
1

Minuet – Rethinking
Concurrency Control in Storage
Area Networks

Andrey Ermolinskiy (U. C. Berkeley)
Daekyeong Moon (U. C. Berkeley)
Byung-Gon Chun (Intel Research, Berkeley)
Scott Shenker (U. C. Berkeley and ICSI)

FAST ‘09

2

  Storage Area Networks (SANs) are gaining
widespread adoption in data centers.

  An attractive architecture for clustered services and
data-intensive clustered applications that require a
scalable and highly-available storage backend.
Examples:
  Online transaction processing

  Data mining and business intelligence

  Digital media production and streaming media delivery

Storage Area Networks – an Overview

3

  One of the main design challenges: ensuring safe
and efficient coordination of concurrent access to
shared state on disk.

Clustered SAN applications and services

  Traditional techniques for shared-disk applications:
distributed locking, leases.

  Need mechanisms for distributed concurrency
control.

4

Limitations of distributed locking

  Distributed locking semantics do not suffice to
guarantee correct serialization of disk requests and
hence do not ensure application-level data safety.

5

Data integrity violation: an example
Client 1 – updating resource R

Client 2 – reading resource R

DLM
SAN

X X X X X X X X X X

Shared
resource R

6

Data integrity violation: an example
Client 1 – updating resource R

Client 2 – reading resource R

DLM

Shared
resource R

SAN

X X X X X X X X X X

Lock(R)

owns lock on R

Lock(R)

waiting for lock on R

- OK

Write(B, offset=3, data=) Y Y Y Y Y Y Y Y

CRASH!

Client 1

Client 2 owns lock on R

- OK
Read(R, offset=0, data=)

X X X X X

Read(R, offset=5, data=)

X X X Y Y X X X

7

Data integrity violation: an example

Client 2 – reading resource R

X X X Y Y Y Y X X X

X X X X X Y Y X X X

  Both clients obey the locking protocol, but Client 1
observes only partial effects of Client 2’s update.

  Update atomicity is violated.

Shared
resource R

8

  The lock service represents an additional point of
failure.

  DLM failure  loss of lock management state 
application downtime.

Availability limitations of distributed locking

9

  Standard fault tolerance techniques can be applied to
mitigate the effects of DLM failures
  State machine replication

  Dynamic election

  These techniques necessitate some form of global
agreement.

  Agreement requires an active majority
  Makes it difficult to tolerate network-level failures and large-

scale node failures.

Availability limitations of distributed locking

10

DLM1 DLM2

DLM3

SAN

C1

C2

C3

C4

Application cluster

DLM replicas C3 and C4 stop making process

Example: a partitioned network

11

Minuet overview

  Minuet is a new synchronization primitive for shared-
disk applications and middleware that seeks to
address these limitations.
  `Guarantees safe access to shared state in the face of

arbitrary asynchrony
  Unbounded network transfer delays
  Unbounded clock drift rates

  Improves application availability
  Resilience to network partitions and large-scale node failures.

12

Our approach

  We focus on ensuring safe ordering of disk requests
at target storage devices.

  A “traditional” cluster lock service provides the
guarantees of mutual exclusion and focuses on
preventing conflicting lock assignments.

Lock(R)
Read(R, offset=0, data=)

Read(R, offset=5, data=)
Unlock(R)

Client 2 – reading resource R

13

Session isolation

Read1.1(R) C1

Lock(R, Shared)

Read1.2(R)

UpgradeLock(R, Excl)

Write1.1(R)

Write1.2(R)

DowngradeLock(R, Shared)

Read1.3(R)

Unlock(R)

C2

Lock(R, Shared)

Read2.1(R)

UpgradeLock(R, Excl)

Write2.1(R)

Write2.2(R)
Unlock(R)

Shared
session

Shared
session

Excl
session

Excl
session

  Session isolation: R.owner must observe the prefixes
of all sessions to R in strictly serial order, such that

R Owner

  No two requests in a shared session are interleaved by an
exclusive-session request from another client.

14

Session isolation

Read1.1(R) C1

Lock(R, Shared)

Read1.2(R)

UpgradeLock(R, Excl)

Write1.1(R)

Write1.2(R)

DowngradeLock(R, Shared)

Read1.3(R)

Unlock(R)

C2

Lock(R, Shared)

Read2.1(R)

UpgradeLock(R, Excl)

Write2.1(R)

Write2.2(R)
Unlock(R)

Shared
session

Shared
session

Excl
session

Excl
session

  Session isolation: R.owner must observe the prefixes
of all sessions to R in strictly serial order, such that

R Owner

  No two requests in an exclusive session are interleaved by a
shared- or exclusive-session request from another client.

15

Enforcing session isolation
  Each session to a shared resource is assigned a

globally-unique session identifier (SID) at the time of
lock acquisition.

