

WorkOut: I/O Workload Outsourcing for Boosting RAID Reconstruction Performance

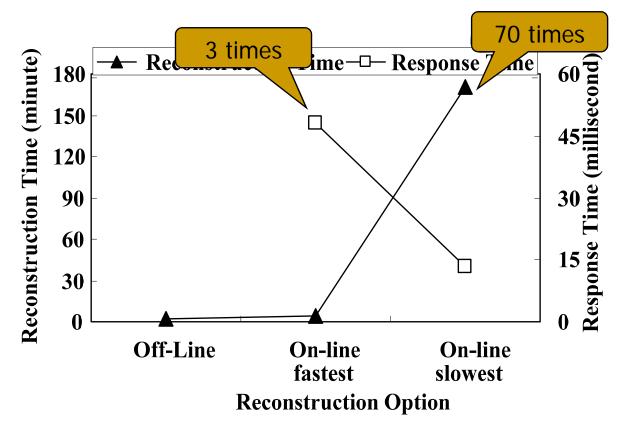
Suzhen Wu¹, Hong Jiang², Dan Feng¹, Lei Tian¹², Bo Mao¹ ¹Huazhong University of Science & Technology ²University of Nebraska-Lincoln

Outline

- Background
- Motivation
- WorkOut
- Performance Evaluations
- Conclusion

RAID Reconstruction

Recovers the data content on a failed disk


Two metrics

- Reconstruction time
- User response time
- Categories
 - Off-line reconstruction
 - On-line reconstruction (*commonly deployed*)

Challenges

- Higher error rates than expected
 - Complete disk failures [Schroeder07, Pinheiro07, Jiang08]
 - Latent sector errors [Bairavasundaram07]
- Correlation in drive failures
 - e.g. after one disk fails, another disk failure will likely occur soon.
- RAID reconstruction might become the common case in large-scale systems.
 - Increasing number of drives

Reconstruction and Its Performance Impact

Intuitive Idea

Observation

 Performing the rebuild IOs and user IOs simultaneously leads to disk bandwidth contention and frequent long seeks to and from the multiple separate data areas.

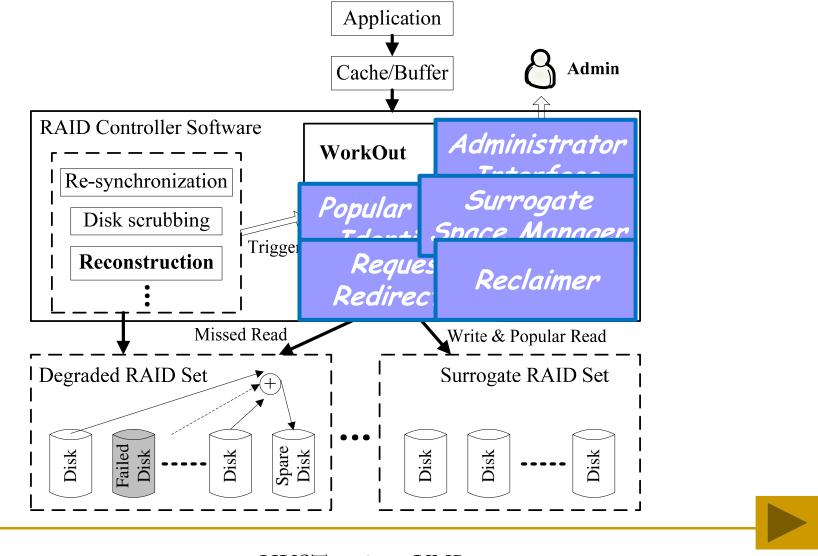
Our intuitive idea

- To redirect the amount of user IOs that are issued to the degraded RAID set.
- But, What to redirect? & Where to redirect to?

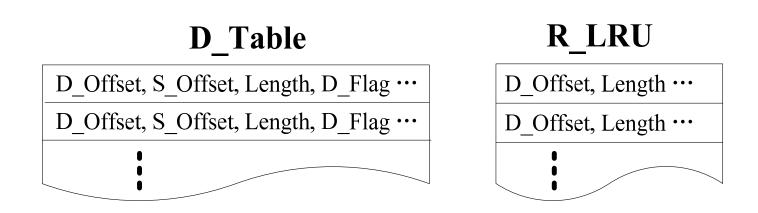
What To Redirect

Access locality

- Existing studies on workload analysis revealed that strong spatial and temporal locality exists even underneath the storage cache.
- Answer to "what to redirect?"
 - Popular read requests
 - All write requests


