans 

with a smaller chunk size parameter resulted in larger 

size scan files and so were lost at a higher rate.  

2.2   Post Processing 
At the completion of the study the resulting data set was 

4.12 terabytes compressed, which would have required 

considerable machine time to import into a database. As 

an optimization, we observed that the actual value of 

any unique hash (i.e., hashes of content that was not 

duplicated) was not useful to our analyses. 

To find these unique hashes quickly we used a novel 2-

pass algorithm.  During the first pass we created a 2 GB 

Bloom filter [4] of each hash observed.  During this 

pass, if we tried to insert a value that was already in the 

Bloom filter, we inserted it into a second Bloom filter 

of equal size. We then made a second pass through the 

logs, comparing each hash to the second Bloom filter 

only. If it was not found in the second filter, we were 

certain that the hash had been seen exactly once and 

could be omitted from the database. If it was in the fil-

ter, we concluded that either the hash value had been 

seen more than once, or that its entry in the filter was a 

collision.  We recorded all of these values to the data-

base.  Thus this algorithm was sound, in that it did not 

impact the results by rejecting any duplicate hashes. 



However it was not complete despite being very effec-

tive, in that some non-duplicate hashes may have been 

added to the database even though they were not useful 

in the analysis.  The inclusion of these hashes did not 

affect our results, as the later processing ignored them. 

2.3 Biases and Sources of Error 
The use of Windows workstations in this study is bene-

ficial in that the results can be compared to those of 

similar studies [1, 9]. However, as in all data sets, this 

choice may introduce biases towards certain types of 

activities or data. For example, corporate policies sur-

rounding the use of external software and libraries 

could have impacted our results.  

As discussed above, the data retrieved from machines 

under observation was large and expensive to generate 

and so resulted in network timeouts at our server or 

aborted scans on the client side. While we took 

measures to limit these effects, nevertheless some 

amount of data never made it to the server, and more 

had to be discarded as incomplete records. Our use of 

VSS makes it possible for a user to selectively remove 

some portions of their file system from our study.  

We discovered a rare concurrency bug in the scanning 

tool affecting 0.003% of files. While this likely did not 

affect results, we removed all files with this artifact.   

Our scanner was unable to read the contents of Win-

dows system restore points, though it could see the file 

metadata.  We excluded these files from the deduplica-

tion analyses, but included them in the metadata anal-

yses. 

3   Redundancy in File Contents 
Despite the significant declines in storage costs per GB, 

many organizations have seen dramatic increases in 

total storage system costs [21]. There is considerable 

interest in reducing these costs, which has given rise to 

deduplication techniques, both in the academic com-

munity [6] and as commercial offerings [7, 10, 14, 33]. 

Initially, the interest in deduplication has centered on its 

use in “embarrassingly compressible” scenarios, such 

as regular full backups [3, 8] or virtual desktops [6, 13]. 

However, some have also suggested that deduplication 

be used more widely on general purpose data sets [31].  

The rest of this section seeks to provide a well-founded 

measure of duplication rates and compare the efficacy 

of different parameters and methods of deduplication. 

In Section 3.1 we provide a brief summary of dedupli-

cation, and in Section 3.2 we discuss the performance 

challenges deduplication introduces. In Section 3.3 we 

share observed duplication rates across a set of work-

stations. Finally, Section 3.4 measures duplication in 

the more conventional backup scenario. 

3.1   Background on Deduplication 
Deduplication systems decrease storage consumption 

by identifying distinct chunks of data with identical 

content. They then store a single copy of the chunk 

along with metadata about how to reconstruct the origi-

nal files from the chunks. 

Chunks may be of a predefined size and alignment, but 

are more commonly of variable size determined by the 

content itself. The canonical algorithm for variable-

sized content-defined blocks is Rabin Fingerprints [25]. 

By deciding chunk boundaries based on content, files 

that contain identical content that is shifted (say be-

cause of insertions or deletions) will still result in 

(some) identical chunks. Rabin-based algorithms are 

typically configured with a minimum and maximum 

chunk size, as well as an expected chunk size.  In all 

our experiments, we set the minimum and maximum 

parameters to 4K and 128K, respectively while we var-

ied the expected chunk size from 8K to 64K by powers-

of-two. 

3.2   The Performance Impacts of 

Deduplication 
Managing the overheads introduced by a deduplication 

system is challenging. Naively, each chunk’s finger-

print needs to be compared to that of all other chunks. 