  Client annotates its outbound disk commands with its
current SID for the respective resource.

  SAN-attached storage devices are extended with a
small application-independent logical component
(“guard”), which:
  Examines the client-supplied session annotations

  Rejects commands that violate session isolation.

16

Enforcing session isolation

R

Guard
module

SAN

Client
node

R

Guard
module

SAN

17

Enforcing session isolation
Client
node

R

Guard
module

SAN

R.clientSID = <TS, TX>

R.curSType = {Excl / Shared / None}

18

Enforcing session isolation
Client
node

R

Guard
module

SAN

R.clientSID = <TS, TX>

R.curSType = {Excl / Shared / None}

Establishing a session to resource R:

R.clientSID  unique session ID

Lock(R, Shared / Excl) {
R.curSType  Shared / Excl

}

19

Enforcing session isolation
Client
node

R

Guard
module

SAN

R.clientSID = <TS, TX>

R.curSType = {Excl / Shared / None}

Submitting a remote disk command:

READ / WRITE (LUN, Offset, Length, …)

verifySID = <Ts, Tx> updateSID = <Ts, Tx> R

command

session annotation

Initialize the session annotation:
IF (R.curSType = Excl) {

}

verifySID  R.clientSID
updateSID  R.clientSID

20

Enforcing session isolation
Client
node

R

Guard
module

SAN

R.clientSID = <TS, TX>

R.curSType = {Excl / Shared / None}

Submitting a remote disk command:

READ / WRITE (LUN, Offset, Length, …)

verifySID = <Ts, Tx> updateSID = <Ts, Tx> R

command

session annotation

Initialize the session annotation:
IF (R.curSType = Shared) {

}

verifySID.Ts  EMPTY
verifySID.Tx  R.clientSID.TX
updateSID  R.clientSID

21

Enforcing session isolation
Client
node

R

Guard
module

SAN

R.clientSID = <TS, TX>

R.curSType = {Excl / Shared / None}

Submitting a remote disk command:

READ / WRITE (LUN, Offset, Length, …)

verifySID = <Ts, Tx> updateSID = <Ts, Tx> R

command

session annotation

Initialize the session annotation:
IF (R.curSType = Shared) {

}

verifySID.Ts  EMPTY
verifySID.Tx  R.clientSID.TX
updateSID  R.clientSID

disk cmd.

annotation

22

Client
node

Enforcing session isolation
Client
node

R

Guard
module

SAN

R.clientSID = <TS, TX>

R.curSType = {Excl / Shared / None}

disk cmd.

annotation

R

Guard
module

23

Client
node

Enforcing session isolation

R

Guard
module

SAN

disk cmd.

annotation

R

Guard
module

Guard logic at the storage controller: R.ownerSID = <Ts, Tx>

IF (verifySID.Tx < R.ownerSID.Tx)

decision  REJECT

ELSE IF ((verifySID.Ts ≠ EMPTY) AND (verifySID.Ts < R.ownerSID.Ts))

decision  REJECT

ELSE
decision  ACCEPT

24

Client
node

Enforcing session isolation

R

Guard
module

SAN

disk cmd.

annotation

R

Guard
module

Guard logic at the storage controller: R.ownerSID = <Ts, Tx>

IF (decision = ACCEPT) {

Drop the command

R.ownerSID.Ts  MAX(R.ownerSID.Ts, updateSID.Ts)

} ELSE {

Respond to client with

R.ownerSID.TX  MAX(R.ownerSID.TX, updateSID.TX)

Enqueue and process the command

}

Status = BADSESSION

R.ownerSID

25

Client
node

Enforcing session isolation

R

Guard
module

SAN
annotation

R

Guard
module

Guard logic at the storage controller: R.ownerSID = <Ts, Tx>

IF (decision = ACCEPT) {

Drop the command

R.ownerSID.Ts  MAX(R.ownerSID.Ts, updateSID.Ts)

} ELSE {

Respond to client with

R.ownerSID.TX  MAX(R.ownerSID.TX, updateSID.TX)

Enqueue and process the command

}

ACCEPT
disk cmd.

Status = BADSESSION

R.ownerSID

26

Client
node

Enforcing session isolation

R

Guard
module

SAN R

Guard
module

R.ownerSID = <Ts, Tx> Guard logic at the storage controller:

IF (decision = ACCEPT) {

Drop the command

R.ownerSID.Ts  MAX(R.ownerSID.Ts, updateSID.Ts)

} ELSE {

Respond to client with

R.ownerSID.TX  MAX(R.ownerSID.TX, updateSID.TX)

Enqueue and process the command

Status = BADSESSION

R.ownerSID

}

REJECT Status = BADSESSION

R.ownerSID

27

Client
node

Enforcing session isolation

R

Guard
module

SAN R

Guard
module

R.ownerSID = <Ts, Tx>

REJECT Status = BADSESSION

R.ownerSID

Client
node

  Upon command rejection:
  Storage device responds to the client with a special status code

(BADSESSION) and the most recent value of R.ownerSID.

