
Dynamic Resource Allocation for Database
Servers Running on Virtual Storage

Gokul Soundararajan, Daniel Lupei, Saeed Ghanbari, Adrian Daniel
Popescu, Jin Chen, Cristiana Amza

University of Toronto

1

Multi-tier Resource Allocation

Consolidated Environment

Web Server

Application Server

Database Server

2

Composed of
several tiers

Application-BApplication-A

Share resources
in each tier

Can lead to
interference

Storage

Database

Our Focus: Storage Hierarchy

Application-A Application-B

3

Buffer
Pool

Storage
Cache

Disk
Bandwidth

Want to use all
resources
efficiently

Disk is a
bottleneck for
Database Apps

Network

State of the Art

‣ Previous work studied resources in isolation

- Memory Partitioning: MRC [ASPLOS’04]

- Disk Bandwidth: Facade [FAST’03], Argon [FAST’07], etc.

- ... and many more

‣ Want to use the storage hierarchy efficiently

‣However, performance depends on all layers

- Interdependency between resources

- E.g., Increasing buffer pool reduces number of storage accesses

4

Motivating Scenario

Small Large

5

Buffer
Pool

Storage
Cache

Disk
Bandwidth

Cache Friendly
1 Outstanding I/O

Cache Un-Friendly
10 Outstanding I/O

Using Oracle
ORION I/O tool

Motivating Scenario

0

2.5

5.0

7.5

Shared Cache Disk Cache & Disk

Small Large
6

N
or

m
al

iz
ed

 L
at

en
cy

Benefits cache-
friendly workload

Avoids disk
interference

Has best
performance

Contributions

‣ Build performance models dynamically

- Account for interdependencies between resources

- Lightweight but still accurate

‣Multi-level Resource Allocator

- Uses performance models to guide resource allocation

- Corrects model errors through runtime sampling

- Uses global utility (SLOs) to partition resources

- Minimize sum of application latencies

7

Approach

8

‣ Build performance models

- One per application

- Derive function to predict application latency given configuration

‣ Find resource partitioning setting

- Minimize sum of application latencies

- Find best setting using hill climbing

Lavg = f(ρc, ρs, ρd)

Outline

‣ Online Performance Models

- What are they?

- Why are they hard to build?

‣Multi-level Resource Allocator

‣ Prototype Implementation

‣ Experimental Results

‣Conclusions

9

One-Level Cache Model

10

Rd(A)

Cache size

Av
g.

 L
at

en
cy

Allocate in 32MB chunks

32 64 512

m=CacheSize/ChunkSize
=1GB/32MB=32 choices

1G

32 choices

Choose
512MB

... ...

MRC Cache Model

11

Rd(A)

Cache size

M
is

s-
Ra

tio

32 64 512 1G... ...

Computes
miss-ratio

given an I/O trace

Multiply by I/O
latency gets
Avg. Latency

Two-Level Cache Model

‣ Performance affected by

- DB Buffer Pool Size (m choices)

- Storage Cache (n choices)

‣ Performance model

- Needs to consider all parameters (m*n choices)

- 1GB caches allocated in 32MB chunks

- m = 1GB/32MB = 32 settings

- m*n = 1024 distinct settings

12

Changes the
I/O trace at

storage

Two-Level Cache Model

13

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 256

 512

 768

 1024

 256

 512

 768

 1024

 0

 2

 4

Latency Surface

Buffer Pool Size (MB)

Storage Cache Size (MB)

2 caches create
a 3D surface

Buffer Pool Size

Storage

Cache Size

A
vg

.
La

te
nc

y

32x32=1024
data points!

32 data points

High
Latency

Low
Latency

Overall Performance Model

14

Application

ρc

ρs

ρd

Buffer
Pool

Storage
Cache

Disk
Bandwidth

Needs
32x32x10=10240

samples

15 mins/sample
takes 3 months!