While techniques such as caches and Bloom filters can 

mitigate overheads, the performance of deduplication 

systems remains a topic of research interest [32]. The 

I/O system also poses a performance challenge. In addi-

tion to the layer of indirection required by deduplica-

tion, deduplication has the effect of de-linearizing data 

placement, which is at odds with many data placement 

optimizations, particularly on hard-disk based storage 

where the cost for non-sequential access can be orders 

of magnitude greater than sequential. 

Other more established techniques to reduce storage 

consumption are simpler and have smaller performance 

impact. Sparse file support exists in many file systems 

including NTFS [23], XFS [29], and ext4 [15] and is 

relatively simple to implement. In a sparse file a chunk 

of zeros is stored notationally by marking its existence 

in the metadata, removing the need to physically store 

it. Whole file deduplication systems, such as the Win-

dows SIS facility [5] operate by finding entire files that  



 

Extension 
% of Dupli-

cate Space 

Mean File 

Size (bytes) 

dll 20% 521K 

lib 11% 1080K 

pdb 11% 2M 

<none> 7% 277K 

exe 6% 572K 

cab 4% 4M 

msp 3% 15M 

msi 3% 5M 

iso 2% 436M 

<a guid> 1% 604K 

hxs 1% 2M 

xml 1% 49K 

jpg 1% 147K 

wim 1% 16M 

h 1% 23K 

Table 1: Whole File Duplicates by Extension 

 
Figure 4: CDF of File System Capacity 

 

Extension Fixed % Extension Rabin % 

vhd 3.6% vhd 5.2% 

pch 0.5% lib 1.6% 

dll 0.5% obj 0.8% 

pdb 0.4% pdb 0.6% 

lib 0.4% pch 0.6% 

wma 0.3% iso 0.6% 

pst 0.3% dll 0.6% 

<none> 0.3% avhd 0.5% 

avhd 0.3% wma 0.4% 

mp3 0.3% wim 0.4% 

pds 0.2% zip 0.3% 

iso 0.2% pst 0.3% 

Table 2: Non-whole File, Non-Zero Duplicate 

Data as a Fraction of File System Size by File 

Extension, 8K Fixed and Rabin Chunking 
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Figure 1: Deduplication vs. Chunk Size for Various 

Algorithms 

 
Figure 2: Deduplication vs. Deduplication Domain 

Size 

 
Figure 3: CDF of Bytes by Containing File Size for 

Whole File Duplicates and All Files  
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are duplicates and replacing them by copy-on-write 

links. Although SIS does not reduce storage consump-

tion as much as a modern deduplication system, it 

avoids file allocation concerns and is far less computa-

tionally expensive than more exhaustive deduplication. 

3.3   Deduplication in Primary Storage 
Our data set includes hashes of data in both variable 

and fixed size chunks, and of varying sizes. We chose a 

single week (September 18, 2009) from this dataset and 

compared the size of all unique chunks to the total con-

sumption observed.  We had two parameters that we 

could vary: the deduplication algorithm/parameters and 

the set of file systems (called the deduplication domain) 

within which we found duplicates; duplicates in sepa-

rate domains were considered to be unique contents.  

The set of file systems included corresponds to the size 

of the file server(s) holding the machines’ file systems.  

A value of 1 indicates deduplication running inde-

pendently on each desktop machine.  “Whole Set” 

means that all 857 file systems are stored together in a 

single deduplication domain.  We considered all power-

of-two domain sizes between 1 and 857.  For domain 

sizes other than 1 or 857, we had to choose which file 

systems to include together into particular domains and 

which to exclude when the number of file systems 

didn’t divide evenly by the size of the domain.  We did 

this by using a cryptographically secure random num-

ber generator. We generated sets for each domain size 

ten times and report the mean of the ten runs.  The 

standard deviation of the results was less than 2% for 

each of the data points, so we don’t believe that we 

would have gained much more precision by running 

more trials
2
. 

Rather than presenting a three dimensional graph vary-

ing both parameters, we show two slices through the 

surface.  In both cases, the y-axis shows the deduplicat-

ed file system size as a percentage of the original file 

system size.  Figure 1 shows the effect of the chunk size 

parameter for the fixed and Rabin-chunked algorithms, 

and also for the whole file algorithm (which doesn’t 

depend on chunk size, and so varies only slightly due to 

differences in the number of zeroes found and due to 

variations in which file systems scans copied properly; 

see Section 3.2).  This graph assumes that all file sys-

tems are in a single deduplication domain; the shape of 

the curve is similar for smaller domains, through the 

space savings are reduced. 
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 As it was, it took about 8 machine-months to do the 

analyses. 

