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Abstract—In flash memory, hot data identification has a critical
impact on its performance (due to a garbage collection) as well
as its lifespan (due to a wear leveling). Although it is an issue
of paramount importance in flash memory, little investigation
has been made. Moreover, all existing schemes focus almost
exclusively on a frequency viewpoint. However, recency also
must be considered equally with the frequency for effective hot
data identification. In this paper, we propose a novel hot data
identification scheme adopting multiple bloom filters to efficiently
capture finer-grained recency as well as frequency. In addition
to this scheme, we propose a Window-based Direct Address
Counting (WDAC) algorithm to approximate an ideal hot data
identification as our baseline by using a sliding window concept.
Our experimental evaluation demonstrates that our scheme not
only consumes 50% less memory and requires less computational
overhead up to 58%, but also improves its performance up to
65%.

I. I NTRODUCTION

Recent technological breakthroughs in flash memory and
dramatic reduction of its price enable flash-based storage
systems to hold sway in the storage world. This flash memory
retains a distinguished feature: in-place update (i.e., overwrit-
ing) is not allowed. To resolve this issue, Flash Translation
Layer (FTL) has been developed and deployed to the flash
memory [1]. The FTL consists largely of an address allocator,
garbage collector and wear leveler all of which are fundamen-
tally based on hot data identification. Therefore, the effective
hot data identification has a critical impact on the performance
as well as reliability of flash-based storage systems.

We can simply classify the frequently accessed data as hot
data. Otherwise, they are regarded as cold data. This definition
is still vague and takes onlyfrequency(i.e., the number of
appearance) into account. However, there is another important
factor–recency(i.e., closeness to the present)–to identify hot
data. In general, many access patterns in workloads exhibit
high temporal localities; therefore, recently accessed data are
more likely to be accessed again in near future. This is the
rationale for including the recency factor in hot data classi-
fication. The definition of hot data can be different for each
application and also can be applied to a variety of fields such
as data caching, B-tree indexing in sensor networks, a garbage
collection and a wear leveling in flash memory, and SLC-MLC
hybrid SSD. In addition to these, hot data identification has
a big potential to be exploited by many other applications.
Although this hot data identification is an important issue in
flash memory, it has been least investigated. Existing schemes

either suffer from large memory space requirements or incur
huge computational overhead.

Considering these observations, an efficient hot data iden-
tification scheme has to meet the following requirements:1)
effective capture of recency as well as frequency,2) small
memory consumption, and3) low computational overhead.
Based on these requirements, in this paper, we propose a novel
hot data identification scheme based on multiple bloom filters
(for short, BFs). The key idea of this scheme is that each BF
has a different recency weight and coverage so that it can
capture finer-grained recency. The main contributions of this
paper are as follows:
• An Efficient Hot Data Identification Scheme:A BF can

provide computational and space efficiency. Our proposed
scheme takes advantage of the BF thereby adopting multiple
BFs. The multiple BFs enable our proposed scheme to capture
finer-grained recency information so that we can achieve more
accurate hot data classification. Multiple and smaller BFs
empower our scheme to require not only less memory space,
but also lower computational overhead.
• A More Reasonable Baseline Algorithm:Our proposed ap-

proximation algorithm named Window-based Direct Address
Counting (WDAC) adopts a sliding window. Whenever a write
request is issued, the LBA is stored in the head of the window
and the oldest one is evicted like a FIFO (First In First Out)
queue. WDAC assigns different recency weights to all LBAs
in the window according to the closeness to the present. Thus,
when a new request arrives, all LBAs are shifted toward the
tail of the window and all their recency values are reevaluated.
Consequently, WDAC can catch precise recency as well as
frequency.

II. M ULTIPLE BOOM FILTER-BASED HOT DATA

IDENTIFICATION

• Operation: As shown in Figure 1, our scheme adopts a
set of V independent bloom filters (for short, BFs) andK
independent hash functions. Whenever a write request is issued
to the Flash Translation Layer (FTL), the corresponding LBA
is hashed by theK hash functions. Then,K hash values set
the correspondingK bits in the first BF to 1. When the next
write request comes in, our scheme chooses the next BF in
a round robin fashion to record its hash values. In addition,
it periodically selects one BF in a round robin manner and
erases all information in that BF to reflect a decay effect.
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Fig. 1. Our Framework and Its Operations

• Frequency Capturing: Unlike the multihash function frame-
work [2] adopting 4-bit counters, we do not maintain the
specific BF counters for each LBA to count the number of
appearance. Instead, our scheme investigates multiple BFsto
check if each BF has recorded the corresponding LBA. The
number of BF retaining the LBAs can show its frequency.
Thus, assuming the hash values of an LBA appear inr
(0 ≤ r ≤ V ) numbers of the BFs out ofV BFs, we can
say the corresponding LBA has appearedr times before.
• Recency Capturing: Since our scheme does not maintain
LBA counters, we need to devise a different aging mechanism
to capture recency information. After the intervalT, the BF that
has not been selected for the longest time interval is selected
and all bits in the BF are reset to 0. Similarly, after the interval
T, the next BF is selected in a right cyclic shift manner and
all the bits are reset as time goes on. Figure 2 shows the
recency coverage after the intervalT as soon as(BFV ) is
reset. The reset BF(BFV ) can remember LBA information
accessed during only the last one intervalT. The previously
reset BF(BFV−1) can record the LBA information accessed
during the last two intervals. Similarly, the BF 1(BF1) which
will be chosen as a next reset BF after this period can cover
the longest intervalV × T . This meansBF1 records all LBA
information for the lastV × T intervals.

Our proposed scheme assigns a different recency weight to
each BF so that recency value is combined with frequency
value for hot data decision (calledhot data index). The reset
BF (BFV ) records most recent access information; so highest
recency weight has to be assigned to it, whereas lowest recency
weight is allotted to the BF that will be chosen as a next
reset BF (BF1). Consequently, even though two different
LBAs have appeared once inBFV andBF1 respectively, both
frequency values are regarded differently. Thus, if the value of
hot data index is greater than or equal to a predefined threshold
value, we regard the data as hot.
• WDAC: We propose a more reasonable baseline algorithm to
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Fig. 3. Working Process of WDAC Algorithm. Here, the window size is 10.

approximate ideal hot data identification named Window-based
Direct Address Counting (WDAC). As shown in Figure 3,
WDAC maintains a specific size of buffer like a sliding
window. In addition, it maintains total hot data index values for
each LBA. Within this window,all elements have a different
recency value according to their access sequences: the closer
to the present, the higher recency weight is assigned to the
LBA. Whenever a new LBA comes in, all recency values are
reassigned to all the LBAs shifted in the window and the last
one is evicted from the window. Consequently, our proposed
WDAC can properly identify hot data thereby using very fine-
grained recency information.

III. E XPERIMENTAL RESULTS

We made experiments in many respects under diverse real
traces including real SSD traces. All hot data identification
results (i.e., hot ratios) of our scheme display much closer
results to those of the baseline scheme than the other one.
Furthermore, to make up for the limitation of a hot ratio-
based analysis, we also compared the number (or rate) of
false identification by making one-to-one comparison of each
identification result. This pinpoint evaluation not only enables
us to make a comparative analysis of each performance, but
also demonstrates that our scheme more precisely identifieshot
data. Lastly, we carried out experiments on variable memory
size, window size, and the number of a bloom filter in our
scheme to explore their impacts.
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