
A File System for Storage Class Memory
Xiaojian Wu, A. L. Narasimha Reddy

Department of Electrical and Computer Engineering, Texas A&M University
College Station, Texas 77843

Email: tristan.woo@neo.tamu.edu, reddy@ece.tamu.edu

I. EXTENDED ABSTRACT

In this work, we aim to design a file system for storage
class memory (SCM). With traditional persistent storage de-
vices, the overhead brought by I/O latency is much higher
than that of file system layer itself. So the storage system
performance usually depends on the devices’ characteristics
and the performance of I/O scheduler. However, if the access
latency of the storage device is comparable to that of normal
memory, then the design complexity of the file system may
impact the whole performance.

Current file systems spend considerable complexity due to
space management. We focus on simplifying storage man-
agement functions within the file system. Our design reuses
memory management modules in OS to manage space in
SCM. To do so, in addition to modifying some source code
in kernel, we need to harden the mapping between logical
addresses and physical addresses into SCM.

Traditional file systems assume the underlying persistent
storage devices are block devices. On hardware layer, a block
device is hidden behind an I/O controller. On software layer,
the file systems can access a block device only through the
generic block layer in the OS kernel. In our design, we assume
storage class memory is directly attached to CPU, and there
is a way for firmware/software to distinguish SCM from the
other volatile memories. This assumption lets the file systems
be able to access the data on the storage class memory in
the same way as access normal RAM. With this assumption,
we utilize the existing memory management module in the
operating system to manage the space on the storage class
memory.

II. DESIGN OF SCMFS

A. Layout

Fig. 1 shows the layout of both virtual memory space and
physical memory space in SCM File System (SCMFS). The
“metadata” in physical memory space contains the information
of storage, such as size of physical SCM, size of mapping
table, etc. The second part of the physical memory is the
memory mapping table. The file system needs this information
when mounted to build some in-memory data structures, which
are mostly maintained by memory management module during
runtime. Any modification to these data structures will be
flushed back into this region immediately. Since the mapping
information is very critical to the file system consistency, this

memory region is configured with write-through cache policy.
The rest of the physical space is mapped into virtual memory
space and used to store the whole file system.

Super block Inode table Files

Metadata
Memory mapping

table
File system space

Physical memory space

Virtual memory space

Fig. 1. Memory space layout

In the virtual memory space, the layout is very simple and
similar to existing file systems. The super block contains the
information about the whole filesystem, such as the block
size of the filesystem, the total number of inodes and blocks,
etc. The inode table contains the fundamental information
of each file or directory, such as file name, size, mode,
recent modification timestamp, owner user id, etc. The inode
information also includes an offset, through which we can
locate the file’s contents in the virtual space. The first item in
the inode table is the root inode. In our prototype, the total
size of virtual memory space for SCMFS is 247 bytes (range:
ffff000000000000 - ffff7fffffffffff), which is unused in original
Linux kernel.

The layout of SCM file system is illustrated in Fig. 2. In
SCM file system, directory files are stored as ordinary files,
except that their contents are lists of inode numbers.

ro
o

t … ...

super block

inode table

… ...

virtual_size

mapped_size

file_size

virtual_size

mapped_size

file_size

directory file ordinary file

virtual_size

mapped_size

null file

dir1 file1 file2

inode number

Fig. 2. SCM file system Layout.

B. Space Pre-Allocation

In our original design, all the data blocks are allocated on
demand. The space is allocated to the files only when needed,
and once any file is removed, the space allocated for it will
be deallocated immediately. In some situations, this design
may cause too frequent allocation/deallocation operations. To



avoid this, we adopted a space pre-allocation mechanism, in
which we create and always maintain certain amount of NULL
files within the file system. These NULL files have no name,
no data, however have already been allocated some physical
space. When we need to create a new file, we always try to find
a NULL file first. When a file shrinks, we will not de-allocate
the unused space. And when we need to delete an existing
file, we will not de-allocate its space but mark it as NULL
file. Through space pre-allocation mechanism, we can reduce
the number of allocation/deallocation operations significantly.