Figure 2 shows the effect changing the size of the 

deduplication domains.  Space reclaimed improves 

roughly linearly in the log of the number of file systems 

in a domain.  Comparing single file systems to the 

whole set, the effect of grouping file systems together is 

larger than that from the choice of chunking algorithm 

or chunk size, or even of switching from whole file 

chunking to block-based. 

The most aggressive chunking algorithm (8K Rabin) 

reclaimed between 18% and 20% more of the total file 

size than did whole file deduplication.  This offers weak 

support for block-level deduplication in primary stor-

age. The 8K fixed block algorithm reclaimed between 

10% and 11% more space than whole file.   This ca-

pacity savings represents a small gain compared to the 

performance and complexity of introducing advanced 

deduplication features, especially ones with dynamical-

ly variable block sizes like Rabin fingerprinting.  

Table 1 shows the top 15 file extensions contributing to 

duplicate content for whole file duplicates, the percent-

age of duplicate space attributed to files of that type, 

and the mean file size for each type.  It was calculated 

using all of the file systems in a single deduplication 

domain.  The extension marked <a guid> is a particular 

globally unique ID that’s associated with a widely dis-

tributed software patch.  This table shows that the sav-

ings due to whole file duplicates are concentrated in 

files containing program binaries: dll, lib, pdb, exe, cab, 

msp, and msi together make up 58% of the saved space.  

Figure 3 shows the CDF of the bytes reclaimed by 

whole file deduplication and the CDF of all bytes, both 

by containing file size.  It shows that duplicate bytes 

tend to be in smaller files than bytes in general.  Anoth-

er way of looking at this is that the very large file types 

(virtual hard disks, database stores, etc.) tend not to 

have whole-file copies.  This is confirmed by Table 1. 

Table 2 shows the amount of duplicate content not in 

files with whole-file duplicates by file extension as a 

fraction of the total file system content.  It considers the 

whole set of file systems as a single deduplication do-

main, and presents results with an 8K block size using 

both fixed and Rabin chunking.  For both algorithms, 

by far the largest source of duplicate data is VHD (vir-

tual hard drive) files.  Because these files are essentially 

disk images, it’s not surprising both that they contain 

duplicate data and also that they rarely have whole-file 

duplicates.  The next four file types are all compiler 

outputs.  We speculate that they generate block-aligned 

duplication because they have header fields that con-

tain, for example, timestamps but that their contents is 



otherwise deterministic in the code being compiled.  

Rabin chunking may find blocks of code (or symbols) 

that move somewhat in the file due to code changes that 

affect the length of previous parts of the file. 

 

3.4   Deduplication in Backup Storage 
Much of the literature on deduplication to date has re-

lied on workloads consisting of daily full backups [32, 

33]. Certainly these workloads represent the most at-

tractive scenario for deduplication, because the content 

of file systems does not change rapidly.  Our data set 

did not allow us to consider daily backups, so we con-

sidered only weekly ones. 

With frequent and persistent backups, the size of histor-

ical data will quickly out-pace that of the running sys-

tem. Furthermore, performance in secondary storage is 

less critical than in that of primary, so the reduced se-

quentiality of a block-level deduplicated store is of 

lesser concern. We considered the 483 file systems for 

which four continuous weeks of complete scans were 

available, starting with September 18, 2009, the week 

used for the rest of the analyses. 

 

Our backup analysis considers each file system as a 

separate deduplication domain.  We expect that com-

bining multiple backups into larger domains would 

have a similar effect to doing the same thing for prima-

ry storage, but we did not run the analysis due to re-

source constraints. 

In practice, some backup solutions are incremental (or 

differential), storing deltas between files, while others 

use full backups.  Often, highly reliable backup policies 

use a mix of both, performing frequent incremental 

backups, with occasional full backups to limit the po-

tential for loss due to corruption.  Thus, the meaning of 

whole-file deduplication in a backup store is not imme-

diately obvious.  We ran the analysis as if the backups 

were stored as simple copies of the original file sys-

tems, except that the contents of the files was the output 

from the Win32 BackupRead [16] call, which includes 

some file metadata along with the data.  For our pur-

poses, imagine that the backup format finds whole file 

duplicates and stores pointers to them in the backup 

file.  This would result in a garbage collection problem 

for the backup files when they’re deleted, but the details 

of that are beyond the scope of our study and are likely 

to be simpler than a block-level deduplicating store. 

