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Abstract
This paper presents the design, implementation and evalua-

tion of Direct File System (DFS) for virtualized flash storage.
Instead of using traditional layers of abstraction, our layers of
abstraction are designed for directly accessing flash memory de-
vices. DFS has two main novel features. First, it lays out its
files directly in a very large virtual storage address space pro-
vided by FusionIO’s virtual flash storage layer. Second, it lever-
ages the virtual flash storage layer to perform block allocations
and atomic updates. As a result, DFS performs better and it is
much simpler than a traditional Unix file system with similar
functionalities. Our microbenchmark results show that DFScan
deliver 94,000 I/O operations per second (IOPS) for direct reads
and 71,000 IOPS for direct writes with the virtualized flash stor-
age layer on FusionIO’s ioDrive. For direct access performance,
DFS is consistently better than ext3 on the same platform, some-
times by 20%. For buffered access performance, DFS is also
consistently better than ext3, and sometimes by over 149%. Our
application benchmarks show that DFS outperforms ext3 by 7%
to 250% while requiring less CPU power.

1 Introduction

Flash memory has traditionally been the province of em-
bedded and portable consumer devices. Recently, there
has been significant interest in using it to run primary file
systems for laptops as well as file servers in data cen-
ters. Compared with magnetic disk drives, flash can sub-
stantially improve reliability and random I/O performance
while reducing power consumption. However, these file
systems are originally designed for magnetic disks which
may not be optimal for flash memory. A key systems de-
sign question is to understand how to build the entire sys-
tem stack including the file system for flash memory.

Past research work has focused on building firmware
and software to support traditional layers of abstractions
for backward compatibility. For example, recently pro-
posed techniques such as the flash translation layer (FTL)
are typically implemented in a solid state disk controller
with the disk drive abstraction [5, 6, 26, 3]. Systems soft-
ware then uses a traditional block storage interface to sup-
port file systems and database systems designed and op-

timized for magnetic disk drives. Since flash memory is
substantially different from magnetic disks, the rationale
of our work is to study how to design new abstraction
layers including a file system to exploit the potential of
NAND flash memory.

This paper presents the design, implementation, and
evaluation of the Direct File System (DFS) and describes
the virtualized flash memory abstraction layer it uses for
FusionIO’s ioDrive hardware. The virtualized storage ab-
straction layer provides a very large, virtualized block ad-
dressed space, which can greatly simplify the design of a
file system while providing backward compatibility with
the traditional block storage interface. Instead of push-
ing the flash translation layer into disk controllers, this
layer combines virtualization with intelligent translation
and allocation strategies for hiding bulk erasure latencies
and performing wear leveling.

DFS is designed to take advantage of the virtualized
flash storage layer for simplicity and performance. A
traditional file system is known to be complex and typ-
ically requires four or more years to become mature.
The complexity is largely due to three factors: complex
storage block allocation strategies, sophisticated buffer
cache designs, and methods to make the file system crash-
recoverable. DFS dramatically simplifies all three aspects.
It uses virtualized storage spacesdirectly as a true single-
level store and leverages the virtual to physical block al-
locations in the virtualized flash storage layer to avoid ex-
plicit file block allocations and reclamations. By doing
so, DFS uses extremely simple metadata and data layout.
As a result, DFS has a short datapath to flash memory and
encourages users to access data directly instead of going
through a large and complex buffer cache. DFS leverages
the atomic update feature of the virtualized flash storage
layer to achieve crash recovery.

We have implemented DFS for the FusionIO’s virtu-
alized flash storage layer and evaluated it with a suite
of benchmarks. We have shown that DFS has two main
advantages over the ext3 filesystem. First, our file sys-
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tem implementation is about one eighth that of ext3 with
similar functionality. Second, DFS has much better per-
formance than ext3 while using the same memory re-
sources and less CPU. Our microbenchmark results show
that DFS can deliver 94,000 I/O operations per second
(IOPS) for direct reads and 71,000 IOPS direct writes with
the virtualized flash storage layer on FusionIO’s ioDrive.
For direct access performance, DFS is consistently bet-
ter than ext3 on the same platform, sometimes by 20%.
For buffered access performance, DFS is also consistently
better than ext3, and sometimes by over 149%. Our ap-
plication benchmarks show that DFS outperforms ext3 by
7% to 250% while requiring less CPU power.

2 Background and Related Work

In order to present the details of our design, we first pro-
vide some background on flash memory and the chal-
lenges to using it in storage systems. We then provide
an overview of related work.

2.1 NAND Flash Memory

Flash memory is a type of electrically erasable solid-state
memory that has become the dominant technology for ap-
plications that require large amounts of non-volatile solid-
state storage. These applications include music players,
cell phones, digital cameras, and shock sensitive applica-
tions in the aerospace industry.

Flash memory consists of an array of individual cells,
each of which is constructed from a single floating-gate
transistor. Single Level Cell (SLC) flash stores a single
bit per cell and is typically more robust; Multi-Level Cell
(MLC) flash offers higher density and therefore lower cost
per bit. Both forms support three operations: read, write
(or program), and erase. In order to change the value
stored in a flash cell it is necessary to perform an erase
before writing new data. Read and write operations typi-
cally take tens of microseconds whereas the erase opera-
tion may take more than a millisecond.

The memory cells in a NAND flash device are arranged
into pages which vary in size from 512 bytes to as much as
16KB each. Read and write operations are page-oriented.
NAND flash pages are further organized into erase blocks,
which range in size from tens of kilobytes to megabytes.
Erase operations apply only to entire erase blocks; any
data in an erase block that is to be preserved must be
copied.

There are two main challenges in building storage sys-
tems using NAND flash. The first is that an erase oper-
ation typically takes about one or two milliseconds. The
second is that an erase block may be erased successfully
only a limited number of times. The endurance of an
erase block depends upon a number of factors, but usually

ranges from as little as 5,000 cycles for consumer grade
MLC NAND flash to 100,000 or more cycles for enter-
prise grade SLC NAND flash.

2.2 Related Work

Douglis et al. studied the effects of using flash memory
without a special software stack [11]. They showed that
flash could improve read performance by an order of mag-
nitude and decrease energy consumption by 90%, but that
due to bulk erasure latency, write performance also de-
creased by a factor of ten. They further noted that large
erasure block size causes unnecessary copies for cleaning,
an effect often referred to as “write amplification”.

Kawaguchiet al. [14] describe a transparent device
driver that presents flash as a disk drive. The driver dy-
namically maps logical blocks to physical addresses, pro-
vides wear-leveling, and hides bulk erasure latencies us-
ing a log-structured approach similar to that of LFS [27].
State-of-the art implementations of this idea, typically
called the Flash Translation Layer, have been imple-
mented in the controllers of several high-performance
Solid State Drives (SSDs) [3, 16].

