
Implementing a Key-Value Store based MapReduce Framework

Hirotaka Ogawa
AIST, Japan

Hidemoto Nakada
AIST, Japan

Tomohiro Kudoh
AIST, Japan

Abstract

MapReduce has been very successful in implementing
large-scale data-intensive applications. Because of its
simple programming model, MapReduce has also begun
being utilized as a programming tool for more general
distributed and parallel applications. However, its appli-
cability is often limited due to relatively inefficient run-
time performance and hence insufficient support for flex-
ible workflows. In particular, the performance problem
is not negligible in iterative MapReduce applications. In
order to resolve such situations, we have been develop-
ing a new MapReduce prototype system called “SSS”,
which is based on distributed key-value store (KVS). In
this poster, we present the design and implementation of
SSS and the tentative benchmark results.

1 Introduction

We have been developing a new MapReduce prototype
system called “SSS”, which is based on distributed key-
value store (KVS). Our main objectives is to bridge the
gap between MapReduce data model and input/output
data model, and to realize efficient executions not only
for single-step MapReduce workloads but also more flex-
ible workloads, including iterative applications.

SSS completely substitutes distributed KVS for the
distributed file systems such as Hadoop DFS. Further-
more, SSS utilizes distributed KVS for storing the inter-
mediate KV data, as well as the inputs of map tasks and
the outputs of reduce tasks. SSS offers several advan-
tages over existing MapReduce implementations:

1. We can bridge the gap between MapReduce data
model and storage systems and handle KV data
more intuitively.

2. We can eliminate shuffle & sort phase which may
occupy the larger part of MapReduce execution

time. Once all map tasks have finished storing in-
termediate KV data to the distributed KVS, all in-
termediate KV data have already been grouped by
their own keys.

3. Map and reduce tasks can be realized as almost
equivalent operations on top of the distributed KVS.
This makes the implementation itself simple and
enables any combination of multiple maps and re-
duces in a single workload.

Because of space limitation, we only describe our
runtime design and the result of wordcount benchmark
briefly. The details are described in [1]. And, in the
poster session, we will present the latest benchmark re-
sults and the profiling data for the underlying storage sys-
tem.

2 SSS MapReduce Runtime

!"#$%#&'%#(%#

!"#$%#&)*#%+,&-"".

/
0/

/
0

12'&
3"$4"&34#+5)

!"#$%#&'%#(%#

!"#$%#&)*#%+,&-"".

/
0/

/
0

!"#$%#&'%#(%#

!"#$%#&)*#%+,&-"".

/
0/

/
0

!"#$%#&5",% !"#$%#&5",% !"#$%#&5",%

12'&
3"$4"&34#+5)

12'&
3"$4"&34#+5)

678)#79:)%,&
12'

/+8)%#&'%#(%#

;.7%5)&/+-0%,:<%&
=#">#+?

;.7%5)&/+-0%,:<%&
=#">#+?

/+8)%#&5",%

;"5)#".&?%88+>%8&
(7+&@+(+&0/A

Figure 1: SSS MapReduce Runtime

As Figure 1 shows, SSS MapReduce runtime is built
on top of the distributed KVS. Our distributed KVS pro-
vides a mechanism to partition KV data dynamically

across the set of storage nodes, based on consistent hash-
ing. Each worker node serves both as a storage node of
KVS and a worker server of MapReduce runtime. That
is, each worker node is responsible for handling and exe-
cuting map/reduce tasks for the KV data owned by itself.
While all input/output data of map/reduce tasks are pro-
vided by distributed KVS, other commands and control
data transfers to the worker servers are performed by SSS
MapReduce runtime.

3 Wordcount Benchmark

We used an experimental cluster which consists of a mas-
ter node and 16 worker nodes with 10Gbit Ethernet and
ioDriveTMDuo. Wordcount benchmark counts the num-
ber of occurrences of each word appeared in given multi-
ple text files. We prepared 128 100MiB text files, there-
fore the total size of all files is 12.5GiB and each worker
node has 800MiB text data.

Figure 2 shows the execution times of Hadoop, SSS,
and packed-SSS (an optimized version of SSS). As you
see, SSS is almost equivalent to or a little bit faster than
Hadoop, and packed-SSS is almost 3.3 times faster than
Hadoop.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'" #" (" $")"

*+,--."

///"

.+012,3///"

456+78

9:
;;

6;
<"
46
=
2"
>8
20
?

Figure 2: Running Times of Word Count

References
[1] OGAWA, H., NAKADA, H., TAKANO, R., AND KUDOH, T.

SSS: An Implementation of Key-value Store based MapReduce
Framework. In Proceedings of 2nd IEEE International Confer-
ence on Cloud Computing Technology and Science (1st Interna-
tional Workshop on Theory and Practice of MapReduce) (2010),
pp. 754–761.

2

