
Causality-Based VersioningCausality-Based Versioning

Kiran-Kumar Muniswamy-Reddy
and David A. Holland

Harvard School of
Engineering and Applied

Sciences

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 22

Consider this scenarioConsider this scenario

 I installed a piece of softwareI installed a piece of software
 But.. that broke a few other tools!But.. that broke a few other tools!

 Uninstall not good enoughUninstall not good enough
 The config files were still corruptThe config files were still corrupt

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 33

But which But which
files were files were
modified?modified?

VersioningVersioning

Maintains old Maintains old
data to which data to which

you can recoveryou can recover

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 44

CausalityCausality
Tracks propagation Tracks propagation
of data and lets you of data and lets you

find which files find which files
were modified were modified

Too bad I don’t Too bad I don’t
have those old have those old

versionsversions

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 55

CausalityCausality

VersioningVersioning

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 66

Applications of Versioning + CausalityApplications of Versioning + Causality

 System Configuration ManagementSystem Configuration Management
 Causal data identifies files modifiedCausal data identifies files modified
 Version data allows you to recover the files Version data allows you to recover the files

modifiedmodified

 Intrusion RecoveryIntrusion Recovery
 IP ComplianceIP Compliance
 Reproduce Research ResultsReproduce Research Results

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 77

Apache split-logfile Vulnerability Apache split-logfile Vulnerability

 Vulnerability in Apache 1.3 Vulnerability in Apache 1.3
 Vulnerability allows attacker to overwrite Vulnerability allows attacker to overwrite

any file with a .log extensionany file with a .log extension

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 88

08AM08AM

09AM09AM

10AM10AM

11AM11AM

12PM12PM

open DB.logopen DB.log

Write txWrite tx

Write txWrite tx

Detect CorruptionDetect Corruption

ScenarioScenario

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 99

08AM08AM

09AM09AM

10AM10AM

V1;DB.logV1;DB.log

Open-closeOpen-close

12PM12PM Detect CorruptionDetect Corruption

Can only Can only
recover to recover to

8 AM8 AM

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1010

08AM08AM

09AM09AM

10AM10AM

V1;DB.logV1;DB.log

Version-on-every writeVersion-on-every write

V2;DB.logV2;DB.log

Vn;DB.logVn;DB.log

Vn+2;DB.logVn+2;DB.log

Vn+1;DB.logVn+1;DB.log

can recover to can recover to
10 AM, but 10 AM, but
expensiveexpensive

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1111

GoalGoal

 Combine versioning and causality, taking Combine versioning and causality, taking
advantage of causality information to advantage of causality information to
create versions at just the right timecreate versions at just the right time

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1212

ContributionsContributions

 Two algorithms that create Two algorithms that create usefuluseful versions versions
 Cycle Avoidance Cycle Avoidance
 Graph FinesseGraph Finesse

 Evaluate efficacy and efficiency of these Evaluate efficacy and efficiency of these
two algorithms in the context of versioning two algorithms in the context of versioning

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1313

OutlineOutline

 IntroductionIntroduction
 Background on PASSBackground on PASS
 Versioning AlgorithmsVersioning Algorithms
 ImplementationImplementation
 EvaluationEvaluation
 ConclusionConclusion

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1414

PASS Architecture: P reads APASS Architecture: P reads A

K
E

R
N

E
L

U
S

E
R

VFS Layer

Syscall
Layer

WaldoUser process P

Lasagna

Interceptor

Observer

Analyzer

log

Distributor

generates generates
record record
‘P‘PA’A’

version?version?

cache cache
‘P‘PA’A’

filters filters
eventsevents

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1515

PASS Architecture: PASS Architecture: P writes BP writes B

K
E

R
N

E
L

U
S

E
R

VFS Layer

Syscall
Layer

WaldoUser process P

Lasagna

Interceptor

Observer

Analyzer

log

Distributor

generates generates
record record
‘B‘BP’P’

Version?Version?cache cache
 ‘P ‘PA’A’

PPA A
BBPP

‘‘BBP’P’

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1616

OutlineOutline

 IntroductionIntroduction
 Background on PASSBackground on PASS
 Versioning AlgorithmsVersioning Algorithms
 ImplementationImplementation
 EvaluationEvaluation
 ConclusionConclusion

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1717

Intuition for new algorithmsIntuition for new algorithms

 The creation of a cycle is an indicator The creation of a cycle is an indicator
that a version created at that instant that a version created at that instant
could be useful later could be useful later

 Cycles are violations of causality Cycles are violations of causality
 Implies that past depends on future!Implies that past depends on future!