More recent efforts focus on high-performance in
SSDs, particularly for random writes. Birrellet al. [6],
for instance, describe a design that significantly improves
random write performance by keeping a fine-grained map-
ping between logical blocks and physical flash addresses
in RAM. Similarly, Agrawalet al. [5] argue that SSD per-
formance and longevity is strongly workload dependent
and further that many systems problems that previously
have appeared higher in the storage stack are now relevant
to the device and its firmware. This observation has lead to
the investigation of buffer management policies for a vari-
ety of workloads. Some policies, such as Clean First LRU
(CFLRU) [24] trade off a reduced number of writes for
additional reads. Others, such as Block Padding Least Re-
cently Used (BPLRU) [15] are designed to improve per-
formance for fine-grained updates or random writes.

eNVy [33] is an early file system design effort for flash
memory. It uses flash memory as fast storage, a battery-
backed SRAM module as a non-volatile cache for com-
bining writes into the same flash block for performance,
and copy-on-write page management to deal with bulk
erasures

More recently, a number of file systems have been de-
signed specifically for flash memory devices. YAFFS,
JFFS2, and LogFS [19, 32] are example efforts that
hide bulk erasure latencies and perform wear-leveling of
NAND flash memory devices at the file system level using
the log-structured approach. These file systems were ini-
tially designed for embedded applications instead of high-
performance applications and are not generally suitable
for use with the current generation of high-performance
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flash devices. For instance, YAFFS and JFFS2 manage
raw NAND flash arrays directly. Furthermore, JFFS2
must scan the entire physical device at mount time which
can take many minutes on large devices. All three filesys-
tems are designed to access NAND flash chips directly,
negating the performance advantages of the hardware and
software in emerging flash device. LogFS does have some
support for a block-device compatibility mode that can be
used as a fall-back at the expense of performance, but
none are designed to take advantage of emerging flash
storage devices which perform their own flash manage-
ment.

3 Our Approach

This section presents the three main aspects of our ap-
proach: (a) new layers of abstraction for flash memory
storage systems which yield substantial benefits in sim-
plicity and performance; (b) a virtualized flash storage
layer, which provides a very large address space and im-
plements dynamic mapping to hide bulk erasure latencies
and to perform wear leveling; and (c) the design of DFS
which takes full advantage of the virtualized flash storage
layer. We further show that DFS is simple and performs
better than the popular Linux ext3 file system.

3.1 Existing vs. New Abstraction Layers

Figure 1 shows the architecture block diagrams for ex-
isting flash storage systems and our proposed architec-
ture. The traditional approach is to package flash memory
as a solid-state disk (SSD) that exports a disk interface
such as SATA or SCSI. An advanced SSD implements a
flash translation layer (FTL) in its controller that main-
tains a dynamic mapping from logical blocks to physi-
cal flash pages to hide bulk erasure latencies and to per-
form wear leveling. Since a SSD uses the same inter-
face as a magnetic disk drive, it supports the traditional
block storage software layer which can be either a sim-
ple device driver or a sophisticated volume manager. The
block storage layer then supports traditional file systems,
database systems, and other software designed for mag-
netic disk drives. This approach has the advantage of
disrupting neither the application-kernel interface nor the
kernel-physical storage interface. On the other hand, it has
a relatively thick software stack and makes it difficult for
the software layers and hardware to take full advantage of
the benefits of flash memory.

We advocate an architecture in which a greatly simpli-
fied file system is built on top of a virtualized flash stor-
age layer implemented by the cooperation of the device
driver and novel flash storage controller hardware. The
controller exposes direct access to flash memory chips to
the virtualized flash storage layer.

The virtualized flash storage layer is implemented at the
device driver level which can freely cooperate with spe-
cific hardware support offered by the flash memory con-
troller. The virtualized flash storage layer implements a
large virtual block addressed space and maps it to physi-
cal flash pages. It handles multiple flash devices and uses
a log-structured allocation strategy to hide bulk erasure
latencies, perform wear leveling, and handle bad page re-
covery. This approach combines the virtualization and
FTL together instead of pushing FTL into the disk con-
troller layer. The virtualized flash storage layer can still
provide backward compatibility to run existing file sys-
tems and database systems. The existing software can
benefit from the intelligence in the device driver and hard-
ware rather than having to implement that functionality
independently in order to use flash memory. More impor-
tantly, flash devices are free to export a richer interface
than that exposed by disk-based interfaces.

Direct File System (DFS) is designed to utilize the
functionality provided by the virtualized flash storage
layer. In addition to leveraging the support for wear-
leveling and for hiding the latency of bulk erasures, DFS
uses the virtualized flash storage layer to perform file
block allocations and reclamations and uses atomic flash
page updates for crash recovery. This architecture allows
the virtualized flash storage layer to provide an object-
based interface. Our main observation is that the sep-
aration of the file system from block allocations allows
the storage hardware and block management algorithms
to evolve jointly and independently from the file system
and user-level applications. This approach makes it easier
for the block management algorithms to take advantage of
improvements in the underlying storage subsystem.

3.2 Virtualized Flash Storage Layer

The virtual flash storage layer provides an abstraction to
enable client software such as file systems and database
systems to take advantage of flash memory devices while
providing backward compatibility with the traditional
block storage interface. The primary novel feature of the
virtualized flash storage layer is the provision for a very
large, virtual block-addressed space. There are three rea-
sons for this design. First, it provides client software with
the flexibility to directly access flash memory in a single
level store fashion across multiple flash memory devices.
Second, it hides the details of the mapping from virtual
to physical flash memory pages. Third, the flat virtual
block-addressed space provides clients with a backward
compatible block storage interface.

The mapping from virtual blocks to physical flash
memory pages deals with several flash memory issues.
Flash memory pages are dynamically allocated and re-
claimed to hide the latency of bulk erasures, to distribute
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Figure 1: Flash Storage Abstractions

writes evenly to physical pages for wear-leveling, and to
detect and recover bad pages to achieve high reliability.
Unlike a conventional Flash Translation Layer (FTL), the
mapping supports a very large number of virtual pages
– orders-of-magnitude larger than the available physical
flash memory pages.

The virtualized flash storage layer currently supports
three operations: read, write, and trim or deallocate. All
operations are block-based operations, and the block size
in the current implementation is 512 bytes. The write op-
eration triggers a dynamic mapping from a virtual to phys-
ical page, thus there is no explicit allocation operation.
The deallocate operation deallocates a range of virtual ad-
dresses. It removes the mappings of all mapped physical
flash pages in the range and hands them to a garbage col-
lector to recycle for future use. We anticipate that future
versions of the VFSL will also support a move operation
to allow data to be moved from one virtual address to an-
other without incurring the cost of a read, write, and deal-
locate operation for each block to be copied.

The current implementation of the virtualized flash stor-
age layer is a combination of a Linux device driver and Fu-
sionIO’s ioDrive special purpose hardware. The ioDrive is
a PCI Express card densely populated with either 160GB
or 320GB of SLC NAND flash memory. The software
for the virtualized flash storage layer is implemented as a
device driver in the host operating system and leverages
hardware support from the ioDrive itself.

