3/2/2009

A Systematic Approach to System State Restoration

during Storage Controller Micro-Recovery

Sangeetha Seshadri*

- with Lawrence Chiu’, and Ling Liu*

* GeorgiaTech fIBM Almaden Research Center

USENIX FAST 2009

Outline

* Storage system availability.

® Technical challenges.

® Improving firmware availability through micro-recovery.

® Log(Lock) architecture for system state restoration.
* Evaluation.
* Conclusions.

® Questions.

a D
Storage System Availability

e Foundations of modern data centers.

° Extremely high availability expectation.

® [ssues:
® Complex, legacy architectures.
* Concurrent development, quality assurance processes.
® Large scale installations — 1000s of components.
® Multiple applications, different expectations.

Failures are the norm, not exception.

Goal: Improve recovery time in large scale storage systems.
Challenge: Existing failure recovery mechanisms insufficient
to deal with scale and complexity.

o %

a ™
Storage Controller System Model

Storage Controllers — RAID, I/O Routing, Error Detection...

® Many interacting components;

Large number of asynchronous, short-running tasks (~ secs).

Each task is executed entirely by one thread.

SCsl - Cache
Command .
Manager | Short-running
Processor
\/ threads
e
Device JOb Queue
Manager .
Multi-core/SMP Processor Complex

3/2/2009

/

Failure Model

Controller
Failures

Domain
Errors

Transient

Range
Errors

® Focus on service loss.

® Examples:

® Time-out conditions.

® Race conditions.

® Boundary conditions.

® Insufficient error handling.

¢ Queue full condition.

® Incorrect Linear
Redundancy Code (LRC).

¢ Unsolicited response from
third-party devices.

¢ Unknown state caused due

to configuration issues.

/

s

System-wide Recover

o

S
4
s34
A\

Challenge: Firmware Availability

e Failures trigger system recovery.

® Unavailability ~ 6 seconds (with 8

cores).

® Does not scale with system size.

® Scalable failure recovery?

® Legacy architecture. (~ 2M loc)

® Dynamic dependencies.

° Complex recovery semantics.

® Sustain high performance.

Requirements: Retrofittable, dynamic and low overhead.

3/2/2009

/

System-Level vs. Task-Level Recovery

System Level Recovery
Error Detection

Halt All System
Operations

Log System State

System—wide

- Recovery

System Operation

- Resume

(Roll-forward) Error

Task Level Recovery

Error Detection
Halt Task Operation
- .
‘_‘—7 LogTask State
Task-level Recovery
Continue Propagate |

Retry

. \ (Roll-back)

/

s

Improving Firmware Availability

Recovery-Conscious Framework

STAGE 1: Fine Grained Recovery

‘ Recovery Strategy |

| Granularity | | Recovery Scopes |

STAGE 2: Recovery Scopes <+ Recovery Groups

AvailabilityConstraints| ‘ Configuration | ‘ Performance

I

STAGE 3:

Recovery Conscious Scheduling

Dynamic |

‘ Partially Dynamic ‘ | Static |

3/2/2009

3/2/2009

State/Resource Dependencies

® Thread interactions:
® Shared data structures. (Read/ Write interactions).
® Acquiring/releasing resources from a common pool.

® Interactions with outside world (positioning a disk head,

sending response to an 1/ O) — OQutside world process (OWP).

L Capture and account for interactions to ensure
e State restoration of shared state.

° Relinquishing shared resources.

a I
Example 1 - Resource Clean Up

/* Get cache track to write to cache */
startSCSICmd();
L, processRead();
[, getCacheTrack();
|, getTempResource() {

PANIC

U Requires tracking resource ownership.

® Not concerned with reads and writes on the resource.

3/2/2009

Example 2 - Dirty Reads

R4: /* Update Metadata Location */
lockWrite(&MetadatalocationLock);
Metadatalocation = XX;
unlockWrite(&MetadatalocationLock);

® Metadata location e. g : checkpoint location.
® If no dirty read, then can undo changes.

* If dirty read has occurred, system-level recovery.

Technical Challenges

¢ Different contexts have different requirements for recovery.

® For example, threads may care about none or one or more of the
following:

® Resource ownership and clean relinquishing.

® Dirty reads.

e Unrepeatable reads.

® Lost updates.

¢ Externally visible actions (such as a response to an user).

¢ Unlike DB, strict ACID guarantees not required.

° High performance and concurrency is critical.

Need a flexible and lightweight recovery strategy.

Log(Lock) Guided State Restoration

¢ Intuition: Global state protected by locks or similar
primitives.