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1818

Open-Close VersioningOpen-Close Versioning

1.1. On the last close of a file, issue a “freeze” On the last close of a file, issue a “freeze”
operationoperation

 Freeze declares end of a versionFreeze declares end of a version

2.2. The next open and write triggers a new The next open and write triggers a new
versionversion

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 1919

Example scenarioExample scenario

P Q

read A

read B

write B

write A

read A

read B

Each read/write is Each read/write is

enclosed by an enclosed by an

open and closeopen and close
TimeTime

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2020

Open-CloseOpen-Close

A1A1

PP

P Q

read A

read B

write B

write A

read A

read B

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2121

Open-CloseOpen-Close

A1A1

PP QQ

B1B1

P Q

read A

read B

write B

write A

read A

read B

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2222

Open-CloseOpen-Close

A1A1

PP

B2B2

QQ

B1B1

P Q

read A

read B

write B

write A

read A

read B

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2323

Open-CloseOpen-Close

A1A1

PP

B2B2 A2A2

QQ

B1B1

P Q

read A

read B

write B

write A

read A

read B

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2424

Open-CloseOpen-Close

A1A1

PP

B2B2 A2A2

QQ

B1B1

P Q

read A

read B

write B

write A

read A

read B

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2525

Open-CloseOpen-Close

A1A1

PP

B2B2 A2A2

QQ

B1B1

P Q

read A

read B

write B

write A

read A

read B
Open-Close allows cycles to happen.Open-Close allows cycles to happen.

Violates CausalityViolates Causality

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2626

Version-on-every writeVersion-on-every write

 Pros:Pros:
 Preserves causality: there are no cyclesPreserves causality: there are no cycles

 Every read creates a new version of the processEvery read creates a new version of the process
 Every write creates a new version of the fileEvery write creates a new version of the file

 There are no duplicates eitherThere are no duplicates either

 Disadvantage: most versions are Disadvantage: most versions are
unnecessaryunnecessary

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2727

Cycle Avoidance AlgorithmCycle Avoidance Algorithm

 Preserves Causality by avoiding cyclesPreserves Causality by avoiding cycles
 Uses local per-object information to make Uses local per-object information to make

decisionsdecisions
 Similar to the timestamp ordering in Similar to the timestamp ordering in

databasesdatabases
 Intuition:Intuition:

 Freeze an object when we add a dependency Freeze an object when we add a dependency
that does not previously exist, i.e., new that does not previously exist, i.e., new
causalitycausality

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2828

Cycle Avoidance ExampleCycle Avoidance Example

 On receiving record A1 On receiving record A1 B2 B2
 If no B in A’s history, then freeze AIf no B in A’s history, then freeze A
 Else if B in A’s history, thenElse if B in A’s history, then

 If A’s history has B2, discard record (duplicate)If A’s history has B2, discard record (duplicate)
 If A’s history has B3 (version > 2), discard recordIf A’s history has B3 (version > 2), discard record
 If A’s history has B1 (version < 2), freeze AIf A’s history has B1 (version < 2), freeze A

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 2929

Cycle AvoidanceCycle Avoidance

A1A1

P2P2

A1A1

P1P1

P Q

read A

read B

write B

write A

read A

read B

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3030

Cycle AvoidanceCycle Avoidance

A1A1

P2P2

B2B2 A2A2

Q2Q2

B1B1

P3P3

P Q

read A

read B

write B

write A

read A

read B

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3131

Cycle AvoidanceCycle Avoidance

A1A1

P2P2

B2B2 A2A2

Q2Q2

B1B1

P3P3 Q3Q3

P Q

read A

read B

write B

write A

read A

read BCycle-Avoidance prevents cycles,Cycle-Avoidance prevents cycles,

but creates more versionsbut creates more versions

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3232

Graph Finesse AlgorithmGraph Finesse Algorithm

 Uses Global knowledge Uses Global knowledge
 Intuition:Intuition:

 Check every new record against a global Check every new record against a global
dependency graph.dependency graph.

 If it forms a cycle, just freeze that one nodeIf it forms a cycle, just freeze that one node

 Subsumes open-close algorithmSubsumes open-close algorithm

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3333

Graph Finesse ExampleGraph Finesse Example

 On receiving record A1 On receiving record A1 B2 B2
 If B2 is already in A’s history, discard recordIf B2 is already in A’s history, discard record
 Else check for a path from B2 Else check for a path from B2 A1 A1

 If yes, this a cycle, freeze A1 and change the If yes, this a cycle, freeze A1 and change the
record to A2record to A2B2B2

 If no cycle, add A1 If no cycle, add A1 B2 to the graph B2 to the graph

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3434

Graph FinesseGraph Finesse

A1A1

P1P1

B2B2 A2A2

Q1Q1

B1B1

Q2Q2

P Q

read A

read B

write B

write A

read A

read B

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3535

Cycle AvoidanceCycle Avoidance

A1A1

P1P1

B2B2 A2A2

Q1Q1

B1B1

Q2Q2

A1A1

P2P2

B2B2 A2A2

Q2Q2

B1B1

Q3Q3P3P3

Graph Finesse

Graph Finesse prevents cycles. Graph Finesse prevents cycles.