The ioDrive uses a novel partitioning of the virtualized
flash storage layer between the hardware and device driver
to achieve high performance. The overarching design phi-
losophy is to separate the data and control paths and to

implement the control path in the device driver and the
data path in hardware. The data path on the ioDrive card
contains numerous individual flash memory packages ar-
ranged in parallel and connected to the host via PCI Ex-
press. As a consequence, the device achieves highest
throughput with moderate parallelism in the I/O request
stream. The use of PCI Express rather than an existing
storage interface such as SCSI or SATA simplifies the par-
titioning of control and data paths between the hardware
and device driver.

The device provides hardware support of checksum
generation and checking to allow for the detection and
correction of errors in case of the failure of individual flash
chips. Metadata is stored on the device in terms of physi-
cal addresses rather than virtual addresses in order to sim-
plify the hardware and allow greater throughput at lower
economic cost. While individual flash pages are relatively
small (512 bytes), erase blocks are several megabytes in
size in order to amortize the cost of bulk erase operations.

The mapping between virtual and physical addresses is
maintained by the kernel device driver. The mapping be-
tween 64-bit virtual addresses and physical addresses is
maintained using a variation on B-trees in memory. Each
address points to a 512-byte flash memory page, allow-
ing a virtual address space of273 bytes. Updates are
made stable by recording them in a log-structured fashion:
the hardware interface is append-only. The device driver
is also responsible for reclaiming unused storage using
a garbage collection algorithm. Bulk erasure scheduling
and wear leveling algorithms for flash endurance are inte-
grated into the garbage collection component of the device
driver.
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A primary rationale for implementing the virtual to
physical address translation and garbage collection in the
device driver rather than in an embedded processor on the
ioDrive itself is that the device driver can automatically
take advantage of improvements in processor and mem-
ory bus performance on commodity hardware without re-
quiring significant design work on a proprietary embed-
ded platform. This approach does have the drawback of
requiring potentially significant processor and memory re-
sources on the host.

3.3 DFS

DFS is a full-fledged implementation of a Unix file system
and it is designed to take advantage of several features of
the virtualized flash storage layer, including large virtual-
ized address space, direct flash access and its crash recov-
ery mechanism. The implementation runs as a loadable
kernel module in the Linux 2.6 kernel. The DFS kernel
module implements the traditional Unix file system APIs
via the Linux VFS layer. It supports the usual methods
such as open, close, read, write, pread, pwrite, lseek, and
mmap. The Linux kernel requires basic memory mapped
I/O support in order to facilitate the execution of binaries
residing on DFS file systems.

3.3.1 Leveraging Virtualized Flash Storage

DFS delegates I-node and file data block allocations and
deallocations to the virtualized flash storage layer. The
virtualized flash storage layer is responsible for block al-
locations and deallocations, for hiding the latency of bulk
erasures, and for wear leveling.

We have considered two design alternatives. The first is
to let the virtualized storage layer export an object-based
interface. In this case, a separate object is used to repre-
sent each file system object and the virtualized flash stor-
age layer is responsible for managing the underlying flash
blocks. The main advantage of this approach is that it can
provide a close match with what a file system implemen-
tation needs. The main disadvantage is the complexity of
an object-based interface that provides backwards com-
patibility with the traditional block storage interface.

The second is to ask the virtualized flash storage layer
to implement a large logical address space that is sparse.
Each file system object will be assigned a contiguous
range of logical block addresses. The main advantages
of this approach are its simplicity and its natural support
for the backward compatibility with the traditional block
storage interface. The drawback of this approach is its po-
tential waste of the virtual address space. DFS has taken
this approach for its simplicity.

We have configured the ioDrive to export a sparse 64-
bit logical block address space. Since each block contains

512 bytes, the logical address space spans273 bytes. DFS
can then use this logical address space to map file system
objects to physical storage.

DFS allocates virtual address space in contiguous “al-
location chunks”. The size of these chunks is configurable
at file system initialization time but is232 blocks or 2TB
by default. User files and directories are partitioned into
two types: large and small. A large file occupies an en-
tire chunk whereas multiple small files reside in a sin-
gle chunk. When a small file grows to become a large
file, it is moved to a freshly allocated chunk. The current
implementation must implement this by copying the file
contents, but we anticipate that future versions of the vir-
tual flash storage layer will support changing the virtual to
physical translation map without having to copy data. The
current implementation does not support remapping large
files into the small file range should a file shrink.

When the filesystem is initialized, two parameters must
be chosen: the maximum size of a small file, which must
be a power of two, and the size of allocation chunks,
which is also the maximum size of a large file. These
two parameters are fixed once the filesystem is initialized.
They can be chosen in a principled manner given the antic-
ipated workload. There have been many studies of file size
distributions in different environments, for instance those
by Tannenbaumet al. [28] and Docuer and Bolosky [10].
By default, small files are those less than 32KB.

The current DFS implementation uses a 32-bit I-node
number to identify individual files and directories and a
32-bit block offset into a file. This means that DFS can
support up to−1 + 232 files and directories in total since
the first I-node number is reserved for the system. The
largest supported file size is 2TB with 512-byte blocks
since the block offset is 32 bits. The I-node itself stores
the base virtual address for the logical extent containing
the file data. This base address together with the file off-
set identifies the virtual address of a file block. Figure 2
depicts the mapping from file descriptor and offset to log-
ical block address in DFS.

The very simple mapping from file and offset to logi-
cal block address has another beneficial implication. Each
file is represented by a single logical extent, making it
straightforward for DFS to combine multiple small I/O re-
quests to adjacent regions into a single larger I/O. No com-
plicated block layout policies are required at the filesys-
tem layer. This strategy can improve performance because
the flash device delivers higher transfer rates with larger
I/Os. Our current implementation aggressively merges
I/O requests; a more nuanced policy might improve per-
formance further.

DFS leverages the three main operations supported by
the virtualized flash storage layer: read from a logical
block, write to a logical block, and discard a logical block
range. The discard directive marks a logical block range
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Figure 2: DFS logical block address mapping for large
files; only the width of the file block number differs for
small files

Figure 3: Layout of DFS system and user files in virtual-
ized flash storage. The first 2TB is used for system files.
The remaining 2TB allocation chunks are for user data or
directory files. A large file takes the whole chunk; multi-
ple small files are packed into a single chunk.

as garbage for the garbage collector and ensures that sub-
sequent reads to the range return only zeros. A version
of the discard directive already exists in many flash de-
vices as a hint to the garbage collector; DFS, by contrast,
depends upon it to implement truncate and remove. It is
also possible to interrogate a logical block range to deter-
mine if it contains allocated blocks. The current version
of DFS does not make use of this feature, but it could be
used by archival programs such astar that have special
representations for sparse files.

3.3.2 DFS Layout and Objects

The DFS file system uses a simple approach to store files
and their metadata. It divides the 64-bit block addressed
virtual flash storage space (DFS volume) into block ad-
dressed subspaces or allocation chunks. The size of these
two types of subspaces are configured when the filesystem
is initialized. DFS places large files in their own allocation
chunks and stores multiple small files in a chunk.

