~ o~
SSIc

STORAGE SYSTEMS RESEARCH CENTER

Spyglass: Fast, Scalable Metadata Search

for Large-Scale Storage Systems

Andrew W Leung ¢ Ethan L Miller

University of California, Santa Cruz
Minglong Shao ¢ Timothy Bisson ¢ Shankar Pasupathy
NetApp

7th USENIX Conference on File and Storage Technology

February 24-27, 2009
//—\

N\

Baskin
Engineering

The data management problem € ¢~

* Large-scale storage systems are difficult to manage
Management questions become difficult or impossible to ask
Must sift through billions of files

* Impacts users and administrators
User - “Where are my recently modified presentation files?”
Admin - “Which apps and users are consuming the most space?”

* Challenge: need fast answers to difficult questions

* Example -- smart data restore
A buggy script deletes a number of users’ files
“Which files should be restored from backup?”
Search current and previous versions
Locate the affected files to restore
Find the files to restore first

pd_Si “ Engin%%srmg I

NetApp:

|2

What can be done!

,‘/

* Need to quickly gather and search info from the storage system
Ad hoc queries over file properties
l.e., metadata search capabilities

 Metadata includes file inode and extended attributes
Formatted as <attribute, value> pairs

* Metadata search becoming more common
Desktop - Spotlight, Beagle, Windows search
Small-scale enterprise - IndexEngines, Google Enterprise, FAST

How can this be done at very large-scales?

pd_Si “ Engin%%srmg I

NetApp:

l 3

Large-scale search challenges

e

* Large-scale search challenges are not currently addressed
* Requires a specialized solution

Challenge Existing Solutions Why Is This Difficult?

Cost & . . Can’t afford dedicated hardware.
Require dedicated hardware.
resources Must share resources.

Metadata Slow to collect changes.

Collection Impacts the storage system. Collect millions of changes.

Scale & Use general-purpose DBMSs.

- 10 _ 1011 pai
performance Few storage optimizations. Searching 10°° - 10+ pairs.

pdSi " Engin%aesrikrig
NetApp:

Spyglass overview

How should a solution address these challenges?
Leverage metadata search properties -

Storage\
system

Metadata query properties
Conducted user survey

File metadata properties Results =71 version 1

Analyzed 3 storage systems

|

| —_
Query — Partitions

|

|

|

|

{ (Version n]

—_—— I

Spyglass uses new index designs: (Cache) (Crawler)
Hierarchical partitioning _ -
: p i
Signature files . _Internal File System
- in the paper

Snapshot-based metadata crawling

' / Engin%%srmg
pdsi

NetApp:

Metadata query properties
Ny ?
* Surveyed over 30 users and administrators
Asked “how would you use metadata search?”

roperyomcpion—oenpie o ———

Includes multiple
metadata
attributes.

Where are my recently Use all attributes in
modified presentations? query execution.

Multiple
attributes

Includes a directory Which files in my home Include namespace

Localized pathname. directory can be deleted? knowledge.

Searches multiple Which files have grown Version index

R metadata versions. the most in the last week? changes.

] Engin%%srmg
pdsi
NetApp:

File metadata properties

D

* Analyzed 3 storage systems at NetApp
* Web server -- |5 million files
* Engineering server -- 60 million files
* Home directory servers -- 300 million files

mm

Spatial Values clustered in
locality namespace.

A few values occur
Skewed frequently.

frequencies ;
Intersections are

more uniform.

pdsi

Andrew’s files mostly in Allow index control
/home/andrew using the namespace.

Many PDFs or Andrew’s

files. Query execution

using intersections.
Fewer Andrew’s PDF files.

Baskin
Engineering

Hierarchical partitioning

* Partition the index using the namespace

* Parts of the namespace are indexed in separate partitions
Exploits spatial locality
Allows index control at the granularity of sub-trees
Uses a simple greedy algorithm

* Partitions are stored sequentially on disk
Fast access to each partition

thesis scidac src experiments
__/

pd Si “ Engin%%srmg

NetApp:

Query execution

* Performance is tied to the number of partitions searched
How do we determine which partitions to search?

* Users can localize their queries
Users control the size of the search space

* Signature files
Automatically determines which partitions to search
Exploits attribute value intersections
Searches only partitions containing all query values

pd Si “ Engin%%srmg

NetApp:

Signature files

hash(file extension) mod b

hash(file size)
1 0 1 0 0 e 1 1]
RS A Tt S v \/
mpg mov <l 1-45-31 32-128- 256- 100MB- >500MB
ipg f3% 255 511 500MB

Compactly summarizes a partition’s contents
A signature file for each attribute in the partition
Small enough to fit in memory
Created as files are inserted

Only search a partition if all tested bits are |

False positives can be reduced by
Increasing signature size
Changing the hashing function

pd _Si “ Engin%%srmg

NetApp:

Partition design

,‘/’

Each partition stores metadata in a KD-tree
Not explicitly tied to a particular index structure

KD-trees
A multi-dimensional binary tree
Provides fast, multi-dimensional search
Allows a single index structure to be used

Performance is bound by reading partitions from disk

Partitions are managed by a caching sub-system
Uses LRU
Captures the likely Zipf-like query distributions
Ensures popular partitions are in-memory

pdsi

NetApp:

Baskin
Engineering

Metadata collection

* Metadata collection must
Scale to millions of changes
Not degrade storage system performance