But creates fewer versions than But creates fewer versions than

Cycle AvoidanceCycle Avoidance

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3636

Cycle Avoidance Graph Finesse

Uses Local state Uses Global state

Creates a few un-
necessary versions

Creates fewer
versions

Has lower runtime
overhead

Can have high run-
time overheads

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3737

OutlineOutline

 IntroductionIntroduction
 Background on PASSBackground on PASS
 Versioning AlgorithmsVersioning Algorithms
 ImplementationImplementation
 EvaluationEvaluation
 ConclusionConclusion

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3838

ImplementationImplementation

 Implemented on Linux 2.6.23.17Implemented on Linux 2.6.23.17
 Lasagna is a stackable file system derived Lasagna is a stackable file system derived

from eCryptfsfrom eCryptfs
 Versioning file systemVersioning file system

 Redo log that keeps track of file versioning Redo log that keeps track of file versioning
(deltas)(deltas)

 Redo log for directory modifications (deltas)Redo log for directory modifications (deltas)

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 3939

OutlineOutline

 IntroductionIntroduction
 Background on PASSBackground on PASS
 Versioning AlgorithmsVersioning Algorithms
 ImplementationImplementation
 EvaluationEvaluation
 ConclusionConclusion

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4040

Evaluation GoalsEvaluation Goals

 What are the run-time overheads a user What are the run-time overheads a user
might see?might see?

 What are the space overheads?What are the space overheads?
 How do the algorithms compare during How do the algorithms compare during

recovery?recovery?

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4141

Test platformTest platform

 Linux 2.6.23.17Linux 2.6.23.17
 3Ghz Pentium 43Ghz Pentium 4
 512MB of RAM512MB of RAM
 80GB 7200 RPM IDE Disk80GB 7200 RPM IDE Disk
 All results are averages of 5 runsAll results are averages of 5 runs

 Less than 5% Std. Dev.Less than 5% Std. Dev.

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4242

ModesModes

 Without causal dataWithout causal data
 Ext2: Baseline (Ext2: Baseline (Lasagna was stacked on Ext2Lasagna was stacked on Ext2))
 VER: plain versioning (VER: plain versioning (open-closeopen-close))

 With causal dataWith causal data
 OC: open-close OC: open-close
 CA: Cycle-AvoidanceCA: Cycle-Avoidance
 GF: Graph-FinesseGF: Graph-Finesse
 ALL: Version-on-every writeALL: Version-on-every write

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4343

Linux Compile: Elapsed TimeLinux Compile: Elapsed Time

11.9%

0

500

1000

1500

2000

2500

3000

EXT2 VER OC CA GF ALL

T
im

e
 (

s)

Wait

User

System

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4444

Linux Compile: Elapsed TimeLinux Compile: Elapsed Time

11.9% 17.1% 18.3% 21.3%

0

500

1000

1500

2000

2500

3000

EXT2 VER OC CA GF ALL

T
im

e
 (

s)

Wait

User

System

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4545

Linux Compile: Elapsed TimeLinux Compile: Elapsed Time

11.9% 17.1% 18.3% 21.3%

57.4%

0

500

1000

1500

2000

2500

3000

EXT2 VER OC CA GF ALL

T
im

e
(s

)

Wait

User

System

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4646

Linux Compile: Space OverheadsLinux Compile: Space Overheads

2.9%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

EXT2 VER OC CA GF ALL

S
p

ac
e

(G
B

)

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4747

Linux Compile: Space OverheadsLinux Compile: Space Overheads

2.9%
15.8% 17.6% 15.8%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

EXT2 VER OC CA GF ALL

S
p

ac
e

(G
B

)

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4848

Linux Compile: Space OverheadsLinux Compile: Space Overheads

2.9%
15.8% 17.6% 15.8%

121.6%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

EXT2 VER OC CA GF ALL

S
p

ac
e

 (
G

B
)

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 4949

Mercurial Activity: Elapsed TimeMercurial Activity: Elapsed Time

25.9%

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

EXT2 VER OC CA GF ALL

T
im

e(
s)