  Application at the client node
  Observes a failed disk request and forced lock revocation.

  Re-establishes its session to R under a new SID and retries.

28

  The guard module addresses the safety problems
arising from delayed disk request delivery and
inconsistent failure observations.

  Enforcing safe ordering of requests at the storage
device lessens the demands on the lock service.
  Lock acquisition state need not be kept consistent at all

times.

  Flexibility in the choice of mechanism for coordination.

Assignment of session identifiers

29

Assignment of session identifiers

Loosely-
consistent

Traditional DLM
Enabled by Minuet

Optimistic

- Clients choose their SIDs
independently and do not
coordinate their choices.

- Resilient to network partitions
and massive node failures.

- Performs well under low
rates of resource contention.

- Minimizes latency overhead of
synchronization.

Strong

- Strict serialization of Lock/
Unlock requests.

- Disk command rejection
does not occur.

- SIDs are assigned by a
central lock manager.

- Performs well under high
rates of resource contention.

30

Supporting distributed transactions
  Session isolation provides a building block for more

complex and useful semantics.

  Serializable transactions can be supported by
extending Minuet with ARIES-style logging and
recovery facilities.

  Minuet guard logic:
  Ensures safe access to the log and the snapshot during

recovery.

  Enables the use of optimistic concurrency control, whereby
conflicts are detected and resolved at commit time.

(See paper for details)

31

Minuet implementation
  We have implemented a proof-of-concept Linux-based

prototype and several sample applications.

iSCSI

TCP/IP

Storage cluster
- Linux

- iSCSI Enterprise Target [2]

[2] http://iscsitarget.sourceforge.net/ [1] http://www.open-iscsi.org/

Application cluster

- Linux

- Open-iSCSI initiator [1]

- Minuet client library

TCP/IP

- Linux

- Minuet lock
manager process

Lock manager

32

Sample applications

1.  Parallel chunkmap (340 LoC)
  Shared disks store an array of fixed-length data blocks.

  Client performs a sequence of read-modify-write operations
on randomly-selected blocks.

  Each operation is performed under the protection of an
exclusive Minuet lock on the respective block.

33

Sample applications

2.  Parallel key-value store (3400 LoC)
  B+ Tree on-disk representation.

  Transactional Insert, Delete, and Lookup operations.

  Client caches recently accessed tree blocks in local
memory.

  Shared Minuet locks (and content of the block cache) are
retained across transactions.

  With optimistic coordination, stale cache entries are
detected and invalidated at transaction commit time.

34

Emulab deployment and evaluation
  Experimental setup:

  32-node application cluster
  850MHz Pentium III, 512MB DRAM, 7200 RPM IDE disk

  4-node storage cluster
  3.0GHz 64-bit Xeon, 2GB DRAM, 10K RPM SCSI disk

  3 Minuet lock manager nodes
  850MHz Pentium III, 512MB DRAM, 7200 RPM IDE disk

  100Mbps Ethernet

35

Emulab deployment and evaluation
  Measure application performance with two methods

of concurrency control:
  Strong

  Application clients coordinate through one Minuet lock
manager process that runs on a dedicated node.

  “Traditional” distributed locking.

  Weak-own
  Each client process obtains locks from a local Minuet

lock manager instance.
  No direct inter-client coordination.
  “Optimistic” technique enabled by our approach.

36

Parallel chunkmap: Uniform workload
  250,000 data chunks striped across [1-4] storage nodes.

  8KB chunk size, 32 chunkmap client nodes

  Uniform workload:
clients select chunks
uniformly at random.

37

Parallel chunkmap: Hotspot workload
  250,000 data chunks striped across 4 storage nodes.

  8KB chunk size, 32 chunkmap client nodes

  Hotspot(x) workload: x% of operations touch a “hotspot” region of
the chunkmap.

 Hotspot size = 0.1% = 2MB.

38

Experiment 2: Parallel key-value store

SmallTree

Block size

Fanout

Depth

Initial leaf occupancy

Number of keys

Total dataset size

LargeTree

8KB

150

3 levels

50%

187,500

20MB

8KB

150

4 levels

50%

18,750,000

2GB

39

Experiment 2: Parallel key-value store
  [1-4] storage nodes.

  32 application client nodes.

  Each client
performs a series
of random key-
value insertions.

40

Challenges
  Practical feasibility and barriers to adoption

  Extending storage arrays with guard logic

  Medatada storage overhead (table of ownerSIDs).

  SAN bandwidth overhead due to session annotations

  Changes to the programming model
  Dealing with I/O command rejection and forced lock

revocations

41

Related Work
  Optimistic concurrency control (OCC) in database

management systems.