Where To Redirect To

- Availability of spare or free space in data centers
 - A spare pool including a number of disks
 - Free space on other RAID sets
- Answer to "Where to redirect to?"
 - □ Spare or free space
- Comparison
 - Existing approaches: in the context of a single RAID set
 - Our approach: in the context of data centers with multiple RAID sets


Main Idea of WorkOut

- Workload Outsourcing (Workout)
 - Temporarily redirect all write requests and popular read requests originally targeted at the degraded RAID set to a surrogate RAID set, to significantly improve on-line reconstruction performance.
- Goal
 - Approaches reconstruction-time performance of the off-line reconstruction without affecting user-response-time performance at the same time.

WorkOut Architecture

Data Structure

D_Table: a log table that manages the redirected data

D_Flag=1: Write data from the user application

- D_Flag=0: Popular read data from D-RAID to S-RAID
- R_LRU: an LRU-style list that identifies the most recent reads

Algorithm During Reconstruction

Workflow

- For each write, it will be redirected to its previous location or a new location on the surrogate RAID set according to whether it is an overwrite or not.
- For each read, Check the D_Table:
 - Whether it hits D_Table or not?
 - □ If a hit, full hit or partial hit?
 - □ If a miss, whether it hits R_LRU?

Algorithm During Reclaim

- The redirected write data should be reclaimed back to the newly recovered RAID set after the reconstruction process completes.
- All requests must be checked in D_Table:
 - Each write request is served by the recovered RAID set and the corresponding log in D_Table should be deleted if it exists.
 - Read requests can be also handled well, but it is complicated to explain in a short time. More details can be found in our paper. HUST & UNI

14

Design Choices

Optional surrogate RAID set	Device Overhead	Performance	Reliability	Maintainability
A dedicated surrogate RAID1 set	medium	medium	high	simple
A dedicated surrogate RAID5 set	high	high	high	simple
A live surrogate RAID5 set	low	low	medium-high	complicated

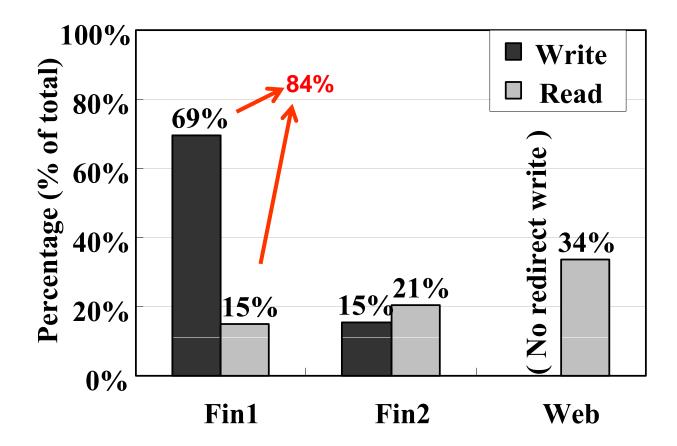
Data Consistency

Data Protection

- In order to avoid data loss caused by a disk failure in the surrogate RAID set, all redirected write data in the surrogate RAID set should be protected by a redundancy scheme, such as RAID1 or RAID5.
- Metadata" Protection
 - The content of D_Table should be stored in a NVRAM during the entire period when WorkOut is activated, to prevent data loss in the event of a power supply failure.

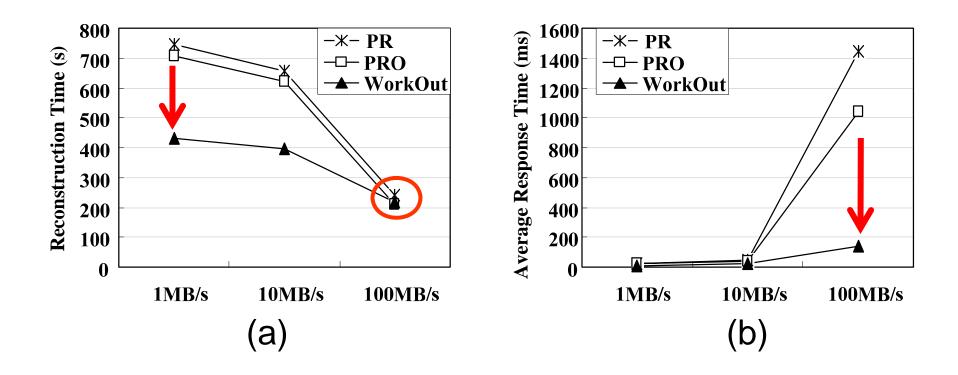
Performance Evaluation

- Prototype implementation
 - A built-in module in MD
 - Incorporated into PR & PRO
- Experimental setup
 - Intel Xeon 3.0GHz processor, 1GB DDR memory, 15
 Seagate SATA disks (10GB), Linux 2.6.11
- Methodology
 - Open-loop: trace replay
 - Trace: Financial1, Financial2, Websearch2
 - Tool: RAIDmeter
 - Closed-loop: TPC-C-like benchmark

