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Outline

� Storage system availability. 

� Technical challenges.

� Improving firmware availability through micro-recovery.

� Log(Lock) architecture for system state restoration.
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Storage System Availability

� Foundations of modern data centers.

� Extremely high availability expectation.

� Issues:
� Complex, legacy architectures.

� Concurrent development, quality assurance processes.

� Large scale installations – 1000s of components.

� Multiple applications, different expectations.

� Failures are the norm, not exception.

Goal:   Improve recovery time in large scale storage systems. 

Challenge: Existing failure recovery mechanisms insufficient  

to deal with scale and complexity.

Storage Controller System Model

� Storage Controllers – RAID, I/O Routing, Error Detection…

� Many interacting components;

� Large number of asynchronous, short-running tasks (~ µsecs). 

� Each task is executed entirely by one thread.
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Failure Model

Controller 
Failures

Permanent Transient

Domain 
Errors

Range 
Errors

State Errors Internal 
Logic Errors

� Focus on service loss.

� Examples:
� Time-out conditions.

� Race conditions.

� Boundary conditions.

� Insufficient error handling.

� Queue full condition.

� Incorrect Linear 
Redundancy Code (LRC).

� Unsolicited response from 
third-party devices.

� Unknown state caused due 
to configuration issues.

Challenge: Firmware Availability

� Failures trigger system recovery.
� Unavailability ~ 6 seconds (with 8 
cores).

� Does not scale with system size.

� Scalable failure recovery?
� Legacy architecture. (~ 2M loc)

� Dynamic dependencies.

� Complex recovery semantics.

� Sustain high performance.

Failure

Abort and 
Restart all 
Tasks

System-wide Recovery

Requirements: Retrofittable, dynamic and low overhead.
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System-Level vs. Task-Level Recovery

7 IBM CONFIDENTIAL 2/16/2007

Error Detection

Log System State

System-wide 
Recovery

System Operation 
Resume

Halt All System 
Operations

Error Detection

Halt Task Operation

Log Task State

Task-level Recovery

Continue 
(Roll-forward)

Propagate 
Error

Retry 
(Roll-back)

System Level Recovery Task Level Recovery

Improving Firmware AvailabilityImproving Firmware AvailabilityImproving Firmware AvailabilityImproving Firmware Availability

RecoveryRecoveryRecoveryRecovery----Conscious FrameworkConscious FrameworkConscious FrameworkConscious Framework

STAGE 1:  Fine Grained Recovery

Recovery Strategy Recovery Scopes

STAGE 3:  Recovery Conscious Scheduling

STAGE 2:  Recovery Scopes           Recovery Groups               

Availability Constraints Configuration

StaticPartially   DynamicDynamic
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State/Resource Dependencies

� Thread interactions:
� Shared data structures. (Read/Write interactions).

� Acquiring/releasing resources from a common pool.

� Interactions with outside world (positioning a disk head, 
sending response to an I/O) – Outside world process (OWP).

� Capture and account for interactions to ensure 
� State restoration of shared state.

� Relinquishing shared resources.

Example 1 – Resource  Clean Up

� Requires tracking resource ownership.

� Not concerned with reads and writes on the resource.

/* Get cache track to write to cache */

startSCSICmd();

processRead();

getCacheTrack();

getTempResource() {

...

PANIC
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Example 2 – Dirty Reads

� Metadata location e.g. : checkpoint location.

� If no dirty read, then can undo changes.

� If dirty read has occurred, system-level recovery.

R4: /* Update Metadata Location */

lockWrite( &MetadataLocationLock);

MetadataLocation = XX;

unlockWrite( &MetadataLocationLock);

…

Technical Challenges

� Different contexts have different requirements for recovery.

� For example, threads may care about none or one or more of the 
following:
� Resource ownership and clean relinquishing.
� Dirty reads.
� Unrepeatable reads.
� Lost updates.
� Externally visible actions (such as a response to an user).

� Unlike DB, strict ACID guarantees not required.

� High performance and concurrency is critical.

Need a flexible and lightweight recovery strategy.
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Log(Lock) Guided State Restoration

� Intuition: Global state protected by locks or similar 
primitives.

� Lock/Unlock calls can guide understanding of state changes.

� A framework that tracks these calls can alert user to 
� resource ownership, 

� dirty reads, unrepeatable reads and  lost updates.

� Incremental approach allows tracking only “interesting entities”.

Log(Lock) Overview

� Recoverable thread:
� Thread which supports micro-recovery.

� Recovery Point pi:
� Represents a target starting point for recovery in the event of a 
failure.  Initial system state is a default recovery point.

� Recovery criterion Ci:
� Associated with a recovery point. Specifies criterion to be 
satisfied to utilize pi as a starting point for recovery.

� Restoration Level:
� Describes failure context.

Recovery Context

Failure Context
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Log(Lock) Overview

Threads

Log(Lock) Execution Model

Recovery Point and

Recovery Criterion

Restoration level

Restoration Protocols

State Restoration Protocol

Resource Restoration Protocol

sets

Transfer execution to recovery handler.

logs

X

Recovery Handler
1. State 

restoration

2. Recovery 
Actions

Recovery Handler
1. State 

restoration

2. Recovery 
Actions

State Dependencies 

and Resource Tracking

Deriving Restoration Protocols
� Assume system with only two threads T1 and T2
� Let T1 be the thread that encounters a failure.