As shown in Figure 3, there are three kinds of files in
the DFS file system. The first file is a system file which
includes the boot block, superblock and all I-nodes. This

file is a “large” file and occupies the first allocation chunk
at the beginning of the raw device. The boot block oc-
cupies the first few blocks (sectors) of the raw device. A
superblock immediately follows the boot block. At mount
time, the file system can compute the location of the su-
perblock directly. The remainder of the system file con-
tains all I-nodes as an array of block-aligned I-node data
structures.

Each I-node is identified by a 32-bit unique identifier or
I-node number. Given the I-node number, the logical ad-
dress of the I-node within the I-node file can be computed
directly. Each I-node data structure is stored in a single
512-byte flash block. Each I-node contains the I-number,
base virtual address of the corresponding file, mode, link
count, file size, user and group IDs, any special flags, a
generation count, and access, change, birth, and modifica-
tion times with nanosecond resolution. These fields take
a total of 72 bytes, leaving 440 bytes for additional at-
tributes and future use. Since an I-node fits in a single
flash page, it will be updated atomically by the virtualized
flash storage layer.

The implementation of DFS uses a 32-bit block-
addressed allocation chunk to store the content of a reg-
ular file. Since a file is stored in a contiguous, flat space,
the address of each block offset can be simply computed
by adding the offset to the virtual base address of the space
for the file. A block read simply returns the content of the
physical flash page mapped to the virtual block. A write
operation writes the block to the mapped physical flash
page directly. Since the virtualized flash storage layer trig-
gers a mapping or remapping on write, DFS does the write
without performing an explicit block allocation. Note that
DFS allows holes in a file without using physical flash
pages because of the dynamic mapping. When a file is
deleted, the DFS will issue a deallocation operation pro-
vided by the virtualized flash storage layer to deallocate
and unmap virtual space of the entire file.

A DFS directory is mapped to flash storage in the same
manner as ordinary files. The only difference is its in-
ternal structure. A directory contains contains an array
of name, I-node number, type triples. The current imple-
mentation is very similar to that found in FFS [22]. Up-
dates to directories, including operations such as rename,
which touch multiple directories and the on-flash I-node
allocator, are made crash-recoverable through the use of
a write-ahead log. Although widely used and simple to
implement, this approach does not scale well to large di-
rectories. The current version of the virtualized flash stor-
age layer does not export atomic multi-block updates. We
anticipate reimplementing directories using hashing and a
sparse virtual address space made crash recoverable with
atomic updates.
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3.3.3 Direct Data Accesses

DFS promotes direct data access. The current Linux im-
plementation of DFS allows the use of the buffer cache in
order to support memory mapped I/O which is required
for theexec system call. However, for many workloads
of interest, particularly databases, clients are expectedto
bypass the buffer cache altogether. The current imple-
mentation of DFS provides direct access via the direct
I/O buffer cache bypass mechanism already present in the
Linux kernel. Using direct I/O, page-aligned reads and
writes are converted directly into I/O requests to the block
device driver by the kernel.

There are two main rationales for this approach. First,
traditional buffer cache design has several drawbacks. The
traditional buffer cache typically uses a large amount of
memory. Buffer cache design is quite complex since it
needs to deal with multiple clients, implement sophisti-
cated cache replacement policies to accommodate vari-
ous access patterns of different workloads, and maintain
consistency between the buffer cache and disk drives, and
support crash recovery. In addition, having a buffer cache
imposes a memory copy in the storage software stack.

Second, flash memory devices provide low-latency ac-
cesses, especially for random reads. Since the virtualized
flash storage layer can solve the write latency problem,
the main motivation for the buffer cache is largely elimi-
nated. Thus, applications can benefit from the DFS direct
data access approach by utilizing most of the main mem-
ory space typically used for the buffer cache for a larger
in memory working set.

3.3.4 Crash Recovery

The virtualized flash storage layer implements the basic
functionality of crash recovery for the mapping from log-
ical block addresses to physical flash storage locations.
DFS leverages this property to provide crash recovery.
Unlike traditional file systems that use non-volatile ran-
dom access memory (NVRAM) and their own logging im-
plementation, DFS piggybacks on the flash storage layer’s
log.

NVRAM and file system level logging require complex
implementations and introduce additional costs for the tra-
ditional file systems. NVRAM is typically used in high-
end file systems so that the file system can achieve low-
latency operations while providing fault isolations and
avoiding data loss in case of power failures. The tradi-
tional logging approach is to log every write and performs
group commits to reduce overhead. Logging writes to disk
can impose significant overheads. A more efficient ap-
proach is to log updates to NVRAM, which is the method
typically used in high-end file systems [12]. NVRAMs are
typically implemented with battery-backed DRAMs on a
PCI card whose price is similar to a few high-density mag-

netic disk drives. NVRAMs can substantially reduce the
file system write performance because every write must
go through the NVRAM. For a network file system, each
write will have to go through the I/O bus three times, once
for the NIC, once for NVRAM, and once for writing to
disks.

Since flash memory is a form of NVRAM, DFS lever-
ages the support from the virtualized flash storage layer
to achieve crash recoverability. When a DFS file system
object is extended, DFS passes the write request to the vir-
tualized flash storage layer which then allocates a physical
page of the flash device and logs the result internally. Af-
ter a crash, the virtualized flash storage layer runs recov-
ery using the internal log. The consistency of the contents
of individual files is the responsibility of applications, but
the on-flash state of the file system is guaranteed to be
consistent. Since the virtualized flash storage layer uses a
log-structured approach to tracking allocations for perfor-
mance reasons and must handle crashes in any case, DFS
does not impose any additional onerous requirements.

3.3.5 Discussion

The current DFS implementation has several limitations.
The first is that it does not yet support snapshots. One of
the reasons we did not implement snapshot is that we plan
to support snapshots natively in the virtualized flash stor-
age layer which will greatly simplify the snapshot imple-
mentation in DFS. Since the virtualized flash storage layer
is already log-structured for performance and hence takes
a copy-on-write approach by default, one can implement
snapshots in the virtualized flash storage layer efficiently.

The second is that we are currently implementing sup-
port for atomic multi-block updates in the virtualized flash
storage layer. The log-structured, copy-on-write nature of
the flash storage layer makes it possible to export such
an interface efficiently. For example, Prabhakaranet al.
recently described an efficient commit protocol to imple-
ment atomic multi-block writes [25]. This type of meth-
ods will allow DFS to guarantee the consistency of direc-
tory contents and I-node allocations in a simple fashion.
In the interim, DFS uses a straightforward extension of
the traditional UFS/FFS directory structure.

The third is the limitations on the number of files and
the maximum file size. We have considered a design that
supports two file sizes: small and very large. The file lay-
out algorithm initially assumes a file is small (e.g., less
than 2GB). If it needs to exceed the limit, it will become a
very large file (e.g., up to 2PB). The virtual block address
space is partitioned so that a large number of small file
ranges are mapped in one partition and a smaller number
of very large file ranges are mapped into the remaining
partition. A file may be promoted from the small partition
to the very large partition by copying the mapping of a
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virtual flash storage address space to another at the virtu-
alized flash storage layer. We plan to export such support
and implement this design in the next version of DFS.