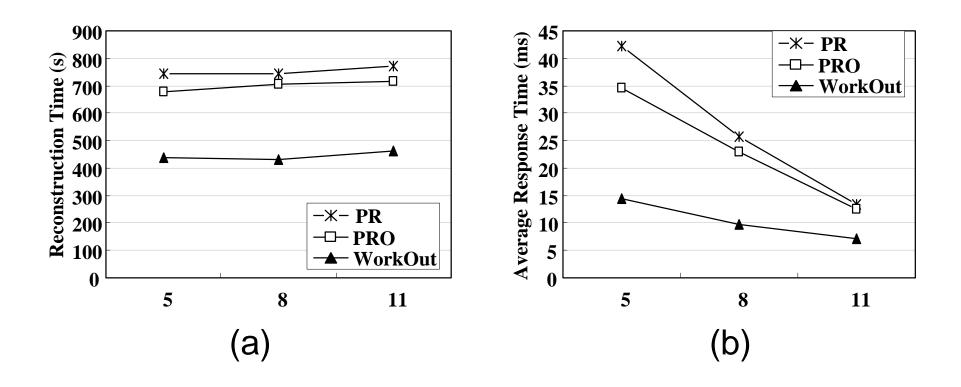

Experimental Results

Trace	Reconstruction Time (second)						
	Off-line	PR	WorkOut+PR	Speedup	PRO	WorkOut+PRO	Speedup
Fin1		1121.75	203.13	5.52	1109.62	188.26	5.89
Fin2	136.4	745.19	453.32	1.64	705.79	431.24	1.64
Web		9935.6	7623.22	1.30	9888.27	7851.36	1.26

Trace	Average User Response Time during Reconstruction (millisecond)								
	Normal	Degraded	PR	WorkOut+PR	Speedur	D PRO	WorkOut+PRO	Speed	qut
Fin1	7.92	9.52	12.71	4.43	2.87	9.83	4.58	2.15	
Fin2	8.13	13.36	25.8	9.69	2.66	22.97	10.19	2.25	
Web	18.46	26.95	38.57	28.35	1.36	35.58	29.12	1.22	

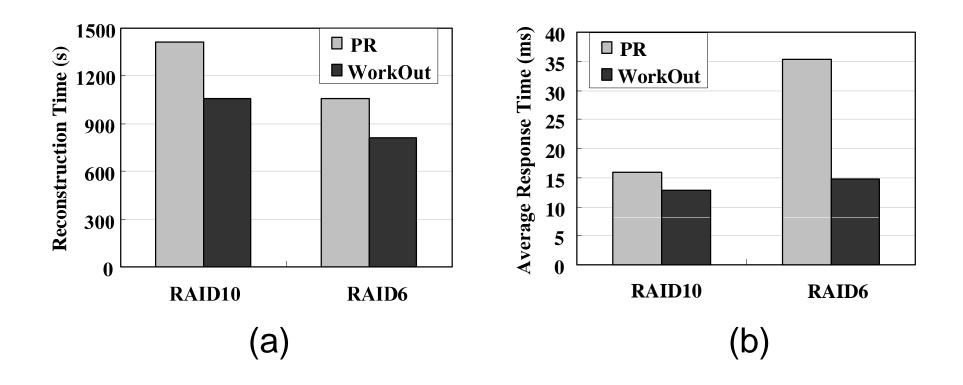

- Degraded RAID set: RAID5, 8 disks, 64KB stripe unit size
- Surrogate RAID set: RAID5, 4 disks, 64KB stripe unit size
- Minimum reconstruction bandwidth: 1MB/s