� W:  Write, R: Read, U: Unlock, F: Fail, E: End, A: Acquire, Re: Release

� Events of interest from standpoint of state restoration:
� Dirty read (DR) : 

� Lost Update (LU): 

� Unrepeatable Read (UR): 

� Residual Resources (RR):                                               or 

or

� Committed Dependency (CD):                                                or

or

FTRTWT 121 →→

FTWTWT 121 →→

FTWTRT 121 →→

FTUTFTRT 1111 →/∧→

FTUTFTWT 1111 →/∧→

FTTFTAT 1111 Re →/∧→

FTETRTWT 1221 →→→

FTETWTWT 1221 →→→

FTETWTRT 1221 →→→
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Recovery Strategies and Context

� Recovery strategies:
� Single/multi –thread roll-back using a recovery point.
� Error compensation or roll-forward.
� System restart (software restart such as warmstart, or hardware restart).

� Restoration Level at instant t, R(t): 
� Failure context.
� Captures occurrence of events such as DR, LU, UR, RR, CD.

� Recovery point pi  and Recovery Criterion Ci:
� Recovery context.
� Specifies the criteria for state to be restored using pi.
� Events  such as DR, LU, UR, RR, CD that can be handled using pi.

Resource/State Recovery Protocols

� System state can be restored using recovery point pi only if 
R(t) meets the recovery criterion Ci on the “residual 
resources” criterion. 

� For single-thread recovery R(t) must match Ci .

� If R(t) does not meet Ci on read-write conflicts: 
� If event “committed dependency” has occurred, then

� Only error compensation or system-level recovery possible.

� Else if “committed dependency” has not occurred
� Only multi-thread rollback, error compensation or system-level 
recovery.
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Log(Lock) Execution Model

� Log(Lock) maintains the following in main memory:
� Undo logs: (maintained by developer)

� Local logs maintained by each recoverable thread.

� Tracks the sequence of state changes within a single thread.

� Tracks the creation of recovery points.

� Tracks resource ownership.

� Change Track logs: (maintained by the system).
� Maintained per lock (i.e. per synchronization primitive).

� Entry made for each lock/unlock call. 

� <Thread#, [Lock|Unlock|Commit], [Read|Write|Commit]>

� Track concurrent changes.

� Track commit actions.

Log(Lock) Primitives

� Used by developer to utilize Log(Lock)-based recovery.
� startTracking(lock) 

� Used during normal-path execution.

� stopTracking(lock)
� Used during normal-path execution.

� getRestorationLevel(lock)
� Used during failure-recovery in the recovery handler.

� getResourceOwnership(lock)
� Used during failure-recovery in the recovery handler.
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� Thread T2:

…

LockRead (&MDataLocationLock); 

Copy location to local variable.

UnlockRead(&MDataLocationLock)

Log(Lock) Undo/Change Track Logs

� Thread T1:
start Tracking( MDataLocationLock );

LockWrite (&MDataLocationLock); 

mDataLocation = XX; 

UnlockWrite(&MDataLocationLock)

….

T1 UNDO LOG

timestamp, mDataLocation, oldvalue

MDataLocationLock

Global Variables: CHANGE LOG

Evaluation

� Implemented Log(Lock) on enterprise storage controller code 
with a simulated backend.

� Evaluated Log(Lock) effectiveness and efficiency.
� Highlights:

� Acceptable overhead & high performance 
� (< 10% impact even while tracking state changes @ 15K times/sec.)

� Extremely high rate of recovery success (~ 99%) observed.
� Recovery success: % of time restoration level meets recovery criterion.

� Significant improvement in recovery time.
� 35% Throughput drop for a 6 second duration vs 4 seconds downtime.
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Experimental Setup

� Enterprise Storage Controller:
� 4 3.00 GHz Xeon 5160 processors, 12GB memory, IBM MCP 
Linux.

� Simulating the backend allows control over read/write 
latencies and setup.
� 250 LUNS of 100 GB each.

� Varied Read/Write latencies: 1ms or 20 ms

� Workload – varying read/write %, varying queue depth, 
varying block sizes. 
� 100% Writes, 50-50% Read-Write, 100% Read.

Metrics

� Efficiency:
� Impact of Log(Lock) on system performance.

� Throughput ( Iops )

� Latency (seconds/IO).

� Effectiveness:
� Ability of Log(Lock) to reduce recovery time.

� Recovery success.

� Recovery time.



3/2/2009

13

Methodology

� Frequent locks          frequently accessed/modified state.

� Contention         access by concurrent threads, longer 
duration of holding locks.  

⇒

⇒

Comparisons

� System-Level Recovery:
� Reinitializes software, re-drives tasks.

� No hardware reboot.

� 2-phase locking
� Commonly used in transactional systems.

� Locks held for the duration of entire thread.

� Resulted in lock timeouts and failed to bring system up.
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Rate vs Throughput (100% Writes)

� Acceptable impact on performance.
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Recovery Success

� High recovery success.
� Also due to code architected for high concurrency.
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Recovery Time

� 4 seconds downtime reduced to 35% performance impact 
lasting 6 seconds.

Applicability of Existing Art

Fault-Tolerance

Fault Treatment

Reboot

Micro-Reboots

Periodic 
Rejuvenation

Error Processing

Environmental Diversity

Process-pairs N-version 
programming

Logging / 
Checkpointing Application Specific

Exception Handling Failure Oblivious 
Computing

Source: Software Fault Tolerance by Kishor  S. Trivedi, http://srel.ee.duke.edu/
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Conclusion

� Large scale storage systems and services
� Complex systems, extremely high availability expectations.

� System-wide recovery processes will not scale.

� Need scalable and efficient recovery process.

� Contributions:
� Techniques to perform fine-granularity recovery in legacy systems.

� Practical and flexible state restoration architecture.

� Log(Lock)-enabled micro-recovery is effective and efficient.

� Future Work
� Reduce need for programmer intervention.

� Evaluate with other highly-concurrent systems.

Questions?

THANK  YOU

sangeeta@cc.gatech.edu