4 Evaluation

We are interested in answering two main questions:

• How do the layers of abstraction perform?

• How does DFS compare with existing file systems?

To answer the first question, we use a microbenchmark to
evaluate the number of I/O operations per second (IOPS)
and bandwidth delivered by the virtualized flash storage
layer and by the DFS layer. To answer the second ques-
tion, we compare DFS with ext3 by using a microbench-
mark and an application suite. Ideally, we would compare
with existing flash filesystems as well, however filesys-
tems such as YAFFS and JFFS2 are designed to use raw
NAND flash and are not compatible with next-generation
flash storage that exports a block interface.

All of our experiments were conducted on a desktop
with Intel Quad Core processor running at 2.4GHz with a
4MB cache and 4GB DRAM. The host operating system
was a stock Fedora Core installation running the Linux
2.6.27.9 kernel. Both DFS and the virtualized flash stor-
age layer implemented by the FusionIO device driver were
compiled as loadable kernel modules.

We used a FusionIO ioDrive with 160GB of SLC
NAND flash connected via PCI-Express x4 [1]. The ad-
vertised read latency of the FusionIO device is50µs. For
a single reader, this translates to a theoretical maximum
throughput of 20,000 IOPS. Multiple readers can take
advantage of the hardware parallelism in the device to
achieve much higher aggregate throughput. For the sake
of comparison, we also ran the microbenchmarks on a
32GB Intel X25-E SSD connected to a SATA II host bus
adapter [2]. This device has an advertised typical read la-
tency of about75µs.

Our results show that the virtualized flash storage layer
delivers performance close to the limits of the hardware,
both in terms of IOPS and bandwidth. Our results also
show that DFS is much simpler than ext3 and achieves
better performance in both the micro- and application
benchmarks than ext3, often using less CPU power.

4.1 Virtualized Flash Storage Performance

We have two goals in evaluating the performance of the
virtualized flash storage layer. First, to examine the po-
tential benefits of the proposed abstraction layer in com-
bination with hardware support that exposes parallelism.
Second, to determine the raw performance in terms of
bandwidth and IOPs delivered in order to compare DFS

and ext3. For both purposes, we designed a simple mi-
crobenchmark which opens the raw block device in di-
rect I/O mode, bypassing the kernel buffer cache. Each
thread in the program attempts to execute block-aligned
reads and writes as quickly as possible.

To evaluate the benefits of the virtualized flash storage
layer and its hardware, one would need to compare a tra-
ditional block storage software layer with flash memory
hardware equivalent to the FusionIO ioDrive but with a
traditional disk interface FTL. Since such hardware does
not exist, we have used a Linux block storage layer with
an Intel X25-E SSD, which is a well-regarded SSD in the
marketplace. Although this is not a fair comparison, the
results give us some sense of the performance impact of
the abstractions designed for flash memory.

We measured the number of sustained random I/O
transactions per second. While both flash devices are
enterprise class devices, the test platform is the typical
white box workstation we described earlier. The results
are shown in Figure 4. Performance, while impressive
compared to magnetic disks, is less than that advertised
by the manufacturers. We suspect that the large IOPS per-
formance gaps, particularly for write IOPS, are partially
limited by the disk drive interface and limited resources
in a drive controller to run sophisticated remapping algo-
rithms.

Device Read IOPS Write IOPS

Intel 33,400 3,120
FusionIO 98,800 75,100

Figure 4: Device 4KB Peak Random IOPS

Device Threads Read (MB/s) Write (MB/s)

Intel 2 221 162
FusionIO 2 769 686

Figure 5: Device Peak Bandwidth 1MB Transfers

Figure 5 shows the peak bandwidth for both cases. We
measured sequential I/O bandwidth by computing the ag-
gregate throughput of multiple readers and writers. Each
client transferred 1MB blocks for the throughput test
and used direct I/O to bypass the kernel buffer cache.
The results in the table are the bandwidth results using
two writers. The virtualized flash storage layer with io-
Drive achieves 769MB/s for read and 686MB/s for write,
whereas the traditional block storage layer with the Intel
SSD achieves 221MB/s for read and 162MB/s for write.

4.2 Complexity of DFS vs. ext3

Figure 6 shows the number of lines of code for the ma-
jor modules of DFS and ext3 file systems. Although both
implement Unix file systems, DFS is much simpler. The
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Module DFS Ext3

Headers 392 1583
Kernel Interface (Superblock,etc.) 1625 2973
Logging 0 7128
Block Allocator 0 1909
I-nodes 250 6544
Files 286 283
Directories 561 670
ACLs, Extended Attrs. N/A 2420
Resizing N/A 1085
Miscellaneous 175 113

Total 3289 24708

Figure 6: Lines of Code in DFS and Ext3 by Module

simplicity of DFS is mainly due to delegating block al-
locations and reclamations to the virtualized flash storage
layer. The ext3 file system, for example, has a total of
17,500 lines of code and relies on an additional 7,000 lines
of code to implement logging (JBD) for a total of nearly
25,000 lines of code compared to roughly 3,300 lines of
code in DFS. Of the total lines in ext3, about 8,000 lines
(33%) are related to block allocations, deallocations and I-
node layout. Of the remainder, another 3,500 lines (15%)
implement support for on-line resizing and extended at-
tributes, neither of which are supported by DFS.

Although it may not be fair to compare a research pro-
totype file system with a file system that has evolved for
several years, the percentages of block allocation and log-
ging in the file systems give us some indication of the rel-
ative complexity of different components in a file system.

4.3 Microbenchmark Performance of DFS
vs. ext3

We use Iozone [23] to evaluate the performance of DFS
and ext3 on the ioDrive when using both direct and
buffered access. We record the number of 4KB I/O trans-
actions per second achieved with each file system and also
compute the CPU usage required in each case as the ratio
between user plus system time to elapsed wall time. For
both file systems, we ran Iozone in three different modes:
in the default mode in which I/O requests pass through the
kernel buffer cache, in direct I/O mode without the buffer
cache, and in memory-mapped mode using themmap sys-
tem call.

In our experiments, both file systems run on top of the
virtualized flash storage layer. The ext3 file system in this
case uses the backward compatible block storage interface
supported by the virtualized flash storage layer.

Direct Access

For both reads and writes, we consider sequential and uni-
form random access to previously allocated blocks. Our

goal is to understand the additional overhead due to DFS
compared to the virtualized flash storage layer. The re-
sults indicate that DFS is indeed lightweight and imposes
much less overhead than ext3. Compared to the raw de-
vice, DFS delivers about 5% fewer IOPS for both read
and write whereas ext3 delivers 9% fewer read IOPS and
more than 20% fewer write IOPS. In terms of bandwidth,
DFS delivers about 3% less write bandwidth whereas ext3
delivers 9% less write bandwidth.