Percentage of Redirected Requests

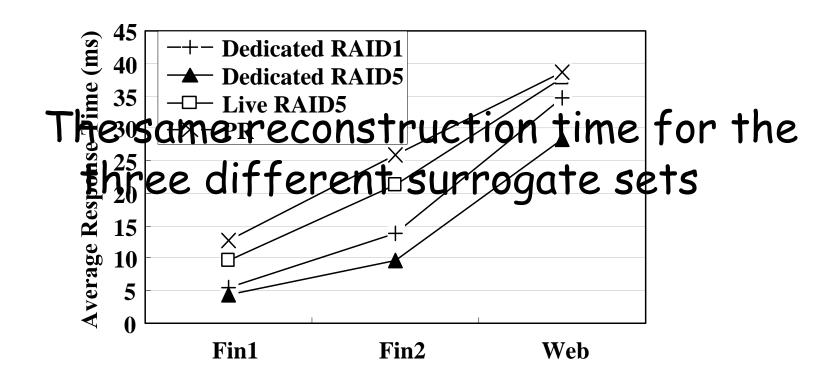


Minimum reconstruction bandwidth of 1MB/s

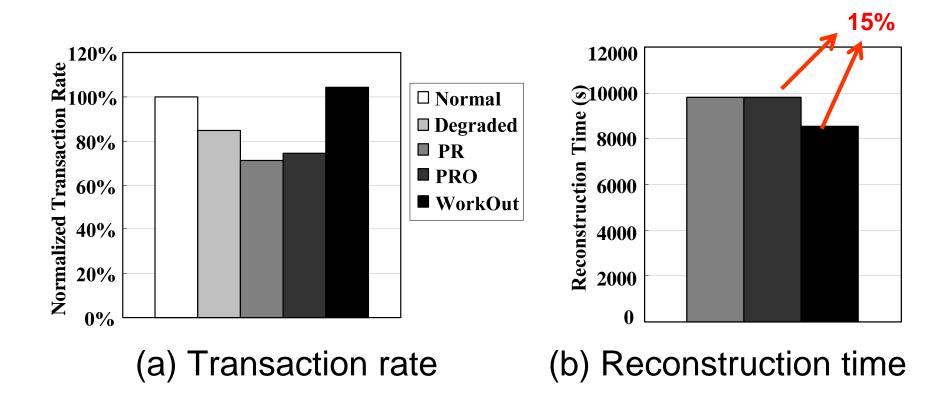
Sensitivity Study (1)



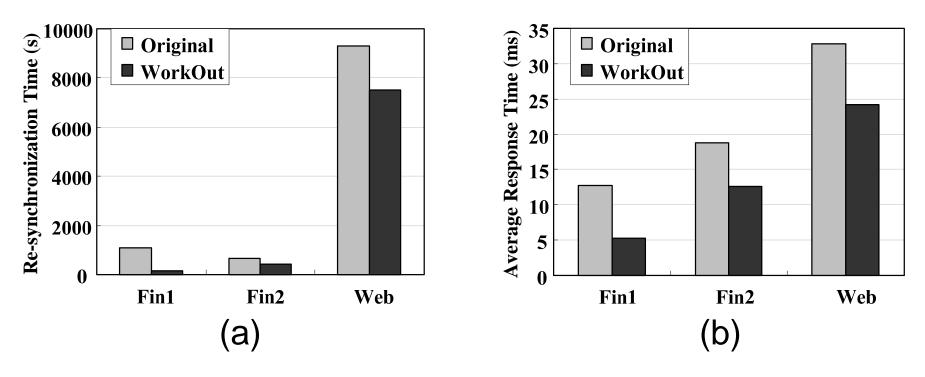
 Different minimum reconstruction bandwidth: 1MB/s, 10MB/s, 100MB/s Sensitivity Study (2)


Different number of disks (5, 8, 11)

Sensitivity Study (3)


Different RAID level: RAID10 (4 disks), RAID6 (8 disks)

Different Surrogate Set


- Dedicated RAID1: 2 disks
- Dedicated RAID5: 4 disks
- Live RAID5: 4 disks (Replaying the Fin1 workload on it)

TPC-C-like Benchmark

Minimum reconstruction bandwidth of 1MB/s

Extendibility—Re-synchronization

- Re-synchronization: RAID5, 8 disks, 64KB stripe unit size
- Surrogate RAID set: RAID5, 4 disks, 64KB stripe unit size
- Minimum Re-synchronization bandwidth: 1MB/s

Conclusion

- WorkOut outsources a significant amount of user I/O requests away from the degraded RAID set to a surrogate RAID set, thus improving RAID reconstruction performance;
- Insights and guidance for storage system designers and administrators by exploiting three design options;
- WorkOut can improve the performance of other background support RAID tasks such as re-synchronization.

Q&A?