  Device-based locking for shared-disk environments
(Dlocks, Device Memory Export Protocol).

  Storage protocol mechanisms for failure fencing
(SCSI-3 Persistent Reserve).

  New synchronization primitives for datacenter
applications (Chubby, Zookeeper).

42

Summary
  Minuet is a new synchronization primitive for clustered

shared-disk applications and middleware.

  Augments shared storage devices with guard logic.

  Enables the use of OCC as an alternative to
conservative locking.

  Guarantees data safety in the face of arbitrary
asynchrony.
  Unbounded network transfer delays

  Unbounded clock drift rates

  Improves application availability.
  Resilience to large-scale node failures and network partitions

43

Thank you !

44

Backup Slides

45

Related Work
  Optimistic concurrency control (OCC)

  Well-known technique from the database field.

  Minuet enables the use of OCC in clustered SAN applications as
an alternative to “conservative” distributed locking.

46

Related Work
  Device-based synchronization

(Dlocks, Device Memory Export Protocol)
  Minuet revisits this idea from a different angle; provides a

more general primitive that supports both OCC and traditional
locking.

  We extend storage devices with guard logic – a minimal
functional component that enables both approaches.

47

Related Work
  Storage protocol mechanisms for failure fencing

(SCSI-3 Persistent Reserve)
  PR prevents out-of-order delivery of delayed disk commands

from (suspected) faulty nodes.

  Ensures safety but not availability in a partitioned network;
Minuet provides both.

48

Related Work
  New synchronization primitives for datacenter

applications (Chubby, Zookeeper).
  Minuet focuses on fine-grained synchronization for clustered

SAN applications.

  Minuet’s session annotations are conceptually analogous to
Chubby’s lock sequencers.
  We extend this mechanism to shared-exclusive locking.
  Given the ability to reject out-of-order requests at the

destination, global consistency on the state of locks and use of
an agreement protocol may be more than necessary.

  Minuet attains improved availability by relaxing these
consistency constraints.

49

Clustered SAN applications and services

SAN

Application cluster Disk drive arrays

FCP, iSCSI, …

50

Clustered SAN applications and services

HBA

 OS

Clustered
storage middleware

Application

SAN

File systems (Lustre, GFS, OCFS, GPFS)

Relational databases (Oracle RAC)

 Hardware

Block
device driver

FCP, iSCSI, …

…

Storage stack

51

Minuet implementation: application node

SCSI disk driver
drivers/scsi/sd.c

SCSI mid level

SCSI lower level
Open-iSCSI initiator

v.2.0-869.2

User

Linux kernel

Block device driver

iSCSI target

Minuet lock
manager

TCP / IP

iSCSI / TCP / IP

Application

Minuet client library

SCSI disk driver
drivers/scsi/sd.c

SCSI mid level

SCSI lower level
Open-iSCSI initiator

v.2.0-869.2

User

Linux kernel

Block device driver

iSCSI target

Minuet lock
manager

TCP / IP

iSCSI / TCP / IP

52

Minuet API

•  MinuetUpgradeLock(resource_id, lock_mode);
•  MinuetDowngradeLock(resource_id, lock_mode);

•  MinueDiskRead(lun_id, resource_id, start_sector, length, data_buf);
•  MinueDiskWrite(lun_id, resource_id, start_sector, length, data_buf);

•  MinuetXactBegin();
•  MinuetXactLogUpdate(lun_id, resource_id, start_sector,
 length, data_buf);
•  MinuetXactCommit(readset_resource_ids[], writeset_resource_ids[]);
•  MinuetXactAbort();
•  MinuetXactMarkSynched();

Lock service

Remote disk I/O

Transaction service

53

Experiment 2: B+ Tree

54

  Five stages of a transaction (T): (see paper for details)

1) READ

  Acquire shared Minuet locks on T.ReadSet; Read these
resources from shared disk.

2) UPDATE

  Acquire exclusive Minuet locks on the elements of T.WriteSet;
Apply updates locally; Append description of updates to the log.

3) PREPARE

  Contact the storage devices to verify validity of all sessions in T
and lock T.WriteSet in preparation for commit.

4) COMMIT

  Force-append a Commit record to the log.

5) SYNC (proceeds asynchronously)
  Flush all updates to shared disks and unlock T.WriteSet.

Supporting serializable transactions

55

  Extensions to the storage stack:
  Open-iSCSI Initiator on application nodes:

  Minuet session annotations are attached to outbound command
PDUs using the Additional Header Segment (AHS) protocol
feature of iSCSI.

  iSCSI Enterprise Target on storage nodes:
  Guard logic (350 LoC; 2% increase in complexity).

  ownerSIDs are maintained in main memory using a hash table.

  Command rejection is signaled to the initiator via a Reject PDU.

Minuet implementation

