Membrane: Operating System support
for Restartable File Systems

Membrane

Membrane is a layer of material which serves as a selective barrier between two phases and

remains impermeable to specific particles, molecules, or substances when exposed to the
action of a driving force.

Swaminathan Sundararaman, Sriram Subramanian,
Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, e
Remzi H. Arpaci-Dusseau, Michael M. Swift WISCONSIN

MADISON

Bugs in File-system Code

Bugs are common in any large software
File systems contain 1,000 — 100,000 loc

Recent work has uncovered 100s of bugs

[Engler OSDI "00, Musuvathi OSDI "02, Prabhakaran SOSP ‘03, Yang OSDI ’04,
Gunawi FAST ‘08, Rubio-Gonzales PLDI "09]

Error handling code, recovery code, etc.

File systems are part of core kernel
A single bug could make the kernel unusable

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 2

Bug Detection In File Systems

FS developers are good

| A

0 |

: :

at detecting bugs s | 2u9 3 28 43 g
. . _ ubifs | 369 36 2 :
Paranoid” about failures ., E 261 § c: 8 i
gfs2 | 156 60 o |

1 I

Lots of checks all over afs] 206§ 38 o
exts : 42 182 12 :

the file system code! eiserfs | 1§ 10 S
ntfs :\ 0 . 288 2 ,l'

- e» a» a» o GSr ear e o> & & @& @& &

Detection is easy but recovery is hard

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 3

Why i1s Recovery Hard?

iy
v <—1_count
3 U
7 \
7 y
Crash < r (= :'
oo Ny
Processes could potentially _ File systems manage their
use corrupt in-memory Process killed on crash| qwn in-memory objects
file-system objects :
Y : Inconsistent Hard to free
[No fault isolation] kernel state FS objects

Common solution: crash file system and
hope problem goes away after OS reboot

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 4

Why not Fix Source Code?

To develop perfect file systems
Tools do not uncover all file system bugs
Bugs still are fixed manually
Code constantly modified due to new features

Make file systems handle all error cases
Interacts with many external components

VFS, memory mgmt., network, page cache, and I/O

Cope with bugs than hope to avoid them

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 5

Restartable File Systems

Membrane: OS framework to support
lightweight, stateful recovery from FS crashes

Upon failure transparently restart FS

Restore state and allow pending application
requests to be serviced

Applications oblivious to crashes

A generic solution to handle all FS crashes
Last resort before file systems decide to give up

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10)

Results

Implemented Membrane in Linux 2.6.15
Evaluated with ext2, VFAT, and ext3

Evaluation
Transparency: hide failures (~5o faults) from appl.
Performance: < 3% for micro & macro benchmarks
Recovery time: < 30 milliseconds to restart FS
Generality: < 5 lines of code for each FS

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10)

Outline

Restartable file systems
Evaluation
Conclusions

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 8

Components of Membrane

Fault Detection —
Helps detect faults quickly QEEERED

Membrane

Fault Anticipation "
Records file-system state Recovery

Fault Recovery

Executes recovery protocol to cleanup and restart
the failed file system

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 9

Fault Detection

Correct recovery requires early detection
Membrane best handles “fail-stop” failures

Both hardware and software-based detection
H/W: null pointer, general protection error, ...
S/W: asserts(), BUG(), BUG_ON(), panic()

Assume transient faults during recovery
Non-transient faults: return error to that process

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 10

Components of Membrane

Fault
Detection

Membrane

Fault
Recovery

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 11

Fault Anticipation

Additional work done in anticipation of a failure

Issue: where to restart the file system from?

File systems constantly updated by applications
Possible solutions:

Make each operation atomic

Leverage in-built crash consistency mechanism
Not all FS have crash consistency mechanism

Generic mechanism to checkpoint FS state

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 12

Checkpoint File-system State

Checkpoint: consistent state of the file system that can be
safely rolled back to in the event of a crash

All requests enter via VFS layer

File systems write to disk Page Cache (R
through page cache

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 13

Control requests to FS
= &
dirty pages to disk

Generic COW based Checkpoint

I R R

Consistent Consistent Consistent
Image #1 Image #2 \Image #3)

On crash roll back to last consistent Image

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 14

State after checkpoint?