To support this mechanism, we need to maintain three
“size”s for each file. The first one, “file size” , is the actual
size of the file. The second one, “virtual size” is the size of the
virtual space allocated to the file. The last one, “mapped size”,
is the size of mapped virtual space for the file, which is also
the size of physical space allocated to the file. The value
of “virtual size” is always larger than or equal to that of
“mapped size”, whose value is always larger than or equal
to that of “file size”.

The space unused but mapped for each file is reserved
for later data allocations, and potentially improves the perfor-
mance of further writing performance. However, these spaces
are also likely to be wasted. To recycle these “wasted” spaces,
we use a background process. This method is very similar
to the garbage collection mechanism for flash based file
systems. This background process will deallocate the unused
but mapped spaces for the files when the utilization of the
SCM reaches a programmable threshold, and it always chooses
cold files first.

C. Modifications to the kernel

In our prototype, we did some modifications to original
linux kernel 2.6.31 to support our functionalities. First, we
modified the E820 table, which is used by BIOS to report the
memory map to the operating system. We added a new address
range type “AddressRangeStorage”. This type of address range
should only contain memory that is used to store non-volatile
data. By definition, the operating system can use this type of
address range as storage device only.

Second, we add a new memory zone “ZONE STORAGE”
into the kernel. A memory zone in linux is composed of
page frames or physical pages, and a page frame is allocated
from a particular memory zone. There are three memory
zones in original Linux: ZONE DMA is used for DMA
pages, “ZONE NORMAL” is used for normal pages , and
“ZONE HIGHMEM” is used for those addresses that can not
be contained in the virtual address space(32bit platform only).
We put all the address range with type “AddressRangeStorage”
into the new zone “ZONE STORAGE”.

Third, we added a set of memory allocation/deallocation
functions, nvmalloc()/nvfree(), which allocate memory from
the zone “ZONE STORAGE”. The function nvmalloc() de-
rives from vmalloc(), and allocates memory which is con-
tiguous in kernel virtual memory space, while not necessary

to be contiguous in physical memory space. The function
nvmalloc() has three input parameters: size is the size of
virtual space to reserve, mapped size is the size of virtual
space to map, write through is used to specify if the cache
policy for the allocated space is write-through or write-back.
We also have some other functions, such as nvmalloc expand()
and nvmalloc shrink(), whose parameters are same as that of
nvmalloc(). The function nvmalloc expand() is used when the
file size increases and the mapped space is not enough, and
nvmalloc shrink() is used to recycle the allocated but unused
space.

All the modifications involve less than 300 lines of source
code in kernel.

D. File System Consistency
File system consistency is always a big issue in files system

design. As a memory based file system, SCMFS has a new
issue: unsure write ordering. The write ordering problem
is caused by CPU caches that stand between CPUs and
memories. Caches are designed to reduce the average access
latency to memories. To make the access latency as close to
that of the cache, the cache policy tries to keep the most
recently accessed data in the cache. The data in the cache
is flushed back into the memory according to the designed
data replacement algorithm. And the order in which data is
flushed back to the memory is not necessarily the same as the
order data was written into cache.

A simple solution to write ordering problem is to configure
all the SCM with write-through cache policy. Undoubtedly,
this will hurt the writing performance dramatically. In SCMFS,
we adopted a compromise solution, in which we only con-
figure the file system metadata and all the directory files
with write-through cache policy. This will provide metadata
consistency. As to the data consistency, we flush the CPU
cache periodically. This provides similar guarantees as the
current file systems.

III. PRELIMINARY RESULTS

We use Iozone and Postmark to evaluate the performance
of SCMFS and compare it to some existing file systems,
including ramfs, tmpfs and ext2fs. Since ext2fs is designed
for a traditional storage device, we run ext2fs on ramdisk,
which emulates a disk drive by using the normal RAM in
main memory. It is noted that ramfs, tmpfs and ramdisk are
not designed for persistent memory, and none of them can be
used on storage class memory directly. Our preliminary experi-
ments show: SCMFS is easy to implement, and our prototype
only consists of about 2700 lines of source code. SCMFS’s
overhead is little, and performs very close to and even better
ramfs and tmpfs. SCMFS’s performance is much better than
and more than twice of that of EXT2FS on Ramdisk, espe-
cially with small request sizes. The pre-allocation mechanism
significantly speed up (2 times) small file creation and append
operations. Our file system consistency mechanism decreases
the performance, especially with large number of small files.


