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Consider this scenarioConsider this scenario

 I installed a piece of softwareI installed a piece of software
 But.. that broke a few other tools!But.. that broke a few other tools!

 Uninstall not good enoughUninstall not good enough
 The config files were still corruptThe config files were still corrupt
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But which But which 
files were files were 
modified?modified?

VersioningVersioning

Maintains old Maintains old 
data to which data to which 

you can recoveryou can recover
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CausalityCausality
Tracks propagation Tracks propagation 
of data and lets you of data and lets you 

find which files find which files 
were modified were modified 

Too bad I don’t Too bad I don’t 
have those old have those old 

versionsversions
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CausalityCausality

VersioningVersioning
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Applications of Versioning + CausalityApplications of Versioning + Causality

 System Configuration ManagementSystem Configuration Management
 Causal data identifies files modifiedCausal data identifies files modified
 Version data allows you to recover the files Version data allows you to recover the files 

modifiedmodified

 Intrusion RecoveryIntrusion Recovery
 IP ComplianceIP Compliance
 Reproduce Research ResultsReproduce Research Results
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Apache split-logfile Vulnerability Apache split-logfile Vulnerability 

 Vulnerability in Apache 1.3 Vulnerability in Apache 1.3 
 Vulnerability allows attacker to overwrite Vulnerability allows attacker to overwrite 

any file with a .log extensionany file with a .log extension
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08AM08AM

09AM09AM

10AM10AM

11AM11AM

12PM12PM

open DB.logopen DB.log

Write txWrite tx

Write txWrite tx

Detect CorruptionDetect Corruption

ScenarioScenario
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08AM08AM

09AM09AM

10AM10AM

V1;DB.logV1;DB.log

Open-closeOpen-close

12PM12PM Detect CorruptionDetect Corruption

Can only Can only 
recover to recover to 

8 AM8 AM
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08AM08AM

09AM09AM

10AM10AM

V1;DB.logV1;DB.log

Version-on-every writeVersion-on-every write

V2;DB.logV2;DB.log

Vn;DB.logVn;DB.log

Vn+2;DB.logVn+2;DB.log

Vn+1;DB.logVn+1;DB.log

can  recover to can  recover to 
10 AM, but 10 AM, but 
expensiveexpensive
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GoalGoal

      Combine versioning and causality, taking Combine versioning and causality, taking 
advantage of causality information to advantage of causality information to 
create versions at just the right timecreate versions at just the right time
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ContributionsContributions

 Two algorithms that create Two algorithms that create usefuluseful versions  versions 
 Cycle Avoidance Cycle Avoidance 
 Graph FinesseGraph Finesse

 Evaluate efficacy and efficiency of these Evaluate efficacy and efficiency of these 
two algorithms in the context of versioning two algorithms in the context of versioning 
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OutlineOutline

 IntroductionIntroduction
 Background on PASSBackground on PASS
 Versioning AlgorithmsVersioning Algorithms
 ImplementationImplementation
 EvaluationEvaluation
 ConclusionConclusion
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PASS Architecture: PASS Architecture: P writes BP writes B
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OutlineOutline

 IntroductionIntroduction
 Background on PASSBackground on PASS
 Versioning AlgorithmsVersioning Algorithms
 ImplementationImplementation
 EvaluationEvaluation
 ConclusionConclusion
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Intuition for new algorithmsIntuition for new algorithms

 The creation of a cycle is an indicator The creation of a cycle is an indicator 
that a version created at that instant that a version created at that instant 
could be useful later could be useful later 

 Cycles are violations of causality Cycles are violations of causality 
 Implies that past depends on future!Implies that past depends on future!
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Open-Close VersioningOpen-Close Versioning

1.1. On the last close of a file, issue a “freeze” On the last close of a file, issue a “freeze” 
operationoperation

 Freeze declares end of a versionFreeze declares end of a version

2.2. The next open and write triggers a new The next open and write triggers a new 
versionversion
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Example scenarioExample scenario

P Q

read A 

read B

write B

write A

read A

read B

Each read/write is Each read/write is 

enclosed by an enclosed by an 

open and closeopen and close
TimeTime
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Open-CloseOpen-Close
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Open-CloseOpen-Close
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Open-CloseOpen-Close
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Open-CloseOpen-Close
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Open-Close allows cycles to happen.Open-Close allows cycles to happen.

Violates CausalityViolates Causality
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Version-on-every writeVersion-on-every write

 Pros:Pros:
 Preserves causality: there are no cyclesPreserves causality: there are no cycles

 Every read creates a new version of the processEvery read creates a new version of the process
 Every write creates a new version of the fileEvery write creates a new version of the file

 There are no duplicates eitherThere are no duplicates either

 Disadvantage: most versions are Disadvantage: most versions are 
unnecessaryunnecessary
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Cycle Avoidance AlgorithmCycle Avoidance Algorithm

 Preserves Causality by avoiding cyclesPreserves Causality by avoiding cycles
 Uses local per-object information to make Uses local per-object information to make 

decisionsdecisions
 Similar to the timestamp ordering in Similar to the timestamp ordering in 

databasesdatabases
 Intuition:Intuition:

      Freeze an object when we add a dependency Freeze an object when we add a dependency 
that does not previously exist, i.e., new that does not previously exist, i.e., new 
causalitycausality
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Cycle Avoidance ExampleCycle Avoidance Example

 On receiving record A1 On receiving record A1  B2 B2
 If no B in A’s history, then freeze AIf no B in A’s history, then freeze A
 Else if B in A’s history, thenElse if B in A’s history, then

 If A’s history has B2, discard record (duplicate)If A’s history has B2, discard record (duplicate)
 If A’s history has B3 (version > 2), discard recordIf A’s history has B3 (version > 2), discard record
 If A’s history has B1 (version < 2), freeze AIf A’s history has B1 (version < 2), freeze A
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Cycle AvoidanceCycle Avoidance
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Cycle AvoidanceCycle Avoidance
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Cycle AvoidanceCycle Avoidance
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Graph Finesse AlgorithmGraph Finesse Algorithm

 Uses Global knowledge Uses Global knowledge 
 Intuition:Intuition:

 Check every new record against a global Check every new record against a global 
dependency graph.dependency graph.

