
3/2/2009

1

A Systematic Approach to System State Restoration

during Storage Controller Micro-Recovery

Sangeetha Seshadri*

- with Lawrence Chiu†, and Ling Liu*

* Georgia Tech †IBM Almaden Research Center

USENIX FAST 2009

Outline

� Storage system availability.

� Technical challenges.

� Improving firmware availability through micro-recovery.

� Log(Lock) architecture for system state restoration.

� Evaluation.

� Conclusions.

� Questions.

3/2/2009

2

Storage System Availability

� Foundations of modern data centers.

� Extremely high availability expectation.

� Issues:
� Complex, legacy architectures.

� Concurrent development, quality assurance processes.

� Large scale installations – 1000s of components.

� Multiple applications, different expectations.

� Failures are the norm, not exception.

Goal: Improve recovery time in large scale storage systems.

Challenge: Existing failure recovery mechanisms insufficient

to deal with scale and complexity.

Storage Controller System Model

� Storage Controllers – RAID, I/O Routing, Error Detection…

� Many interacting components;

� Large number of asynchronous, short-running tasks (~ µsecs).

� Each task is executed entirely by one thread.

SCSI
Command
Processor

Cache
Manager

Device
Manager

…

Multi-core/SMP Processor Complex

Short-running
threads

Job Queue

3/2/2009

3

Failure Model

Controller
Failures

Permanent Transient

Domain
Errors

Range
Errors

State Errors Internal
Logic Errors

� Focus on service loss.

� Examples:
� Time-out conditions.

� Race conditions.

� Boundary conditions.

� Insufficient error handling.

� Queue full condition.

� Incorrect Linear
Redundancy Code (LRC).

� Unsolicited response from
third-party devices.

� Unknown state caused due
to configuration issues.

Challenge: Firmware Availability

� Failures trigger system recovery.
� Unavailability ~ 6 seconds (with 8
cores).

� Does not scale with system size.

� Scalable failure recovery?
� Legacy architecture. (~ 2M loc)

� Dynamic dependencies.

� Complex recovery semantics.

� Sustain high performance.

Failure

Abort and
Restart all
Tasks

System-wide Recovery

Requirements: Retrofittable, dynamic and low overhead.

3/2/2009

4

7

System-Level vs. Task-Level Recovery

7 IBM CONFIDENTIAL 2/16/2007

Error Detection

Log System State

System-wide
Recovery

System Operation
Resume

Halt All System
Operations

Error Detection

Halt Task Operation

Log Task State

Task-level Recovery

Continue
(Roll-forward)

Propagate
Error

Retry
(Roll-back)

System Level Recovery Task Level Recovery

Improving Firmware AvailabilityImproving Firmware AvailabilityImproving Firmware AvailabilityImproving Firmware Availability

RecoveryRecoveryRecoveryRecovery----Conscious FrameworkConscious FrameworkConscious FrameworkConscious Framework

STAGE 1: Fine Grained Recovery

Recovery Strategy Recovery Scopes

STAGE 3: Recovery Conscious Scheduling

STAGE 2: Recovery Scopes Recovery Groups

Availability Constraints Configuration

StaticPartially DynamicDynamic

Granularity

Performance

3/2/2009

5

State/Resource Dependencies

� Thread interactions:
� Shared data structures. (Read/Write interactions).

� Acquiring/releasing resources from a common pool.

� Interactions with outside world (positioning a disk head,
sending response to an I/O) – Outside world process (OWP).

� Capture and account for interactions to ensure
� State restoration of shared state.

� Relinquishing shared resources.

Example 1 – Resource Clean Up

� Requires tracking resource ownership.

� Not concerned with reads and writes on the resource.

/* Get cache track to write to cache */

startSCSICmd();

processRead();

getCacheTrack();

getTempResource() {

...

PANIC

3/2/2009

6

Example 2 – Dirty Reads

� Metadata location e.g. : checkpoint location.

� If no dirty read, then can undo changes.

� If dirty read has occurred, system-level recovery.