Using the Rabin chunking algorithm with an 8K ex-

pected chunk size, block-level deduplication reclaimed 

83% of the total space.  Whole file deduplication, on 

the other hand, yielded 72%.  These numbers, of 

course, are highly sensitive to the number of weeks of 

scans used in the study; it’s no accident that the results 

were around ¾ of the space being claimed when there 

were four weeks of backups.  However, one should not 

assume that because 72% of the space was reclaimed by 

whole file deduplication that only 3% of the bytes were 

in files that changed.  The amount of change was larger 

than that, but the deduplicator found redundancy within 

a week as well and the two effects offset. 

4 Metadata 
This paper is the 3

rd
 major metadata study of Windows 

desktop computers [1, 9]. This provides a unique per-

spective in the published literature, as we are able to 

track more than a decade of trends file and file system 

metadata.  On a number of graphs, we took the lines 

from 2000 and 2004 from an earlier study [1] and plot-

ted them on our graphs to make comparisons easier.  

Only the 2009 data is novel to this paper.  Some graphs 

contain both CDF and histogram lines.  In these graphs, 

the CDF should be read from the left-hand y-scale and 

the histogram from the right. We present much of our 

data in the form of cumulative density function plots.  

These plots make it easy to determine the distributions, 

but do not easily show the mean.  Where appropriate, 

we list the mean of the distribution in the text. 

 

 

 

 

 

 

 

 

Figure 5: CDF of File Systems by Fullness 
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Figure 9: CDF of Directories by Count of Subdi-

rectories 

 
Figure 10: Files by Directory Depth 

 
Figure 11: Bytes by Directory Depth 
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Figure 6: CDF of File Systems by Count of Files 

 
Figure 7: CDF of File Systems by Count of Direc-

tories 

 
Figure 8: CDF of Directories by Count of Files 
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4.1 Physical Machines 
Our data set contains scans of 857 file systems hosted 

on 597 computers.  59% were running Windows 7, 20% 

Windows Vista, 18% Windows Server 2008 and 3% 

Windows Server 2003.  They had a mean and median 

physical RAM of about 4GB, and ranged from 1-10GB.  

5% had 8 processors, 44% 4, 49% 2 and 3% were 

uniprocessors
3
. 

4.2 File systems 
We analyze file systems in terms of their age, capacity, 

fullness, and the number of files and directories. We 

present our results, interpretations, and recommenda-

tions to designers in this section.   

4.2.1 Capacity 

The mean file system capacity is 194GB.  Figure 4 

shows a cumulative density function of the capacities of 

the file systems in the study. It shows a significant in-

crease in the range of commonly observed file system 

sizes and the emergence of a noticeable step function in 

the capacities. Both of these trends follow from the 

approximately annual doubling of physical drive capac-

ity. We expect that this file system capacity range will 

continue to increase, anchored by smaller SSDs on the 

left, and continuing step wise towards larger magnetic 

devices on the right.  This will either force file systems 

to perform acceptably on an increasingly wide range of 

media, or push users towards more highly tuned special 

purpose file systems.  

4.2.2 Utilization 

Although capacity has increased by nearly two orders 

of magnitude since 2000, utilization of capacity has 

dropped only slightly, as shown in Figure 5.  Mean uti-

lization is 43%, only somewhat less than the 53% found 

in 2000.  No doubt this is the result of both users adapt-

ing to their available space and hard drive manufactur-

ers tracking the growth in data. The CDF shows a near-

ly linear relationship, with 50% of users having drives 

no more than 40% full, 70% at less than 60% utiliza-

tion, and 90% at less than 80%. Proposals to take ad-

vantage of the unused capacity of file systems [2, 11] 

must be cautious that they only assume scaling of the 

magnitude of free space, not the relative portion of the 

disk that is free. System designers also must take care 

not to ignore the significant contingent (15%) of all 

users with disks more than 75% full. 

                                                           
3
 The total is 101% due to rounding error. 

4.3 File system Namespace 
Recently, Murphy and Seltzer have questioned the mer-

its of hierarchical file systems [22], based partly on the 

challenge of managing increasing data sizes. Our analy-

sis shows many ways in which namespaces have be-

come more complex. We have observed more files, 

more directories, and an increase in namespace depth. 

While a rigorous comparison of namespace organiza-

tion structures is beyond the scope of this paper, the 

increase in namespace complexity does lend evidence 

to the argument that change is needed in file system 

organization. Both file and directory counts show a 

significant increase from previous years in Figures 6 

and 7 respectively, with a mean of 225K files and 36K 

directories per file system.  

