
© 2009 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Sparse Indexing: Large-Scale,
Inline Deduplication Using
Sampling and Locality
Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay
Deolalikar, Greg Trezise, and Peter Camble

Work done at Hewlett-Packard laboratories

The Problem:

 deduplication at scale
for disk-to-disk backup

3 February 26, 2009

 A Disk-to-Disk Backup Scenario

D2D server

(fake tape library)

streaming data

Each tape: up to 400 GB

Total: 100 TB – 10 PB

4 February 26, 2009

 Example backup streams

Monday:

 file A file B file E … file C file D

Tuesday:

 file A … file E file C file D

 file E file C file D file X

Wednesday:

 file A …

5 February 26, 2009

 Little changes from day-to-day

Monday:

 file A file B file E … file C file D

Tuesday:

 file A … file E file C file D

 file E file C file D file X

Wednesday:

 file A …

6 February 26, 2009

 After ideal deduplication

Monday:

 file A file B file E … file C file D

Tuesday:

 file A … file E file C file D

 file E file C file D file X

Wednesday:

 file A …

7 February 26, 2009

 Chunk-based deduplication

Monday:

 file A file B file E … file C file D

Tuesday:

 file A … file E file C file D

 file E file C file D file X

Wednesday:

 file A …

8 February 26, 2009

 Chunk-based deduplication

Monday:

 file A file B file E … file C file D

Tuesday:

 file A … file E file C file D

 file E file C file D file X

Wednesday:

 file A …

9 February 26, 2009

 file E file C file D file X file A

 file A file E file C file D

Monday:

 file A file B file E … file C file D

 Chunk-based deduplication

Tuesday:

…

Wednesday:

…

10 February 26, 2009

 The standard implementation

 A

 B

 C

…

H(B)

…

…

…

H(A)

H(C)

RAM Disk
 chunk store: index:

11 February 26, 2009

 The standard implementation

 A

 B

 C

…

H(B)

…

…

…

H(A)

H(C)

RAM Disk
 chunk store: index:

Chunk-lookup disk bottleneck

12 February 26, 2009

 One existing solution

•  Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System. Benjamin
Zhu, Data Domain, Inc.; Kai Li, Data Domain,
Inc., and Princeton University; Hugo Patterson,
Data Domain, Inc. FAST’08.

•  Today: a new approach that
− uses significantly less RAM

− provides a guaranteed minimum throughput

Our Approach:

Sparse indexing

14 February 26, 2009

 Sparse indexing

•  Key ideas:

− Chunk locality

− Sampling

15 February 26, 2009

 No temporal locality

Monday:

 file A file B file E … file C file D

Tuesday:

 file A … file E file C file D

 file E file C file D file X

Wednesday:

 file A …

16 February 26, 2009

 Large sections of data reappear mostly
 intact  chunk locality

Monday:

 file A file B file E … file C file D

Tuesday:

 file A … file E file C file D

 file E file C file D file X

Wednesday:

 file A …

17 February 26, 2009

 file A

 Exploiting chunk locality

file C file D … file X …

 file A … file D file B file C …

18 February 26, 2009

 file A

 Divide into segments

file C file D … file X …

 file A … file D file B file C

2 3 4 5

new

…

Chunks not shown, real segments much longer

19 February 26, 2009

 file A

 Deduplicate one segment at a time

file C file D … file X …

 file A … file D file B file C

2 3 4 5

new

…

Against a few carefully chosen champion segments

20 February 26, 2009

 file A

 Champion #1: the most similar segment

file C file D … file X …

 file A … file D file B file C

2 3 4 5

new

…

21 February 26, 2009

 file A

 Champion #2: most similar to remainder

file C file D … file X …

 file A … file D file B file C

2 3 4 5

…

new

22 February 26, 2009

 file A

 Finding similar segments by sampling

file C file D … file X …

 file A … file D file B file C

2 3 4 5

…

Sparse Index: samples containing segment(s)

23 February 26, 2009

 A few details

•  Also keep segment recipes:
− list of pointers to a segment’s chunks

•  Actually deduplicate against champion recipes

•  Better with variable-sized segments
− boundaries based on landmarks (“superchunks”)

− reduces number of champions required

24 February 26, 2009

Segmenter

 Putting it all together

Chunk data files Segment recipes

Disk storage

Chunker
byte stream

segments

chunks

Deduplicator

champion IDs

Champion
chooser

Sparse
 index

samples

segment
 IDs

champion
recipes new recipes new chunks (compressed)

updates

Results

26 February 26, 2009

 Methodology

•  Built a simulator

•  Fixed parameters:
− 4 KB mean chunk size

− variable-size segments

− maximum of 1 segment ID kept per sample

•  Varying parameters:
− mean segment size

− sampling rate

− maximum number of champions per segment (M)

27 February 26, 2009

 The data sets

•  Workgroup [this talk] 3.8 TB
− backups of 20 desktop PCs belonging to engineers

− semi-regular backups over 3 months via tar

− 154 full backups and 392 incremental backups

− end-of-week full backups are synthetic

•  SMB [see paper] 0.6 TB
− backups of a server with

•  real Oracle data

•  synthetic Microsoft Exchange data

−  two weeks

28 February 26, 2009

 Chunk locality exists…

29 February 26, 2009

 Sampling can exploit most of it…

(10 MB mean segment size)

30 February 26, 2009

 Deduplication with at most 10 champions

31 February 26, 2009

 Deduplication depends primarily on…

32 February 26, 2009

 Index RAM usage

1/32
1/64

1/128

33 February 26, 2009

 Comparison with Zhu, et al.

•  Their chunk lookup:
− bloom filter: might the store have a copy?

− cache of chunk container indexes

− full on disk index

34 February 26, 2009

 Comparison with Zhu, et al.

•  Their chunk lookup:
− bloom filter: might the store have a copy?
− cache of chunk container indexes
− full on disk index

•  When chunk locality is poor,
− deduplication quality remains constant
− but throughput degrades

•  Find all duplicate chunks
− but larger chunk size

35 February 26, 2009

 Ram usage comparison

4 KB

8 KB

32 KB

16 KB

1/32
1/64

1/128

36 February 26, 2009

 What about all those disk accesses?

•  Infrequent due to batch processing

•  Example:
− load at most 10 champions per 10 MB segment

−  average of 1.7 champions per 10 MB segment
− = 0.17 champions/MB
− = 1 seek per 5 MB

•  I/O burden:
− 20 ms to load a champion recipe (~100 KB)
−  1 drive can handle > 250 MB/s ingestion rate

37 February 26, 2009

Thank You