® Lock/Unlock calls can guide understanding of state changes.

® A framework that tracks these calls can alert user to

® resource ownership,

® dirty reads, unrepeatable reads and lost updates.

® Incremental approach allows tracking only “interesting entities”.

Log(Lock) Overview

® Recoverable thread:

Recovery Context
® Thread which supports micro-

° Recovery Point p;:

® Represents a target starting pojrt for recovery in the event of a

failure. Initial system state € a default recovery point.
J Recovery criterion Cl.:

® Associated with a recovery point. Specifies criterion to be

satisfied to utilize p, as a starting point for recovery.

® Restoration Level: _ Failure Context

® Describes failure context.

3/2/2009

Log(Lock) Overview

Threads
. - i
ks Log(Lock) Execution Model (9
V Recovery Handler
Y\ sets Recovery Point and 11| state

LAY 1
\ Recovery Criterion restoration

N Restoration level I// 2. Recovery

[Actions

S0

State Dependencies @
and Resource Tracking

g
¥

Restoration Protocols

State Restoration Protocol

Resource Restoration Protocol

Transfer execution to recovery handler.

Deriving Restoration Protocols

® Assume system with only two threads T, and T,
® LetT, be the thread that encounters a failure.
® W: Write, R: Read, U: Unlock, F: Fail, E: End, A: Acquire, Re: Release
* Events of interest from standpoint of state restoration:
® Dirtyread (DR): T\W — T:R — T\F
® Lost Update (LU): T\W — T2:W — TWF
® Unrepeatable Read (UR): 7R — T2:W — TF
e Residual Resources (RR): T\ R—-T\FATU-HTF or
TW —>T\FATWU -»TF or
TiA—>TiF ATiRe -»TF
® Committed Dependency (CD): TWW —T2R -T2E —T\F or

TW —-T:W —->T:E—->T\F or
T\R—>TW —>T:E—>TF

3/2/2009

Recovery Strategies and Context

L4 Recovery strategies:
° Single/ multi —thread roll-back using a recovery point.
e Error compensation or roll-forward.

® System restart (software restart such as warmstart, or hardware restart).

e Restoration Level at instant t, R(t):
e Failure context.
® Captures occurrence of events such as DR, LU, UR, RR, CD.

® Recovery point p, and Recovery Criterion C;:
® Recovery context.
® Specifies the criteria for state to be restored using p,.
® Events suchas DR, LU, UR, RR, CD that can be handled using p,.

Resource/State Recovery Protocols

® System state can be restored using recovery point p; only if
R(t) meets the recovery criterion C; on the “residual
resources” criterion.

® For single-thread recovery R(t) must match C,.

* If R(t) does not meet C, on read-write conflicts:
® If event “committed dependency” has occurred, then
Only error compensation or system-level recovery possible.
® Else if “committed dependency” has not occurred

Only multi-thread rollback, error compensation or system-level
recovery.

3/2/2009

3/2/2009

/

Log(Lock) Execution Model

* Log(Lock) maintains the following in main memory:

® Undo logs: (maintained by developer)
Local logs maintained by each recoverable thread.
Tracks the sequence of state changes within a single thread.
Tracks the creation of recovery points.
Tracks resource ownership.

® ChangeTrack logs: (maintained by the system).
Maintained per lock (i.e. per synchronization primitive).
Entry made for each lock/unlock call.
<Thread#, [Lock | Unlock | Commit], [Read | Write | Commit]>
Track concurrent changes.

Track commit actions.

s

Log(Lock) Primitives

* Used by developer to utilize Log(Lock)-based recovery.
® startTracking(lock)
Used during normal-path execution.
® stop Tracking(lock)
Used during normal-path execution.
® getRestorationLevel(lock)
Used during failure-recovery in the recovery handler.
® getResourceOwnership(lock)

Used during failure-recovery in the recovery handler.

10

3/2/2009

s B
Log(Lock) Undo/Change Track Logs

¢ ThreadTl:

start Tracking(MDatalocationLock);
LockWrite (&MDataLocationLock);
mDatalLocation = XX;
UnlockWrite(&DataLocationLock)

T1 UNDO LOG

timestamp, mDatal.ocation, oldvalue

e Thread T2:

- LockRead (& MDatalocationLock);
Global Variables: CHANGE LOG
Copy location to local variable.

- UnlockRead(&DataLocationLock)

o %

Evaluation

Implemented Log(Lock) on enterprise storage controller code
with a simulated backend.

® Evaluated Log(Lock) effectiveness and efficiency.
* Highlights:

® Acceptable overhead & high performance

(< 10% impact even while tracking state changes (@ 15K times/scc.)