Outline

‣ Online Performance Models

‣Multi-level Resource Allocator

- Building performance models

- Allocating resources using models

‣ Prototype Implementation

‣ Experimental Results

‣Conclusions

15

Key Observations

‣ Known cache replacement policies

- Most cache replacement algorithms are LRU

- Only as effective as the largest cache (cache inclusiveness)

‣Disk is a closed loop system

- Rate of responses is same as rate of requests

- Performance proportional to the disk bandwidth fraction

16

Cache Inclusiveness

17

LRU

LRU

8 8 1 6 8 4 5 6 3 48

8

I/Os: 0I/Os: 1

8

Cache Inclusiveness

18

LRU

LRU

8 8 1 6 8 4 5 6 3 48 8 1 6

I/Os: 6

8 4 5 6 3 4

34

34 56 8

Storage cache
includes data in
the buffer pool

Cache Inclusiveness

19

LRU

LRU

8 8 1 6 8 4 5 6 3 48 8 1 6

I/Os: 6

8 4 5 6 3 4

3 5

34 56 8
Buffer pool

includes data in
the storage cache

Approximate Single Cache Model (LRU)

20

8 8 1 6 8 4 5 6 3 48 8 1 6 8 4 5 6 3 4

I/Os: 6

Same Number of
I/Os

LRU

LRU34

34 56 8

Mc(max[ρc, ρs])

34 56 8 LRU

Cache Model (DEMOTE)

21

‣ Maintain cache exclusiveness

- E.g., using DEMOTEs [USENIX’02]

- Every block brought into buffer pool is not cached below

- Only evictions from buffer pool cached in storage cache

‣ Approximate performance using single cache

- Mc(ρc + ρs)

Find Best Partitioning Setting

22

Find Best Resource
Allocation Setting

Buffer Pool Size

Storage

Cache Size

La
te

nc
y

App-1

App-2

Buffer Pool Size

Storage

Cache Size

La
te

nc
y Minimize sum of

application
latencies

‣ Observation: Closed loop system

- Rate of responses same as rate of requests

- Use interactive response time law

‣ Performance proportional to disk bandwidth fraction

- Measure base disk latency:

- Predict latency for smaller bandwidth fractions

Disk Model

23

Ld(ρd) =
Ld(1)

ρd

Ld(1)

Putting it All Together

24

Application

Mc(ρc)Ms(ρc, ρs)N

Storage Cache

Buffer Pool

Approximate
Single-Level

Cache
Can now be

solved using MRC

=Mc(max[ρc, ρs])N

Putting it all Together

Application

Hc(ρc)Lc

Mc(ρc)Hs(ρc, ρs)Lnet

Mc(ρc)Ms(ρc, ρs)Ld(ρd)

25

Inaccuracies in the Model

‣ Cache Model

- Approximations to LRU, i.e., CLOCK

- Large fraction of writes in the workload

‣Disk Model

- Using Quanta-based scheduler [Wachs et. al, FAST’07]

- Interference due to disk seeks at small quanta

‣ Inaccuracies localized in known regions

- E.g., Small disk quanta

26

Iterative Refinement

‣ Build model

- Use trace collected at the database buffer pool

‣ Refine the model

- Use cross-validation to measure quality

- Selectively sample where error is high

- Interpolate computed and measured samples

- Using regression (SVM)