File System Threads Read (MB/s) Write (MB/s)

ext3 2 760 626
DFS 2 769 667

Figure 7: Peak Bandwidth 1MB Transfers on ioDrive

Figure 7 shows the peak bandwidth for sequential 1MB
block transfers. This microbenchmark is the filesystem
analog of the raw device bandwidth performance shown
in Figure 5. Although the performance difference between
DFS and ext3 for large block transfers is relatively mod-
est, DFS does narrow the gap between filesystem and raw
device performance for both sequential reads and writes.

Figure 8 shows the average direct random I/O perfor-
mance on DFS and ext3 as a function of the number of
concurrent clients on the FusionIO ioDrive. Both of the
file systems also exhibit a characteristic that may at first
seem surprising:aggregateperformance often increases
with an increasing number of clients, even if the client
requests are independent and distributed uniformly at ran-
dom. This behavior is due to the relatively long latency of
individual I/O transactions and deep hardware and soft-
ware request queues in the flash storage subsystem. This
behavior is quite different from what most applications ex-
pect and may require changes to them in order to realize
the full potential of the storage system.

Unlike read throughput, write throughput peaks at
about 16 concurrent writers and then decreases slightly.
Both the aggregate throughput and the number of concur-
rent writers at peak performance are lower than when ac-
cessing the raw storage device. The additional overhead
imposed by the filesystem on the write path reduces both
the total aggregate performance and the number of con-
current writers that can be handled efficiently.

We have also measured CPU utilization per 1,000 IOPS
delivered in the microbenchmarks. Figure 9 shows the
improvement of DFS over ext3. We report the average
of five runs of the IOZone based microbenchmark with a
standard deviation of one to three percent. For reads, DFS
CPU utilization is comparable to ext3; for writes, partic-
ularly with small numbers of threads, DFS is more effi-
cient. Overall, DFS consumes somewhat less CPU power,
further confirming that DFS is a lighter weight file system
than ext3.

One anomaly worthy of note is that DFS is actually
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Figure 8: Aggregate IOPS for 4K Random Direct I/O as a Function of the Number of Threads

Threads Read
Random
Read

Write
Random
Write

1 8.1 2.8 9.4 13.8
2 1.3 1.6 12.8 11.5
3 0.4 5.8 10.4 15.3
4 -1.3 -6.8 -15.5 -17.1
8 0.3 -1.0 -3.9 -1.2
16 1.0 1.7 2.0 6.7
32 4.1 8.5 4.8 4.4

Figure 9: Improvement in CPU Utilization per1, 000

IOPS using 4K Direct I/O with DFS relative to Ext3

more expensive than ext3 per I/O when running with four
clients, particularly if the clients are writers. This is due
to the fact that there are four cores on the test machine
and the device driver itself has worker threads that re-
quire CPU and memory bandwidth. The higher perfor-
mance of DFS translates into more work for the device
driver and particularly for the garbage collector. Since
there are more threads than cores, cache hit rates suffer
and scheduling costs increase; under higher offered load,
the effect is more pronounced, although it can be miti-
gated somewhat by binding the garbage collector to a sin-
gle processor core.

Buffered Access

To evaluate the performance of DFS in the presence of the
kernel buffer cache, we ran a similar set of experiments as
in the case of direct I/O. Each experiment touched 8GB
worth of data using 4K block transfers. The buffer cache
was invalidated after each run by unmounting the file sys-
tem and the total data referenced exceeded the physical
memory available by a factor of two. The first run of each
experiment was discarded and the average of the subse-
quent ten runs reported.

Figures 10 and 11 show the results via the Linux buffer
cache and via memory-mapped I/O data path which also
uses the buffer cache. There are several observations.

Seq. Read IOPS x 1K Rand. Read IOPS x 1K
Thr. ext3 DFS (Speedup)ext3 DFS (Speedup)

1 125.5 191.2 (1.52) 17.5 19.0 (1.09)
2 147.6 194.1 (1.32) 32.9 34.0 (1.03)
3 137.1 192.7 (1.41) 44.3 46.6 (1.05)
4 133.6 193.9 (1.45) 55.2 57.8 (1.05)
8 134.4 193.5 (1.44) 78.7 80.5 (1.02)
16 132.6 193.9 (1.46) 79.6 81.1 (1.02)
32 132.3 194.8 (1.47) 95.4 101.2 (1.06)

Seq. Write IOPS x 1K Rand. Write IOPS x 1K
Thr. ext3 DFS (Speedup)ext3 DFS (Speedup)

1 67.8 154.9 (2.28) 61.2 68.5 (1.12)
2 71.6 165.6 (2.31) 56.7 64.6 (1.14)
3 73.0 156.9 (2.15) 59.6 62.8 (1.05)
4 65.5 161.5 (2.47) 57.5 63.3 (1.10)
8 64.9 148.1 (2.28) 57.0 58.7 (1.03)
16 65.3 147.8 (2.26) 52.6 56.5 (1.07)
32 65.3 150.1 (2.30) 55.2 50.6 (0.92)

Figure 10: Buffer Cache Performance with 4KB I/Os

First, both DFS and ext3 have similar random read IOPS
and random write IOPS to their performance results us-
ing direct I/O. Although this is expected, DFS is better
than ext3 on average by about 5%. This further shows
that DFS has less overhead than ext3 in the presence of a
buffer cache.

Second, we observe that the traditional buffer cache is
not effective when there are a lot of parallel accesses. In
the sequential read case, the number of IOPS delivered by
DFS basically doubles its direct I/O access performance,
whereas the IOPS of ext3 is only modestly better than its
random access performance when there are enough paral-
lel accesses. For example, when there are 32 threads, its
IOPS is 132,000, which is only 28% better than its random
read IOPS of 95,400!

Third, DFS is substantially better than ext3 for both se-
quential read and sequential write cases. For sequential
reads, it outperforms ext3 by more than a factor of 1.4.
For sequential writes, it outperforms ext3 by more than a
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Seq. Read IOPS x 1K Rand. Read IOPS x 1K
Thr. ext3 DFS (Speedup) ext3 DFS (Speedup)

1 42.6 52.2 (1.23) 13.9 18.1 (1.3)
2 72.6 84.6 (1.17) 22.2 28.2 (1.27)
3 94.7 114.9 (1.21) 27.4 32.1 (1.17)
4 110.2 117.1 (1.06) 29.7 35.0 (1.18)

Seq. Write IOPS x 1K Rand. Write IOPS x 1K
Thr. ext3 DFS (Speedup) ext3 DFS (Speedup)

1 28.8 40.2 (1.4) 11.8 13.5 (1.14)
2 39.9 55.5 (1.4) 16.7 18.1 (1.08)
3 41.9 68.4 (1.6) 19.1 20.0 (1.05)
4 44.3 70.8 (1.6) 20.1 22.0 (1.09)

Figure 11: Memory Mapped Performance of Ext3 & DFS

factor of 2.15. This is largely due to the fact that DFS is
simple and can easily combines I/Os.