* Calculates the difference between to two snapshots
Leverages the inode file in WAFL snapshots
Only re-crawls metadata for changed files

Snapshot 1 Snapshot 2

2 (30cc9)
. N 0

& D & B G-

pd Si “ Engin%aesrmg

NetApp:

||2

Evaluation

* Evaluate performance, scalability, and efficiency
Using our real-world traces from NetApp

* In the talk we evaluate
Metadata collection
Compare performance to a simple straw-man
Search performance
Compare performance to PostgreSQL and MySQL

* In the paper we also evaluate
Update performance
Space requirements
Index locality
Versioning overhead

pd Si “ Engin%%srmg

NetApp:

Collection performance

* Compare snapshot-based collection (SB)
To a parallel file system crawl (SM)

e Baseline crawl e Incremental crawl
* Reads entire inode file * 2%, 5%,and 10% change

e |Ox faster that SM Finishes in less than 45 min
350 T T T T 350 '

300 300
250 : g 290
200 e
150 1oy

- 100
-~ 50
0 20 40 60 80
20 40 60 80 100 Files (Millions)

Files (MI”IOnS) SM-10% SB-10%

SM —+—

SB —x—

pdSi “ Engineering

NetApp:

Search performance

* Evaluate 100 queries generated from 300 million file trace

Set Search Metadata Attributes
Set 1 | Which user and application files consume the most space? Sum sizes for files using owner and ext
Set 2 | How much space in this part do files from query 1 consume? | Use query 1 with an additional directory path.

1 1 '-\I
084"
0.6 -

0.4-

0.8 -
0.6 1
0.4 -
(eian 02
O T T T T T 1 O T T T T T 1
100msis 5s 10s 25s 100s 100msis 5s 10s 25s 100s
Spyglass Postgres MySQl Spyglass Postgres MySQl

Fraction of Queries

n
2
()
-
@)
o
o
-
9
-
O
©
S
LL

Query Execution Time Query Execution Time
* Set |:75% queries finish in less than | second
Many partitions are eliminated from search
* Set 2: Localization significantly improves performance

pd Si “ Engin%%srmg

NetApp:

Conclusions

—

Metadata search can greatly improve how we manage data

Large-scale storage systems present unique challenges
Cost & resources, metadata collection, performance & scalability

There are opportunities to leverage query and file properties
Conducted a survey of real users and administrators
Analyzed real-world large-scale storage systems

Spyglass is a new metadata search design
Hierarchical partitioning
Partition versioning
Snapshot-based metadata collection

pd _Si “ Engin%%srmg

NetApp:

STORAGE SYSTEMS RESEARCH CENTER

NetApp:

Thanks to our sponsors:

X pdsi
- r |

Baskin
Engineering Il
|7

Partition versioning

* Index versioning provides
Back-in-time search capabilities
Fast, out-of-place index updates

* Each partition manages its own versions with a version vector
Exploits file update locality

* Each version is a batch of index updates
Represents the state of metadata at a given time
Absorbs frequent file re-modifications
However, creates a stale index

;] En gin%%srmg
pdsi

NetApp:

Versioning design -

|8

home proj usr

john jim distmeta reliability N\ include

¥ X 4 \|

thesis scidac \ src experiments

7

|
y

N

\¥|—’/
A | 4 P |
| |

TO [T1ITZIT3J| TO TO| TO :
| |

- - e o -———)

Baseline Incremental
ingex iIndexes

* Versions contain incremental metadata changes
Changes roll results forward

 Stored sequentially with the partition
Updates are fast - small sequential writes
Search overhead is low - Longer sequential reads

pd Si “ Engin%%srmg

NetApp:

Update performance

* Build baseline for each full snapshot

250000 —

25000

N
o)
o
o

@)
o)
£
|_
=
S
e,
Q
-

N
(6)]

I I I
Web Eng Home

Spyglass PostgreSQL Table MySQL Table
PostgreSQL Index MySQL Index

* Between 8x and 44x faster than DBMSs
DBMS load table and build indexes

e Scales linearly

pd Si “ Engin%ae?mg

NetApp:

Index locality

* Evaluate how partitions are queried and cached

* Generate queries based on attribute distributions
100 100

80
60 1
40 -
20 -
K | T e 8] ' | ' | ' O J | K | y | K | '
20 40 60 80 100 0 20 40 60 80 100
ext owner ext/owner ext owner - ext/owner
Percent of Queries Percent of Queries

00)
o

()]
o

I
o

N
o

Partitions Queried

()
()
S
.T
0
)
(0p
—
@)
-
o
()
(®)
.
()
al

Percent of Cache Hits

o

 Attribute intersections reduce the search space
50% of queries access less than 2% of partitions

* Selective attributes improve cache hit ratio
95% of queries have 95% cache hits

pd Si “ Engin%%srmg

NetApp:

Versioning overhead

* Evaluate overhead of | to 3 days of changes

@ 500 1
0.8 -
0.6 4o
0.4 1
100 =

O I I O I
0 1 2 3 ims 10ms 100ms 1s 10s

N

o

o
|

300
200

Fraction of Queries

D
£
i

=

-
o
S

@
-

Number of Versions Query Overhead
1 Version 2 Versions 3 Versions

* Each versions adds 10% runtime overhead
Overhead is not evenly distributed

* 50% of queries have less than a 5 ms overhead
A few queries contribute most to overhead

pdsi

NetApp:

Baskin
Engineering

