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The Problem: 

 deduplication at scale 
for disk-to-disk backup 
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  A Disk-to-Disk Backup Scenario 

D2D server 

(fake tape library) 

streaming data 

Each tape: up to 400 GB 

Total:         100 TB – 10 PB 
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  Example backup streams 

Monday: 

 file A     file B   file E          …    file C     file D  

Tuesday: 

 file A    …    file E           file C     file D  

 file E           file C     file D   file X     

Wednesday: 

 file A    …   
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  Little changes from day-to-day 

Monday: 

 file A     file B   file E          …    file C     file D  

Tuesday: 

 file A    …    file E           file C     file D  

 file E           file C     file D   file X     

Wednesday: 

 file A    …   



6 February 26, 2009 

  After ideal deduplication 

Monday: 

 file A     file B   file E          …    file C     file D  

Tuesday: 

 file A    …    file E           file C     file D  

 file E           file C     file D   file X     

Wednesday: 

 file A    …   
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  Chunk-based deduplication 

Monday: 

 file A     file B   file E          …    file C     file D  

Tuesday: 

 file A    …    file E           file C     file D  

 file E           file C     file D   file X     

Wednesday: 

 file A    …   
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  Chunk-based deduplication 

Monday: 

 file A     file B   file E          …    file C     file D  

Tuesday: 

 file A    …    file E           file C     file D  

 file E           file C     file D   file X     

Wednesday: 

 file A    …   
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 file E           file C     file D   file X      file A    

 file A     file E           file C     file D  

Monday: 

 file A     file B   file E          …    file C     file D  

  Chunk-based deduplication 

Tuesday: 

…   

Wednesday: 

…   
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  The standard implementation 

  A   

 B  

   C    

…
 

H(B) 

…
 

…
 

…
 

H(A) 

H(C) 

RAM Disk 
 chunk store:    index: 
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  The standard implementation 

  A   

 B  

   C    

…
 

H(B) 

…
 

…
 

…
 

H(A) 

H(C) 

RAM Disk 
 chunk store:    index: 

Chunk-lookup disk bottleneck 
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  One existing solution 

•  Avoiding the Disk Bottleneck in the Data 
Domain Deduplication File System.  Benjamin 
Zhu, Data Domain, Inc.; Kai Li, Data Domain, 
Inc., and Princeton University; Hugo Patterson, 
Data Domain, Inc.  FAST’08. 

•  Today: a new approach that 
− uses significantly less RAM 

− provides a guaranteed minimum throughput 



Our Approach: 

Sparse indexing 



14 February 26, 2009 

  Sparse indexing 

•  Key ideas: 

− Chunk locality 

− Sampling 
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  No temporal locality 

Monday: 

 file A     file B   file E          …    file C     file D  

Tuesday: 

 file A    …    file E           file C     file D  

 file E           file C     file D   file X     

Wednesday: 

 file A    …   
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  Large sections of data reappear mostly 
  intact  chunk locality 

Monday: 

 file A     file B   file E          …    file C     file D  

Tuesday: 

 file A    …    file E           file C     file D  

 file E           file C     file D   file X     

Wednesday: 

 file A    …   
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 file A    

  Exploiting chunk locality 

file C file D …   file X …   

 file A …   file D file B                     file C …   
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 file A    

  Divide into segments 

file C file D …   file X …   

 file A …   file D file B                     file C 

2 3 4 5 

new 

…   

Chunks not shown, real segments much longer 
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 file A    

  Deduplicate one segment at a time 

file C file D …   file X …   

 file A …   file D file B                     file C 

2 3 4 5 

new 

…   

Against a few carefully chosen champion segments 
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 file A    

  Champion #1: the most similar segment 

file C file D …   file X …   

 file A …   file D file B                     file C 

2 3 4 5 

new 

…   
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 file A    

 Champion #2: most similar to remainder 

file C file D …   file X …   

 file A …   file D file B                     file C 

2 3 4 5 

…   

new 
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 file A    

  Finding similar segments by sampling  

file C file D …   file X …   

 file A …   file D file B                     file C 

2 3 4 5 

…   

Sparse Index:  samples        containing segment(s) 
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  A few details 

•  Also keep segment recipes: 
− list of pointers to a segment’s chunks 

•  Actually deduplicate against champion recipes 

•  Better with variable-sized segments 
− boundaries based on landmarks  (“superchunks”) 

− reduces number of champions required 
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Segmenter 

  Putting it all together 

Chunk data files Segment recipes 

Disk storage 

Chunker 
byte stream 

segments 

chunks 

Deduplicator 

champion IDs 

Champion 
chooser 

Sparse 
 index 

samples 

segment 
        IDs 

champion 
recipes new recipes new chunks (compressed) 

updates 



Results 
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  Methodology 

•  Built a simulator 

•  Fixed parameters: 
− 4 KB mean chunk size 

− variable-size segments 

− maximum of 1 segment ID kept per sample 

•  Varying parameters: 
− mean segment size 

− sampling rate 

− maximum number of champions per segment (M) 
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  The data sets 

•  Workgroup  [this talk]                      3.8 TB 
− backups of 20 desktop PCs belonging to engineers 

− semi-regular backups over 3 months via tar 

− 154 full backups and 392 incremental backups 

− end-of-week full backups are synthetic 

•  SMB  [see paper]                               0.6 TB 
− backups of a server with 

•  real Oracle data 

•  synthetic Microsoft Exchange data 

−  two weeks 
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  Chunk locality exists… 
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  Sampling can exploit most of it… 

(10 MB mean segment size) 
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  Deduplication with at most 10 champions 
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  Deduplication depends primarily on…  
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  Index RAM usage 

1/32 
1/64 

1/128 



33 February 26, 2009 

  Comparison with Zhu, et al. 

•  Their chunk lookup: 
− bloom filter: might the store have a copy? 

− cache of chunk container indexes 

− full on disk index 
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  Comparison with Zhu, et al. 

•  Their chunk lookup: 
− bloom filter: might the store have a copy? 
− cache of chunk container indexes 
− full on disk index 

•  When chunk locality is poor, 
− deduplication quality remains constant 
− but throughput degrades 

•  Find all duplicate chunks 
− but larger chunk size 
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  Ram usage comparison 

4 KB 

8 KB 

32 KB 

16 KB 

1/32 
1/64 

1/128 
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  What about all those disk accesses? 

•  Infrequent due to batch processing 

•  Example: 
− load at most 10 champions per 10 MB segment 

−  average of 1.7 champions per 10 MB segment 
− = 0.17 champions/MB 
− = 1 seek per 5 MB 

•  I/O burden: 
− 20 ms to load a champion recipe (~100 KB) 
−  1 drive can handle > 250 MB/s ingestion rate 
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Thank You 