 If it forms a cycle, just freeze that one nodeIf it forms a cycle, just freeze that one node

 Subsumes open-close algorithmSubsumes open-close algorithm
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Graph Finesse ExampleGraph Finesse Example

 On receiving record A1 On receiving record A1  B2 B2
 If B2 is already in A’s history, discard recordIf B2 is already in A’s history, discard record
 Else check for a path from B2 Else check for a path from B2  A1 A1

 If yes, this a cycle, freeze A1 and change the If yes, this a cycle, freeze A1 and change the 
record to A2record to A2B2B2

 If no cycle, add A1 If no cycle, add A1  B2 to the graph B2 to the graph
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Graph FinesseGraph Finesse
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Cycle AvoidanceCycle Avoidance
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Cycle Avoidance Graph Finesse

Uses Local state Uses Global state

Creates a few un-
necessary versions

Creates fewer 
versions

Has lower runtime 
overhead

Can have high run-
time overheads
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OutlineOutline
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ImplementationImplementation

 Implemented on Linux 2.6.23.17Implemented on Linux 2.6.23.17
 Lasagna is a stackable file system derived Lasagna is a stackable file system derived 

from eCryptfsfrom eCryptfs
 Versioning file systemVersioning file system

 Redo log that keeps track of file versioning Redo log that keeps track of file versioning 
(deltas)(deltas)

 Redo log for directory modifications (deltas)Redo log for directory modifications (deltas)
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OutlineOutline

 IntroductionIntroduction
 Background on PASSBackground on PASS
 Versioning AlgorithmsVersioning Algorithms
 ImplementationImplementation
 EvaluationEvaluation
 ConclusionConclusion
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Evaluation GoalsEvaluation Goals

 What are the run-time overheads a user What are the run-time overheads a user 
might see?might see?

 What are the space overheads?What are the space overheads?
 How do the algorithms compare during How do the algorithms compare during 

recovery?recovery?
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Test platformTest platform

 Linux 2.6.23.17Linux 2.6.23.17
 3Ghz Pentium 43Ghz Pentium 4
 512MB of RAM512MB of RAM
 80GB 7200 RPM IDE Disk80GB 7200 RPM IDE Disk
 All results are averages of 5 runsAll results are averages of 5 runs

 Less than 5% Std. Dev.Less than 5% Std. Dev.
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ModesModes

 Without causal dataWithout causal data
 Ext2: Baseline (Ext2: Baseline (Lasagna was stacked on Ext2Lasagna was stacked on Ext2))
 VER: plain versioning (VER: plain versioning (open-closeopen-close))

 With causal dataWith causal data
 OC: open-close OC: open-close 
 CA: Cycle-AvoidanceCA: Cycle-Avoidance
 GF: Graph-FinesseGF: Graph-Finesse
 ALL: Version-on-every writeALL: Version-on-every write
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Linux Compile: Elapsed TimeLinux Compile: Elapsed Time
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Linux Compile: Space OverheadsLinux Compile: Space Overheads
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Linux Compile: Space OverheadsLinux Compile: Space Overheads
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Mercurial Activity: Elapsed TimeMercurial Activity: Elapsed Time
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Mercurial Activity: Elapsed TimeMercurial Activity: Elapsed Time
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Recovery BenchmarksRecovery Benchmarks

 How the algorithms perform in the scenario How the algorithms perform in the scenario 
where open close is not sufficientwhere open close is not sufficient

 MicrobenchmarkMicrobenchmark
 Models the apache split-log scenarioModels the apache split-log scenario
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Recovery MicroBenchmarkRecovery MicroBenchmark
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Recovery Microbenchmark: Space Util.Recovery Microbenchmark: Space Util.

Causal Data Version Data

OC 60KB 12KB

CA 176KB 470.5MB

GF 184KB 470.5MB

ALL 76.9MB 1.97GB
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ConclusionsConclusions

 Combining Versioning and Causality Combining Versioning and Causality 
enables novel functionalityenables novel functionality

 New algorithms for Causal VersioningNew algorithms for Causal Versioning
 Cycle AvoidanceCycle Avoidance

 Comparable to open-closeComparable to open-close
 May create more versionsMay create more versions

 Graph FinesseGraph Finesse
 Provides greater control on versioningProvides greater control on versioning
 Can be inefficient at timesCan be inefficient at times
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Questions?Questions?

Contact:Contact:

pass@eecs.harvard.edupass@eecs.harvard.edu

www.eecs.harvard.eduwww.eecs.harvard.edu/syrah/pass/syrah/pass

mailto:pass@eecs.harvard.edu
http://www.eecs.harvard.edu/syrah/pass
http://www.eecs.harvard.edu/syrah/pass
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