The CDF in Figure 8 shows the number of files per 

directory. While the change is small, it is clear – even 

as users in 2009 have more files, they have fewer files 

per directory, with a mean of 6.25 files per directory.  

Figure 9 shows the distribution of subdirectories per 

directory.  Since the mean subdirectories per directory 

is necessarily one
4
, the fact that the distribution is more 

skewed toward smaller sizes indicates that the directory 

structure is deeper with a smaller branching factor. 

However, the exact interpretation of this result warrants 

further study. It is not clear if this depth represents a 

conscious organization choice, is the result of users 

being unable effectively to organize their hierarchical 

data or is simply due to the design of the software that 

populates the tree.  Figure 10 shows the histogram and 

CDF of files by directory depth for the 2009 data; simi-

lar results were not published in the earlier studies.   

The histogram in Figure 11 shows how the utilization 

of storage is related to namespace depth. There is a 

steep decline in the number of bytes stored more than 5 

levels deep in the tree. However, as we will see in Sec-

tion 4.4, this does not mean the deeply nested files are 

unimportant.  Comparing it with Figure 10 shows that 

files higher in the directory tree are larger than those 

deeper. 

4.4 Files 
Our analysis of files in the dataset shows distinct clas-

ses of files emerging. The frequently observed fact that 

most files are small and most bytes are in large files has 

intensified. The mean file size is now 318K, about three 

times what it was in 2000.  Files can be classified by 

                                                           
4
 Ignoring that the root directory isn’t a member of any 

directory. 



their update time as well.  A large class of files is writ-

ten only once (perhaps at install time). 

4.4.1 File Size 

In one respect, file sizes have not changed at all. The 

median file size remains 4K (a result that has been re-

markably consistent since at least 1981 [27]), and the 

distribution of file sizes has changed very little since 

2000. Figure 12 shows that the proportion of these 

small files has in fact increased with fewer files both 

somewhat larger and somewhat smaller than 4K. There 

is also an increase in larger files between 512K and 

8MB. 

Figure 13 shows a histogram of the total number of 

bytes stored in files of various sizes. A trend towards 

bi-modality has continued, as predicted in 2007 [1], 

though a third mode above 16G is now appearing. Fig-

ure 14 shows that more capacity usage has shifted to the 

larger files, even though there are still few such files in 

the system. This suggests that optimizing for large files 

will be increasingly important. 

Viewed a different way, we can see that trends towards 

very large files being the principle consumers of storage 

have continued smoothly. As discussed in Section 4.5, 

this is a particular challenge because large files like 

VHDs have complex internal structures with difficult to 

predict access patterns. Semantic knowledge to exploit 

these structures, or file system interfaces that explicitly 

support them may be required to optimize for this class 

of data. 

4.4.2 File Times 

File modifications time stamps are usually updated 

when a file is written. Figure 15 shows a histogram and 

CDF of time since file modification with log scaling on 

the x-axis
5
. The same data with 1 month bins is plotted 

in Figure 16. Most files are modified between one 

month and a year ago, but about 20% are modified 

within the last month.  

 

 

 

 

                                                           
5
 Unlike the other combined histogram/CDF graphs, 

this one has both lines using the left y-axis due to a bug 

in the graphing package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Histogram of Files by Size 

 
Figure 13: Histogram of Bytes by Containing File 

Size 

 
Figure 14: CDF of Bytes by Containing File Size 
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Figure 17 relates file modification time to the age of the 

file system.  The x-axis shows the time since a file was 

last modified divided by the time since the file system 

was formatted.   This range exceeds 100% because 

some files were created prior to installation and were 

subsequently copied to the file system, preserving their 

modification time.  The spike around 100% mostly con-

sists of files that were modified during the system in-

stallation. The area between 0% and 100% shows a 

relatively smooth decline, with a slight inflection 

around 40%. 

NTFS has always supported a last access time field for 

files.  We omit any analysis because updates to it are 

disabled by default as of Windows Vista [18]. 

4.5 Extensions 
Figure 18 shows only modest change in the extensions 

for the most popular files. However, the extension 

space continues to grow. The ten most popular files 

extensions now account for less than 45% of the total 

files compared with over 50% in 2000. 

Figure 19 shows the top storage consumers by file ex-

tension. Several changes are apparent here. First, there 

is a significant increase in storage consumed by files 

with no extension, which have moved from 10
th

 place 

in all previous years to be the largest class of files to-

day, replacing DLLs. VHD and ISO files are virtual 

disks and images for optical media. They have in-

creased in relative size, but not as quickly as LIB files. 