27

Virtual Storage Prototype

28

StorageMySQL

Linux

NBD

CLIENT

Block Layer

SCSI

Buffer Pool

Disk

SERVER

NBD

Linux

Block Layer

SCSI

Disk

N
e

tw
o

rk

DiskDisk

Cache Quanta

Experimental Setup

‣ Benchmarks

- UNIFORM (microbenchmark), TPC-W and TPC-C

‣ LAMP Architecture

- Linux, Apache 1.3, MySQL/InnoDB 5.0, and PHP 5.0

‣ Cache Configuration

- MySQL buffer pool = 1GB

- Storage cache = 1GB

- Using InnoDB cache replacement in MySQL, CLOCK in storage
cache

29

Our Algorithms

30

‣ GLOBAL

- Gather trace at the buffer pool

- Measure base disk latency

- Compute performance using performance model

‣ GLOBAL+

- Run GLOBAL

- Evaluate model accuracy

- Refine model using runtime samples

Algorithms for Comparison

31

‣ MRC

- Partition cache (independently) using miss-ratio curves

‣DISK

- Partition caches equally, determine best disk quanta

‣MRC+DISK

- Run MRC then DISK

‣ IDEAL*

- Build model with SVM using 16*16*5=1280 sampled configurations

Roadmap of Results

32

‣ Multi-level cache allocator

- Using LRU and DEMOTE cache replacement policies

‣ Multi-level cache and disk

‣ Accuracy of computed models

Miss-Ratio Curves

33

 0

 25

 50

 75

 100

 0 128 256 384 512 640 768 896 1024

M
iss

 R
at

io
 (%

)

Buffer Pool Size (MB)

TPC-W
TPC-C

UNIFORM

Multi-Level Caching (LRU)

34

Optimal

HeatMap
Lighter: Better
Darker: WorseOptimal

Storage Cache Size
(A)

B
uf

fe
r

P
o

o
l S

iz
e

(A
)

1G0

1G
2 TPC-W
Instances

Multi-Level Caching (DEMOTE)

35

Optimal

Storage Cache Size
(A)

B
uf

fe
r

P
o

o
l S

iz
e

(A
)

1G0

1G
2 TPC-W
Instances

Roadmap of Results

36

‣ Multi-level cache allocator

‣ Multi-level cache and disk

- Using two identical applications

- Using different applications

‣ Accuracy of computed models

UNIFORM/UNIFORM

0

1.682

3.364

5.046

6.728

8.410

GLOBAL GLOBAL+ MRC DISK MRC+DISK IDEAL*

UNIFORM UNIFORM

37

A
ve

ra
g

e
La

te
nc

y
(m

s)

Allocate caches
to 50/50

Matches
GLOBAL

TPC-W/UNIFORM

0

1.5

3.0

4.5

6.0

7.5

GLOBAL GLOBAL+ MRC DISK MRC+DISK IDEAL*

TPC-W UNIFORM

38

A
ve

ra
g

e
La

te
nc

y
(m

s)

Allocate caches
to 50/50

Not enough
buffer pool to

UNIFORM Compensate for
MRC settings

TPC-W/TPC-C

0

0.16

0.32

0.48

0.64

0.80

GLOBAL GLOBAL+ MRC DISK MRC+DISK IDEAL*

TPC-W TPC-C

39

A
ve

ra
g

e
La

te
nc

y
(m

s)

Corrects model
at runtime

Corrects
imbalance in

MRC

TPC-C allocated
more in both

Roadmap of Results

40

‣ Multi-level cache allocator

‣ Multi-level cache and disk

‣ Accuracy of computed models

- Cache model

- Disk model

Cache Model Accuracy (TPC-W)

41

 0
 128
 256
 384
 512
 640
 768
 896

 1024

 0 128 256 384 512 640 768 896 1024

St
or

ag
e

Ca
ch

e
Si

ze
 (M

B)

Buffer Pool Size (MB)

 0

 10

 20

 30

 40

 50

Er
ro

r (
%

)

Localized in the
middle

Disk Model Accuracy (TPC-W)

42

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(m
s)

Disk Quota

Measured
Computed

Conclusions

‣ Problem

- Need to consider resources on multiple tiers

- Independent cache/disk allocators are not sufficient

‣ Dynamic allocation of cache hierarchy and disk

- Build performance models dynamically

- Iteratively refine (if necessary)

- Use models for global resource partitioning

‣ Performance up to 2.9 better than single resource allocators

43

Thank you.

44