® Extremely high rate of recovery success (~ 99%) observed.

Recovery success: % of time restoration level meets recovery criterion.

° Significant improvement in recovery time.

35% Throughput drop for a 6 second duration vs 4 seconds downtime.

o %

11

3/2/2009

Experimental Setup

® Enterprise Storage Controller:

® 4 3.00 GHz Xeon 5160 processors, 12GB memory, IBM MCP
Linux.

* Simulating the backend allows control over read/write
latencies and setup.
® 250 LUNS of 100 GB each.
® Varied Read/Write latencies: 1ms or 20 ms

® Workload — varying read/write %, varying queue depth,
varying block sizes.
® 100% Writes, 50-50% Read-Write, 100% Read.

a

Metrics

* Efficiency:
® Impact of Log(Lock) on system performance.
® Throughput (Iops)
® Latency (seconds/10).

¢ Effectiveness:
* Ability of Log(Lock) to reduce recovery time.
® Recovery success.

® Recovery time.

12

e
Methodology

Table 2: State and Resource Access over a 75 minute run with varying workloads

Lock Contention | Contention | Number of | % contention | Locks/TO
CPU Cyeles | Counter locks

Fiber channel 2654991 aT. 137196747 | 4.21203E-06 | 10.33500111

1O state 219969 76 00122610 | 8.43206E-07 | 6.788916609

Resource pool 608103 100 63482200 | 1.57524E-06 | 4.732107005

Resource pool state | 124965 52 30040757 | 1.73098E-06 | 2.262963691

Throttle timer TOB48 11 113316 9.7E-05 0.00853607

® Frequent locks = frequently accessed/modified state.

* Contention =) access by concurrent threads, longer
duration of holding locks.

e
Comparisons

* System-Level Recovery:
® Reinitializes software, re-drives tasks.

® No hardware reboot.

® 2-phase locking
® Commonly used in transactional systems.
® [ocks held for the duration of entire thread.

® Resulted in lock timeouts and failed to bring system up.

3/2/2009

13

Rate vs Throughput (100% Writes)

1200 -

—

(=1

(=1

(=]
|

Throughput (IOps)

800 -
600 -
400 -
200 -
0 - : ‘ : ‘

12.5 14107 10266 15244.083 Baseline
times/sec times/sec times/sec times/sec
Frequency of lock access

® Acceptable impact on performance.
Lock Recovery Tracking Calls | #Aceess Duration Recovery

Criterion (times /sec) (times/sec) | CPU eycles | Success
Fiber channel | No Residual Resources | 3666 15244 20228 100%
10 state No DR, LU or UR 2500 10266 2894 99,88%,
Resource pool | No Residual Resources | 10 14107 34642 100%
Resource state | No Residual Resourees | 5 G6TH 4806 100%
Throttle timer | No Residual Resources | 10 12.59 7258 100%
10 state No DR, LU ar UR 2444 10045 69830 09.38%

° High recovery success.

® Also due to code architected for high concurrency.

3/2/2009

14

3/2/2009

s B
Recovery Time

Effect of Log(Lock) on Throughput with 100% Write

1200
g 1000 L j i
2 LAk : bl ! N" 1
T
%" 400 ,} \. :
iE 200 Failure 1 —— <— Failufe 2
0 T ‘

0 20 40 60 80 100 120 140 160 180 200

Time (in seconds)
—With Log(Lock) System Level Recovery

® 4 seconds downtime reduced to 35% performance impact

lasting 6 seconds.

o %

Applicability of Existing Art

Fault-Tolerance

[
I]

L Fault Treatment Error Processing

_ — [
Logging / L !
] Reboot Che C%% oi%lt'm o Environmental Diversity Application Specific

v Micro-Reboots

: N-version
Process-pairs !
programming
Periodic ‘
Rejuvenation
X A Failure Oblivious
Exception Handling C I
omputing
K Source: Software Fault Tolerance by Kishor S. Trivedi, http://srel.ee.duke.edu/ /

15

3/2/2009

Conclusion

L4 Large scale storage systems and services
® Complex systems, extremely high availability expectations.
® System-wide recovery processes will not scale.
® Need scalable and efficient recovery process.
¢ Contributions:
® Techniques to perform fine-granularity recovery in legacy systems.
e Practical and flexible state restoration architecture.
® Log(Lock)-enabled micro-recovery is effective and efficient.
e Future Work
® Reduce need for programmer intervention.

e Evaluate with other highly—concurrent systems.

THANK YOU

sangeeta@cc.gatech.edu

16