The story for memory-mapped I/O performance is
much the same as it is for buffered I/O. Random access
performance is relatively poor compared to direct I/O per-
formance. The simplicity of DFS and the short code
paths in the filesystem allow it to outperform ext3 in this
case. The comparatively large speedups for sequential
I/O, particularly sequential writes, is again due to the fact
that DFS readily combines multiple small I/Os into larger
ones. In the next section we show that I/O combining is
an important effect; the quicksort benchmark is a good
example of this phenomenon with memory mapped I/O.
We count both the number of I/O transactions during the
course of execution and the total number of bytes trans-
ferred. DFS greatly reduces the number of write opera-
tions and more modestly the number of read operations.

4.4 Application Benchmarks Performance
of DFS vs. ext3

We have used five applications as an application bench-
mark suite to evaluate the application-level performance
on DFS and ext3.

Application Benchmarks

The table in Figure 12 summarizes the characteristics of
the applications and the reasons why they are chosen for
our performance evaluation.

In the following, we describe each application, its im-
plementation and workloads in detail:

Quicksort. This quicksort is implemented as a single-
threaded program to sort 715 million 24 byte key-value
pairs memory mapped from a single 16GB file. Although
quicksort exhibits good locality of reference, this bench-
mark program nonetheless stresses the memory mapped
I/O subsystem. The memory-mapped interface has the
advantages of being simple, easy to understand, and a
straightforward way to transform a large flash storage de-

Applications Description I/O Patterns

Quicksort A quicksort on a large
dataset

Mem-mapped
I/O

N-Gram A program for querying
n-gram data

Direct, random
read

KNNImpute Processes bioinformatics
microarray data

Mem-mapped
I/O

VM-
Update

Update of an OS on
several virtual machines

Sequential read
& write

TPC-H Standard benchmark for
Decision Support

Mostly
sequential read

Figure 12: Applications and their characteristics.

vice into an inexpensive replacement for DRAM as it pro-
vides the illusion of word-addressable access.

N-Gram. This program indexes all of the5-grams in
the Googlen-gram corpus by building a single large hash
table that contains 26GB worth of key-value pairs. The
Googlen-gram corpus is a large set ofn-grams and their
appearance counts taken from a crawl of the Web that has
proved valuable for a variety of computational linguistics
tasks. There are just over 13.5 million words or1-grams
and just over 1.1 billion5 grams. Indexing the data set
with an SQL database takes a week on a computer with
only 4GB of DRAM [9]. Our indexing program uses 4KB
buckets with the first 64 bytes reserved for metadata. The
implementation does not support overflows, rather an oc-
cupancy histogram is constructed to find the smallestk

such that2k hash buckets will hold the dataset without
overflows. With a variant of the standard Fowler-Nolls-
Vo hash, the entire data set fits in 16M buckets and the
histogram in 64MB of memory. Our evaluation program
uses synthetically generated query traces of 200K queries
each; results are based upon the average of twenty runs.
Queries are drawn either uniformly at random or accord-
ing to a Zipf distribution withα = 1.0001. The results
were qualitatively similar for other values ofα until lock-
ing overhead dominated I/O overhead.

KNNImpute. This program is a very popular bionfor-
matics code for estimating missing values in data obtained
from microarray experiments. The program uses the KN-
NImpute [29] algorithm for DNA microarrays which takes
as input a matrix with G rows representing genes and
E columns representing experiments. Then a symmetric
GxG distance matrix with the Euclidean distance between
all gene pairs is calculated based on all experiment values
for both genes. Finally, the distance matrix is written to
disk as its output. The program is a multi-threaded imple-
mentation using memory-mapped I/O. Our input data is a
matrix with 41,768 genes and 200 experiments results in
a matrix of about 32MB, and a distance matrix of 6.6GB.
There are 2079 genes with missing values.

VM Update. This benchmark is a simple update of
multiple virtual machines hosted on a single server. We
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Wall Time
Application Ext3 DFS Speedup

Quick Sort 1268 822 1.54
N-Gram (Zipf) 4718 1912 2.47
KNNImpute 303 248 1.22
VM Update 685 640 1.07

TPC-H 5059 4154 1.22

Figure 13: Application Benchmark Execution Time Im-
provement: Best of DFSvs Best of Ext3

choose this application because virtual machines have be-
come popular from both a cost and management perspec-
tive. Since each virtual machine typically runs the same
operating system but has its own copy, operating system
updates can pose a significant performance problem. Each
virtual machine needs to apply critical and periodic sys-
tem software updates at the same time. This process is
both CPU and I/O intensive. To simulate such an environ-
ment, we installed 4 copies of Ubuntu 8.04 in four differ-
ent VirtualBox instances. In each image, we downloaded
all of the available updates and then measured the amount
of time it took to install these updates. There were a to-
tal of 265 packages updated containing 343MB of com-
pressed data and about 38,000 distinct files.

TPC-H. This is a standard benchmark for decision sup-
port workloads. We used the Ingres database to run the
Transaction Processing Council’s Benchmark H (TPC-
H) [4]. The benchmark consists of 22 business oriented
queries and two functions that respectively insert and
delete rows in the database. We used the default con-
figuration for the database with two storage devices: the
database itself, temporary files, and backup transaction
log were placed on the flash device and the executables
and log files were stored on the local disk. We report the
results of running TPC-H with a scale factor of 5, which
corresponds to about 5GB of raw input data and 90GB for
the data, indexes, and logs stored on flash once loaded into
the database.

Performance Results of DFS vs. ext3

This section first reports the performance results of DFS
and ext3 for each application, and then analyzes the results
in detail.

The main performance result is that DFS improves ap-
plications substantially over ext3. Figures 13 shows the
elapsed wall time of each application running with ext3
and DFS on the same execution environment mentioned
at the beginning of the section. The results show that
DFS improves the performance all applications and the
speedups range from a factor of 1.07 to 2.47.

To explain the performance results, we will first use
Figure 14 to show the number of read and write IOPS,
and the number of bytes transferred for reads and writes

for each application. The main observation is that DFS is-
sues a smaller number of larger I/O transactions than ext3,
though the behaviors of reads and writes are quite dif-
ferent. This observation explains partially why DFS im-
proves the performance of all applications, since we know
from the microbenchmark performance that DFS achieves
better IOPS than ext3 and significantly better throughput
when the I/O transaction sizes are large.

One reason for larger I/O transactions is that in the
Linux kernel, file offsets are mapped to block numbers
via a per-file-systemget block function. The DFS im-
plementation ofget block is aggressive about mak-
ing large transfers when possible. A more nuanced pol-
icy might improve performance further, particularly in the
case of applications such as KNNImpute and the VM Up-
date workload which actually see an increase in the total
number of bytes transferred. In most cases, however, the
result of the current implementation is a modest reduction
in the number of bytes transferred.

But, the smaller number of larger I/O transactions does
not completely explain the performance results. In the fol-
lowing, we will describe our understanding of the perfor-
mance of each application individually.