On crash: flush dirty pages of last checkpoint
Throw away the in-memory state

Remount from the last checkpoint

Consistent file-system image on disk

Issue: state after checkpoint would be lost

Operations completed after checkpoint returned
back to applications

Need to recreate state after checkpoint

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 15

Operation-level Logging

Log operations along with their return value
Replay completed operations after checkpoint

Operations are logged at the VES layer
File-system independent approach

Logs are maintained in-memory and not on disk

How long should we keep the log records?
Log thrown away at checkpoint completion

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 16

Components of Membrane

Fault
Detection

Membrane

Fault
Recovery

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 17

Fault Recovery

Important steps in recovery:

3/2/10

C
C

eanup state of partially-completed operations

eanup in-memory state of file system

Remount file system from last checkpoint

Replay completed operations after checkpoint

Re-execute partially complete operations

Membrane: Operating System Support for Restartable File Systems (FAST '10) 18

Partially completed Operations

Multiple threads inside file system Intertwined execution
2
-
v
-
()
V.
FS code should not be trusted after crash

&

Processes cannot be killed after crash

Application threads killed?
- application state will be lost

Clean way to undo incomplete operations

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 19

A Skip/Trust Unwind Protocol

Skip: file-system code
Trust: kernel code (VFS, memory mgmt,, ...)
- Cleanup state on error from file systems

How to prevent execution of FS code?

Control capture mechanism: marks file-system
code pages as non-executable

Unwind Stack: stores return address (of last
kernel function) along with expected error value

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 20

Skip/Trust Unwind Protocol in Action

Kernel is restored to a consistent state

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 21

Components of Membrane

Fault
Detection

Membrane

Fault
Recovery

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 22

Putting All Pieces Together

e 1 Periodically create
Open (“file”) write() read() write() link() Close() checkpoints
A A A A Application

U

h 4 h 4
VFS 2 File System Crash
}6 Unwind in-flight
v processes
a File System
4 Move to recent
checkpoint

Replay completed
time operations

Legend: uCompIeted lln-progress \Crash 6 Re-execute
unwound process

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 23

<
(;
(;

F _Iecheckpoint
<

v
O

To

Outline

Evaluation
Conclusions

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 24

Evaluation

Questions that we want to answer:
Can membrane hide failures from applications?
What is the overhead during user workloads?
Portability of existing FS to work with Membrane?

Setup:
2.2 GHz Opteron processor & 2 GB RAM
Two 80 GB western digital disk
Linux 2.6.15 64bit kernel, 5.5K LOC were added
File systems: ext2, VFAT, ext3

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 25

How Transparent are Failures?

™ B ea» o o=

Create

get_blk_handle

- Tl T e e ey

follow_link
mkdir
free_inode
read_blk_bmap

(
|
|
|
I
\
\
\
\
\
\
\
readdir |
\

file write

Membrane successfully hides faults

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 26

Overheads during User Workloads?

Workload: Copy, untar, make of OpenSSH 4.51

35

Ext2 VFAT Ext3
M Vanilla ™ Membrane

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 27

N
(9

N
@)

Time in Seconds
B R
(@) Uy

(Va

Overheads during User Workloads?

Workload: Copy, untar, make of OpenSSH 4.51
35 1.4% 2.3% 1.4%
291

30 28.5

Reliability almost comes for free

N N
o w

Time in Seconds
B R
(@) Uy

(Va

Ext2 VFAT Ext3
M Vanilla ™ Membrane

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 28

Generality of Membrane?