Wait

User

System

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5050

Mercurial Activity: Elapsed TimeMercurial Activity: Elapsed Time

25.9% 28.8% 27.9%

89.6%

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

EXT2 VER OC CA GF ALL

T
im

e(
s)

Wait

User

System

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5151

Mercurial Activity: Elapsed TimeMercurial Activity: Elapsed Time

25.9% 28.8% 27.9%

89.6%

61.3%

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

EXT2 VER OC CA GF ALL

T
im

e(
s)

Wait

User

System

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5252

Mercurial Activity: Space OverheadsMercurial Activity: Space Overheads

26.6%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

EXT2 VER OC CA GF ALL

S
p

ac
e

(G
B

)

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5353

Mercurial Activity: Space OverheadsMercurial Activity: Space Overheads

26.6% 31.6% 30.2% 31.9%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

EXT2 VER OC CA GF ALL

S
p

ac
e

(G
B

)

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5454

Mercurial Activity: Space OverheadsMercurial Activity: Space Overheads

26.6% 31.6% 30.2% 31.9%

53.7%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

EXT2 VER OC CA GF ALL

S
p

ac
e

(G
B

)

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5555

Recovery BenchmarksRecovery Benchmarks

 How the algorithms perform in the scenario How the algorithms perform in the scenario
where open close is not sufficientwhere open close is not sufficient

 MicrobenchmarkMicrobenchmark
 Models the apache split-log scenarioModels the apache split-log scenario

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5656

Recovery MicroBenchmarkRecovery MicroBenchmark

PP

writewrite

QQforkfork

pipepipe

writewritereadread

readread

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5757

Recovery Microbenchmark: Space Util.Recovery Microbenchmark: Space Util.

Causal Data Version Data

OC 60KB 12KB

CA 176KB 470.5MB

GF 184KB 470.5MB

ALL 76.9MB 1.97GB

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5858

Recovery TimesRecovery Times

0

5

10

15

20

25

30

Rollback 1 Rollback 5 RollBack 9

R
ec

o
ve

ry
 T

im
es

 (
s)

CA

GF

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 5959

Recovery TimesRecovery Times

25.1x

17.9x

9.3x

0

100

200

300

400

500

600

700

800

Rollback 1 Rollback 5 RollBack 9

R
ec

o
ve

ry
 T

im
e(

s)

CA

GF

ALL

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 6060

ConclusionsConclusions

 Combining Versioning and Causality Combining Versioning and Causality
enables novel functionalityenables novel functionality

 New algorithms for Causal VersioningNew algorithms for Causal Versioning
 Cycle AvoidanceCycle Avoidance

 Comparable to open-closeComparable to open-close
 May create more versionsMay create more versions

 Graph FinesseGraph Finesse
 Provides greater control on versioningProvides greater control on versioning
 Can be inefficient at timesCan be inefficient at times

2/25/20092/25/2009 Causality-Based Versioning - FAST'09Causality-Based Versioning - FAST'09 6161

Questions?Questions?

Contact:Contact:

pass@eecs.harvard.edupass@eecs.harvard.edu

www.eecs.harvard.eduwww.eecs.harvard.edu/syrah/pass/syrah/pass

mailto:pass@eecs.harvard.edu
http://www.eecs.harvard.edu/syrah/pass
http://www.eecs.harvard.edu/syrah/pass

	Slide 1
	Consider this scenario
	Slide 3
	Slide 4
	Slide 5
	Applications of Versioning + Causality
	Apache split-logfile Vulnerability
	Scenario
	Open-close
	Version-on-every write
	Goal
	Contributions
	Outline
	PASS Architecture: P reads A
	PASS Architecture: P writes B
	Slide 16
	Intuition for new algorithms
	Open-Close Versioning
	Example scenario
	Open-Close
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Cycle Avoidance Algorithm
	Cycle Avoidance Example
	Cycle Avoidance
	Slide 30
	Slide 31
	Graph Finesse Algorithm
	Graph Finesse Example
	Graph Finesse
	Slide 35
	Slide 36
	Slide 37
	Implementation
	Slide 39
	Evaluation Goals
	Test platform
	Modes
	Linux Compile: Elapsed Time
	Slide 44
	Slide 45
	Linux Compile: Space Overheads
	Slide 47
	Slide 48
	Mercurial Activity: Elapsed Time
	Slide 50
	Slide 51
	Mercurial Activity: Space Overheads
	Slide 53
	Slide 54
	Recovery Benchmarks
	Recovery MicroBenchmark
	Recovery Microbenchmark: Space Util.
	Recovery Times
	Slide 59
	Conclusions
	Questions?