Quicksort. The Quicksort benchmark program sees a
speedup of 1.54 when using DFS instead of ext3 on the
ioDrive. Unlike the other benchmark applications, the
quicksort program sees a large increase in CPU utiliza-
tion when using DFS instead of ext3. CPU utilization in-
cludes both the CPU used by the FusionIO device driver
and by the application itself. When running on ext3, this
benchmark program is I/O bound; the higher throughput
provided by DFS leads to higher CPU utilization, which
is actually a desirable outcome in this particular case. In
addition, we collected statistics from the virtualized flash
storage layer to count the number of read and write trans-
actions issued in each of the three cases. When running
on ext3, the number of read transactions is similar to that
found with DFS, whereas the number of write transac-
tions is roughly twenty-five times larger than that of DFS,
which contributed to the speedup. The average transaction
size with ext3 is about 4KB instead of 64KB with DFS.

Google N-Gram Corpus. The N-gram query bench-
mark program running on DFS achieves a speedup of 2.5
over that on ext3. Figure 15 illustrates the speedup as a
function of the number of concurrent threads; in all cases,
the internal cache is 1,024 hash buckets and all I/O by-
passes the kernel’s buffer cache.

The hash table implementation is able to achieve about
95% of the random I/O performance delivered in the
Iozone microbenchmarks given sufficient concurrency.
As expected, performance is higher when the queries
are Zipf-distributed as the internal cache captures many
of the most popular queries. For Zipf parameterα =

1.0001, there are about 156,000 4K random reads to sat-
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Read IOPS x 1000 Read Bytes x 1M Write IOPS x 1000 Write Bytes x 1M
Application Ext3 DFS (Change) Ext3 DFS (Change) Ext3 DFS (Change) Ext3 DFS (Change)

Quick Sort 1989 1558 (0.78) 114614 103991 (0.91) 49576 1914 (0.04) 203063 192557 (0.95)
N-Gram (Zipf) 156 157 (1.01) 641 646 (1.01) N/A N/A N/A N/A
KNNImpute 2387 1916 (0.80) 42806 36146 (0.84) 2686 179 (0.07) 11002 12696 (1.15)
VM Update 244 193 (0.79) 9930 9760 (0.98) 3712 1144 (0.31) 15205 19767 (1.30)

TPC-H 6375 3760 (0.59) 541060 484985 (0.90) 52310 3626 (0.07) 214265 212223 (0.99)

Figure 14: App. Benchmark Improvement in IOPS Required and Bytes Transferred: Best of DFSvs Best of Ext3

Wall Time in Sec. Ctx Switch x 1K
Threads Ext3 DFS Ext3 DFS

1 10.82 10.48 156.66 156.65
4 4.25 3.40 308.08 160.60
8 4.58 2.46 291.91 167.36
16 4.65 2.45 295.02 168.57
32 4.72 1.91 299.73 172.34

Figure 15: Zipf-Distributed N-Gram Queries: Elapsed
Time and Context Switches (α = 1.0001)

isfy 200,000 queries. Moreover, query performance for
hash tables backed by DFS scales with the number of
concurrent threads much as it did in theIozone random
read benchmark. The performance of hash tables backed
by ext3 do not scale with the number of threads nearly
so well. This is due to increased per-file lock contention
in ext3. We measured the number of voluntary context
switches when running on each file system as reported by
getrusage. A voluntary context switch indicates that
the application was unable to acquire a resource in the
kernel such as a lock. When running on ext3, the num-
ber of voluntary context switches increased dramatically
with the number of concurrent threads; it did not do so
on DFS. Although it may be possible to overcome the re-
source contention in ext3, the simplicity of DFS allows us
to sidestep the issue altogether. This effect was less pro-
nounced in the microbenchmarks becauseIozone never
assigns more than one thread to each file by default.

Bioinformatics Missing Value Estimation. KNNIm-
pute takes about 18% less time to run when using DFS as
opposed to ext3 with a standard deviation of about 1% of
the mean run time. About 36% of the total execution time
when running on ext3 is devoted to writing the distance
matrix to stable storage. Most of the improvement in run
time when running on DFS is during this phase of execu-
tion. CPU utilization increases by almost 7% on average
when using DFS instead of ext3. This is due to increased
system CPU usage during the distance matrix write phase
by the FusionIO device driver’s worker threads, particu-
larly the garbage collector.

Virtual Machine Update. On average, it took 648 sec-
onds to upgrade virtual machines hosted on DFS and 701
seconds to upgrade those hosted on ext3 file systems, for
a net speed up of 7.6%. In both cases, the four virtual
machines used nearly all of the available CPU for the du-

ration of the benchmark. We found that each VirtualBox
instance kept a single processor busy almost 25% percent
of the time even when the guest operating system was idle.
As a result, the virtual machine update workload quickly
became CPU bound. If the virtual machine implementa-
tion itself were more efficient or more virtual machines
shared the same storage system we would expect to see a
larger benefit to using DFS.

TPC-H. We ran the TPC-H benchmark with a scale fac-
tor of five on both DFS and ext3. The average speedup
over five runs was 1.22. For the individual queries DFS
always performs better than ext3, with the speedup rang-
ing from 1.04 (Q1: pricing summary report) to 1.51 (RF2:
old sales refresh function). However, the largest contribu-
tion to the overall speedup is the 1.20 speedup achieved
for Q5 (local supplier volume), which consumes roughly
75% of the total execution time.

There is a large reduction (14.4x) in the number of write
transactions when using DFS as compared to ext3 and a
smaller reduction (1.7x) in the number of read transac-
tions. As in the case of several of the other benchmark ap-
plications, the large reduction in the number of I/O trans-
actions is largely offset by larger transfers in each transac-
tion, resulting in a modest decrease in the total number of
bytes transferred.

CPU utilization is lower when running on DFS as op-
posed to ext3, but the Ingres database thread runs with
close to 100% CPU utilization in both cases. The reduc-
tion in CPU usage is due instead to greater efficiency in
the kernel storage software stack, particularly the flash de-
vice driver’s worker threads.

5 Conclusion

This paper presents the design, implementation, and eval-
uation of DFS and describes FusionIO’s virtualized flash
storage layer. We have demonstrated that novel layers of
abstraction specifically for flash memory can yield sub-
stantial benefits in software simplicity and system perfor-
mance.

We have learned several things from DFS design. First,
DFS is simple and has a short and direct way to access
flash memory. Much of its simplicity comes from lever-
aging the virtualized flash storage layer such as large vir-
tual storage space, block allocation and deallocation, and
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atomic block updates.
Second, the simplicity of DFS translates into perfor-

mance. Our microbenchmark results show that DFS can
deliver 94,000 IOPS for random reads and 71,000 IOPS
random writes with the virtualized flash storage layer on
FusionIO’s ioDrive. The performance is close to the hard-
ware limit.

Third, DFS is substantially faster than ext3. For direct
access performance, DFS is consistently faster than ext3
on the same platform, sometimes by 20%. For buffered
access performance, DFS is also consistently faster than
ext3, and sometimes by over 149%. Our application
benchmarks show that DFS outperforms ext3 by 7% to
250% while requiring less CPU power.

We have also observed that the impact of the traditional
buffer cache diminishes when using flash memory. When
there are 32 threads, the sequential read throughput of
DFS is about twice that for direct random reads with DFS,
whereas ext3 achieves only a 28% improvement over di-
rect random reads with ext3.
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