Out-of-Place Journaling

Ping Ge and Saba Sehrish and Jun Wang
University of Central Florida

Data Integrity is an important issue in file systems.
The basic claim is that a file system must ensure the
integrity of metadata operations[6]. In recent years,
stronger integrity semantics are required by file systems
themselves and upper layer applications[5, 1, 4]. File
systems need to maintain the consistent relationships be-
tween data and metadata, for instance no dangling refer-
ences point to data in metadata, correct file size and last
modified time. What’s more some applications, such as
email server and document processing system, even re-
quire the file systems to provide functionality to protect
their data integrity. One major solution is to keep a single
or multiple writes as an atomic operation. A file system
should accomplish atomic write in two steps. The first
step, called backup, is to augment the on-disk state with
a backup of updates in stable storage. If the system fails,
unfinished file system operations can be completed from
the backup or abandoned when the system is rebooted.
The second step, call updating, is to update the system
state. Depending on updating mechanisms, there are two
major techniques: write-ahead logging and COW trans-
action mode. Write-ahead logging updates the values of
data: it keeps the backups untouched and writes data to
their original addresses. On the contrary, COW trans-
action mode updates addresses: it discards the original
blocks and updates the system structure to direct all re-
quests to the backup. We classify the whole overhead
of atomic write into two types: backup overhead and
updating overhead. Backup procedure is indispensable
and the overhead is nearly the same for all mechanisms:
file system writes all new data to sequential addresses as
backup for recovery. On the other hand, different up-
dating mechanisms result in different updating overhead.
Compared with backup overhead which is handled by se-
quential writes, updating overhead impacts the system
performance greatly. Figure 1 demonstrates both over-
head in logging and COW.

Logging suffers in-place updating overhead. It must
write updated blocks twice, although the new data have
already reached log in the first step[2, 3]. The conflict
between log writes and updates may degrade the system
performance greatly if the log stores data and is on the
same device with file system. The three different journal-
ing modes of ext3 demonstrate the problem clearly in [7].
Although log can make random writes logically sequen-
tial and achieve sequential bandwidth, full journal needs
to handle twice as much traffic as other modes and gen-
erally the traffic in data fixed locations is not sequential.
The results in Table 1 show that the overall performance
of ext3 full journal is about 1/2-1/3 of ext2’s. Larger
journal size and flush timer may alleviate the problem.

But it will use more system resources, such as disk and
main memory space. COW causes out-of-place updating
overhead. In this mode, once a block is updated out-of-
place, corresponding pointers in other blocks should be
changed and then they should also be updated[5]. This
procedure is recursive until a root node is updated atomi-
cally. Therefore the changes of data addresses may result
in tens or hundreds of extra blocks allocation or writ-
ing in a file system. Our experiments results in Figure 2
show that the performance of synchronous writes in ZFS
can not match that of UFS for database workloads. In
addition, the chain effect of COW is unpredictable until
the file sytem begins to allocate blocks for the updatings.
This will make it hard for the file system to evaluate how
many blocks are needed for a write operation.

Both overhead are caused by the tightly coupled rela-
tionship between data and its address. This means: if the
system makes use of the backup, it needs to change the
pointers; if it keeps the pointers intact, the backup can
not be used. An ideal solution to avoid updating over-
head should let the file system to use the backup directly
without changing anything. In this paper, we present a
novel mechanism named Out-of-place journaling to re-
duce the updating overhead. A mapping layer and a log
are introduced to the system to simulate one-to-two ad-
dressing function which breaks the relationship between
data and their addresses. Figure 3 shows the architec-
ture of our design. The log has the similar structure as
the journal in ext3 file system. Mapping layer sits be-
tween file systems and device drivers. It can take all log-
ical addresses as index and direct read operations to the
log. When a write operation reaches the mapping layer,
it performs out-of-place updates and saves mapping re-
lationship between logical block numbers and log record
numbers. On the other hand, all the logical block num-
bers used by file system are not changed during the write
operations because the updates on disk are transparent to
the file system. If the log stores the most recent data,
the mapping layer can translate the index into the cor-
responding log record. Thus the system does not need
to update data at the fixed location again. If the system
crashes, description records in log can be used to recon-
struct the mapping layer, and this procedure can guaran-
tee that file system is in a consistent state. We have im-
plemented a simple prototype based on ext3 file system.
Some preliminary results are shown in Figure 4.

References

[1] Btrfs design. http://btrfs.wiki.kernel.org/index.php/Btrfs_ design.
[2] The ext2/ext3 file system. http://e2fsprogs.sourceforge.net.

Backup of Logging Updating of Logging

Updating of COW

Backup of COW

Figure 1: This figure demonstrates the overhead of logging
and COW mechanisms. Gray blocks represent updated blocks.
The first step of two different modes is the same. Both of them
write a backup of new data to stable storage sequentially. In
the second step, logging performs in-place updates while COW
employs out-of-place updates.

2000

1600

1200
800

1
0

10 clients
B UFS(fsync=off) B ZFS(fsync=off) [UFS(fsync=on) B ZFS(fsync=on)

TPS

20 clients 40 clients

Figure 2: The performance of ZFS and UFS with non-sync
and sync operations. Tests run on a Dell Precision 690 work-
station with Postgresql and Solaris 10 distribution. We run pg-
bench, a TPC-B based benchmark shipped with Postgresql, to
evaluate the performance of ZFS and UFS.

Table 1: Performance of three different ext3 journal modes.
The experiments are done on Dell precision 690 workstation
with PostMark. All the default configurations of the benchmark
are used except setting transaction number to 1000.

Ext2 Write Back | Ordered Full

Time | 17.9sec 18.7sec 21.9sec | 42.0sec
@(File, Offset, Size)
File System

Node in Memory

Node in Memory LI

Addressing Function

! |Node in Memory

&LBA

| Mapping Layer |

| Y ' 1 og Record Number
AV4
Log
File System
Physical Space

Figure 3: The architecture of out-of-place journaling mecha-
nism.

60

50 - Transaction Time
H Create and Delete Time

40 -

30 4

Time(sec)

10 A

ext3(o) ext3(f) ext2-k ReiserFS ReiserFS-k

File Systems

Figure 4: The graph displays the performance of the overall
tests of PostMark. We have run ext2 and ReiserFS on our map-
ping layer. Both of them can provide the same integrity seman-
tic as full journal mode because both data and meta are recorded
in the log. These two cases are called ext2-k and ReiserFS-
k. Ext3(o) and ext3(f) represents ext3 file system with ordered
mode and full mode. We configured PostMark to create 1000
files ranging in size from 512B to 1MB. Other configurations
include performing 1000 transactions and setting read or create
bias parameter to 5.

[3] Jfs overview: how the journaled file sys-
tem cuts system restart times to the quick.
http://www.ibm.com/developworks/linux/library/I-jfs.html.

[4] Transactional ntfs.
us/library/bb968806(VS.85).aspx.

[5] Zfs: Last word in file systems.
laris.org/os/community/zfs/docs/zfs_ last.pdf.

[6] GANGER, G. R., McKUSICK, M. K., SOULES, C. A. N., AND
PATT, Y. N. Soft updates: a solution to the metadata update prob-
lem in file systems. ACM Trans. Comput. Syst. 18, 2 (2000), 127—
153.

http://msdn.microsoft.com/en-

openso-

[71 PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DuSSEAU, R. H. Analysis and evolution of journaling file
systems. In ATEC ’05: Proceedings of the annual conference
on USENIX Annual Technical Conference (Berkeley, CA, USA,
2005), USENIX Association, pp. 8-8.