R4: /* Update Metadata Location */

lockWrite(&MetadataLocationLock);

MetadataLocation = XX;

unlockWrite(&MetadataLocationLock);

…

Technical Challenges

� Different contexts have different requirements for recovery.

� For example, threads may care about none or one or more of the
following:
� Resource ownership and clean relinquishing.
� Dirty reads.
� Unrepeatable reads.
� Lost updates.
� Externally visible actions (such as a response to an user).

� Unlike DB, strict ACID guarantees not required.

� High performance and concurrency is critical.

Need a flexible and lightweight recovery strategy.

3/2/2009

7

Log(Lock) Guided State Restoration

� Intuition: Global state protected by locks or similar
primitives.

� Lock/Unlock calls can guide understanding of state changes.

� A framework that tracks these calls can alert user to
� resource ownership,

� dirty reads, unrepeatable reads and lost updates.

� Incremental approach allows tracking only “interesting entities”.

Log(Lock) Overview

� Recoverable thread:
� Thread which supports micro-recovery.

� Recovery Point pi:
� Represents a target starting point for recovery in the event of a
failure. Initial system state is a default recovery point.

� Recovery criterion Ci:
� Associated with a recovery point. Specifies criterion to be
satisfied to utilize pi as a starting point for recovery.

� Restoration Level:
� Describes failure context.

Recovery Context

Failure Context

3/2/2009

8

Log(Lock) Overview

Threads

Log(Lock) Execution Model

Recovery Point and

Recovery Criterion

Restoration level

Restoration Protocols

State Restoration Protocol

Resource Restoration Protocol

sets

Transfer execution to recovery handler.

logs

X

Recovery Handler
1. State

restoration

2. Recovery
Actions

Recovery Handler
1. State

restoration

2. Recovery
Actions

State Dependencies

and Resource Tracking

Deriving Restoration Protocols
� Assume system with only two threads T1 and T2
� Let T1 be the thread that encounters a failure.

� W: Write, R: Read, U: Unlock, F: Fail, E: End, A: Acquire, Re: Release

� Events of interest from standpoint of state restoration:
� Dirty read (DR) :

� Lost Update (LU):

� Unrepeatable Read (UR):

� Residual Resources (RR): or

or

� Committed Dependency (CD): or

or

FTRTWT 121 →→

FTWTWT 121 →→

FTWTRT 121 →→

FTUTFTRT 1111 →/∧→

FTUTFTWT 1111 →/∧→

FTTFTAT 1111 Re →/∧→

FTETRTWT 1221 →→→

FTETWTWT 1221 →→→

FTETWTRT 1221 →→→

3/2/2009

9

Recovery Strategies and Context

� Recovery strategies:
� Single/multi –thread roll-back using a recovery point.
� Error compensation or roll-forward.
� System restart (software restart such as warmstart, or hardware restart).

� Restoration Level at instant t, R(t):
� Failure context.
� Captures occurrence of events such as DR, LU, UR, RR, CD.

� Recovery point pi and Recovery Criterion Ci:
� Recovery context.
� Specifies the criteria for state to be restored using pi.
� Events such as DR, LU, UR, RR, CD that can be handled using pi.

Resource/State Recovery Protocols

� System state can be restored using recovery point pi only if
R(t) meets the recovery criterion Ci on the “residual
resources” criterion.

� For single-thread recovery R(t) must match Ci .

� If R(t) does not meet Ci on read-write conflicts:
� If event “committed dependency” has occurred, then

� Only error compensation or system-level recovery possible.

� Else if “committed dependency” has not occurred
� Only multi-thread rollback, error compensation or system-level
recovery.

3/2/2009

10

Log(Lock) Execution Model

� Log(Lock) maintains the following in main memory:
� Undo logs: (maintained by developer)

� Local logs maintained by each recoverable thread.

� Tracks the sequence of state changes within a single thread.

� Tracks the creation of recovery points.

� Tracks resource ownership.

� Change Track logs: (maintained by the system).
� Maintained per lock (i.e. per synchronization primitive).

� Entry made for each lock/unlock call.

� <Thread#, [Lock|Unlock|Commit], [Read|Write|Commit]>

� Track concurrent changes.