File System

No crash-consistency

crash-consistency

Individual file system changes

Existing code remains unchanged

Additions: track allocations and write super block

Minimal changes to port existing FS to Membrane

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 29

Outline

Conclusions

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 30

Conclusions

Failures are inevitable in file systems
Learn to cope and not hope to avoid them

Membrane: Generic recovery mechanism
Users: Build trust in new file systems (e.q., btrfs)
Developers: Quick-fix bug patching

Encourage more integrity checks in FS code
Detection is easy but recovery is hard

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 31

Questions?

@ Advanced Systems Lab (ADSL)
University of Wisconsin-Madison
WISCONSIN http://www.cs.wisc.edu/adsl

MADISON

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 32

Are Failures Always Transparent?

Files may be recreated during recovery
Inode numbers could change after restart

_ ' Inode# Mismatch e
File1d: inode# 12 juiuiuieieieit ittt File1: inode# 15

create (“file1”) stat (“file1”) write (“file1”, 4k) Application create (“file1”) write (“file1”, 4k) stat (“file1”)

A A A
VFS
Y_ Y|
File :filea $ File System File :filea
Inode# : 12 Inode# : 15 v
Epoch O Epoch O
Before Crash After Crash Recovery

Solution: make create() part of a checkpoint

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 33

Postmark Benchmark

Time in Seconds

500

400

300

200

100

3000 files (sizes 4K to 4MB), 60K transactions

(1)
4782 ~484.1 1.2%

0.6% 1.6%

46.9 47.2

43.1 438

Ext2 VFAT Ext3

3/2/10 Membrane: Operating SYRdREGIRFR foMk MR 8RSy stems (FAST 10) 34

Recovery Time

Recovery time is a function of:
Dirty blocks, open sessions, and log records
We varied each of them individually

10 12.9 200 11.4 1K 15.3
20 13.2 400 14.6 10K 16.8
4O 16.1 800 22.0 100K 25.2

Recovery time is in the order of a few milliseconds

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 35

Recovery Time (Cont.)

Restart ext2 during random-read benchmark

— Average Response Time

|
12 : '\ Response Time
| .

—_ Crash :',J = Indirect Blocks
%) LY
é 8 :' 'n i
§ | ! "I'! ‘ \ ’ll
0) ! ‘ A -~ : ¢
© I'n F W vy "‘/ ;
_j |
w4 :
O.) |
m |

|

|

0 , - | |

Elapsed time (s)
3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 36

Generality and Code Complexity

Individual file system changes Kernel changes

Added Modified Added Modified

Ext2 4 0 FS 1929 30 2979 64
VFAT 5 0 MM 779 5 867 15
Ext3 1 0 Arch 0 0 733 4
JBD 4 0 Headers 522 6 552 6
Module 238 0 238 o)

Total 3468 41 5369 89

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 37

Interaction with Modern FSes

Have built-in crash consistency mechanism

Journaling or Snapshotting

Seamlessly integrate with these mechanism

Need FSes to indicate beginning and end of an
transaction
Works for data and ordered journaling mode

Need to combine writeback mode with COW

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 38

Page Stealing Mechanism

Goal: Reduce the overhead of logging writes
Soln: Grab data from page cache during recovery

Write (fd, buf, offset, count)

Before Crash During Recovery After Recovery

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 39

Handling Non-Determinism

During log replay could data be written in
different order?

Log entries need not represent actual order
Not a problem for meta-data updates

Only one of them succeed and is recorded in log
Deterministic data-block updates with page
stealing mechanism

Latest version of the page is used during replay

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 40

Possible Solutions

Code to recover from all failures

Not feasible in reality
ReSta rt on faI|UI’e Lightweight Heavyweight

Previous work have taken

= 0
this approach =
&
FS need: stateful & lightweight
recove ry .'%’: SafeDrive Nt;?ek:llinl'li:?l:w
o Singularity Ls, Nexus
n

3/2/10 Membrane: Operating System Support for Restartable File Systems (FAST '10) 41