Finally, the portion of storage space consumed by the 

 

 
Figure 18: Popularity of Files by Extension 
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Figure 15: Time Since Last File Modification 

 
Figure 16: Time Since Last File Modification 

 
Figure 17: Time Since Last File Modification as a 

Fraction of File System Age. 
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top extensions has increased by nearly 15% from previ-

ous years. 

5 On-disk Layout 
The behavior and characteristics of magnetic disks con-

tinue to be a dominant concern in storage system opti-

mization. It has been shown that file system perfor-

mance changes over time, largely due to fragmentation 

[28]. While we have no doubt that the findings were 

true in 1997, our research suggests that this observation 

no longer holds in practice.  

We measure fragmentation in our data set by recording 

the files’ retrieval pointers, which point to NFTS’s data 

blocks. Retrieval pointers that are non-linear indicate a 

fragmented file. We find such fragmentation to be rare, 

occurring in only 4% of files. This lack of fragmenta-

tion in Windows desktops is due to the fact that a large 

fraction of files are not written after they are created 

and due to the defragmenter, which runs weekly by 

default
6
. However, among files containing at least one 

fragment, fragments are relatively common. In fact, 

25% of fragments are in files containing more than 170 

fragments. The most highly fragmented files appear to 

be log files, which (if managed naively) may create a 

                                                           
6
 This is true for all of our scans other than the 17 that 

came from machines running Windows Server 2003. 

new fragment for each appending write.  

6 Related Work 
Studies of live deployed system behavior and usage 

have long been a key component of storage systems 

research.  Workload studies [30] are helpful in deter-

mining what file systems do in a given slice of time, but 

provide little guidance as to the long term contents of 

files or file systems.  Prior file system content studies 

[1, 9] have considered collections of machines similar 

to those observed here.  The most recent such study 

uses 7 year old data, while data from the study before it 

is 11 years old, which we believe justifies the file sys-

tem portion of this work.  However, this research also 

captures relevant results that the previous work does 

not.   

Policroniades and Pratt [24] studied duplication rates 

using various chunking strategies on a dataset about 

0.1% of the size of ours, finding little whole-file dupli-

cation and a modest difference between fixed-block and 

content-based chunking.  Kulkarni et al. [12] found 

combining compression, eliminating duplicate identi-

cal-sized chunks and delta-encoding across multiple 

datasets to be effective.  Their corpus was about 8GB. 

We are able to track file system fragmentation and data 

placement, which has not been analyzed recently [28] 

or at large scale.  We are also able to track several 

forms of deduplication, which is an important area of 

current research.  Prior work has used very selective 

data sets usually focusing either on frequent full back-

ups [3, 8], virtual machine images [6, 13], or simulation 

[10].  In the former case, data not modified between 

backups can be trivially deduplicated, and in the latter 

disk images start from a known identical storage, and 

diverge slowly over time.  In terms of size, only the 

DataDomain [33] study rivals ours.  It is less than half 

the size presented here and was for a highly self-

selective group.  Thus, we not only consider a more 

general, but also a larger dataset than comparable stud-

ies.  Moreover, we include a comparison to whole-file 

deduplication, which has been missing in much of the 

deduplication research to date.  Whole file deduplica-

tion is an obvious alternative to block-based deduplica-

tion because it is light-weight and as we have shown, 

nearly as effective at reclaiming space.   
Figure 19: Bytes by File Extension 
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7 Conclusion 
We studied file system data, metadata, and layout on 

nearly one thousand Windows file systems in a com-

mercial environment. This new dataset contains 

metadata records of interest to file system designers, 

data content findings that will help create space effi-

ciency techniques, and data layout information useful in 

the evaluation and optimization of storage systems. 

We find that whole-file deduplication together with 

sparseness is a highly efficient means of lowering stor-

age consumption, even in a backup scenario.  It ap-

proaches the effectiveness of conventional deduplica-

tion at a much lower cost in performance and complexi-

ty. The environment we studied, despite being 

homogeneous, shows a large diversity in file system 

and file sizes.  These challenges, the increase in un-

structured files, and an ever-deepening and more popu-

lated namespace pose significant challenge for future 

file system designs.  However, at least one problem – 

that of file fragmentation, appears to be solved, provid-

ed that a machine has periods of inactivity in which 

defragmentation can be run.  
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