� Track commit actions.

Log(Lock) Primitives

� Used by developer to utilize Log(Lock)-based recovery.
� startTracking(lock)

� Used during normal-path execution.

� stopTracking(lock)
� Used during normal-path execution.

� getRestorationLevel(lock)
� Used during failure-recovery in the recovery handler.

� getResourceOwnership(lock)
� Used during failure-recovery in the recovery handler.

3/2/2009

11

� Thread T2:

…

LockRead (&MDataLocationLock);

Copy location to local variable.

UnlockRead(&MDataLocationLock)

Log(Lock) Undo/Change Track Logs

� Thread T1:
start Tracking(MDataLocationLock);

LockWrite (&MDataLocationLock);

mDataLocation = XX;

UnlockWrite(&MDataLocationLock)

….

T1 UNDO LOG

timestamp, mDataLocation, oldvalue

MDataLocationLock

Global Variables: CHANGE LOG

Evaluation

� Implemented Log(Lock) on enterprise storage controller code
with a simulated backend.

� Evaluated Log(Lock) effectiveness and efficiency.
� Highlights:

� Acceptable overhead & high performance
� (< 10% impact even while tracking state changes @ 15K times/sec.)

� Extremely high rate of recovery success (~ 99%) observed.
� Recovery success: % of time restoration level meets recovery criterion.

� Significant improvement in recovery time.
� 35% Throughput drop for a 6 second duration vs 4 seconds downtime.

3/2/2009

12

Experimental Setup

� Enterprise Storage Controller:
� 4 3.00 GHz Xeon 5160 processors, 12GB memory, IBM MCP
Linux.

� Simulating the backend allows control over read/write
latencies and setup.
� 250 LUNS of 100 GB each.

� Varied Read/Write latencies: 1ms or 20 ms

� Workload – varying read/write %, varying queue depth,
varying block sizes.
� 100% Writes, 50-50% Read-Write, 100% Read.

Metrics

� Efficiency:
� Impact of Log(Lock) on system performance.

� Throughput (Iops)

� Latency (seconds/IO).

� Effectiveness:
� Ability of Log(Lock) to reduce recovery time.

� Recovery success.

� Recovery time.

3/2/2009

13

Methodology

� Frequent locks frequently accessed/modified state.

� Contention access by concurrent threads, longer
duration of holding locks.

⇒

⇒

Comparisons

� System-Level Recovery:
� Reinitializes software, re-drives tasks.

� No hardware reboot.

� 2-phase locking
� Commonly used in transactional systems.

� Locks held for the duration of entire thread.

� Resulted in lock timeouts and failed to bring system up.

3/2/2009

14

Rate vs Throughput (100% Writes)

� Acceptable impact on performance.

0

200

400

600

800

1000

1200

12.5
times/sec

14107
times/sec

10266
times/sec

15244.083
times/sec

Baseline

T
h

ro
u

gh
p

u
t

(I
O

p
s)

Frequency of lock access

Recovery Success

� High recovery success.
� Also due to code architected for high concurrency.

3/2/2009

15

Recovery Time

� 4 seconds downtime reduced to 35% performance impact
lasting 6 seconds.

Applicability of Existing Art

Fault-Tolerance

Fault Treatment

Reboot

Micro-Reboots

Periodic
Rejuvenation

Error Processing

Environmental Diversity

Process-pairs N-version
programming

Logging /
Checkpointing Application Specific

Exception Handling Failure Oblivious
Computing

Source: Software Fault Tolerance by Kishor S. Trivedi, http://srel.ee.duke.edu/

3/2/2009

16

Conclusion

� Large scale storage systems and services
� Complex systems, extremely high availability expectations.

� System-wide recovery processes will not scale.

� Need scalable and efficient recovery process.

� Contributions:
� Techniques to perform fine-granularity recovery in legacy systems.

� Practical and flexible state restoration architecture.

� Log(Lock)-enabled micro-recovery is effective and efficient.

� Future Work
� Reduce need for programmer intervention.

� Evaluate with other highly-concurrent systems.

Questions?

THANK YOU

sangeeta@cc.gatech.edu

