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  Storage Area Networks (SANs) are gaining 
widespread adoption in data centers. 

  An attractive architecture for clustered services and 
data-intensive clustered applications that require a 
scalable and highly-available storage backend. 
Examples: 
  Online transaction processing  

  Data mining and business intelligence 

  Digital media production and streaming media delivery  

Storage Area Networks – an Overview 
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  One of the main design challenges: ensuring safe 
and efficient coordination of concurrent access to 
shared state on disk. 

Clustered SAN applications and services 

  Traditional techniques for shared-disk applications: 
distributed locking, leases. 

  Need mechanisms for distributed concurrency 
control. 
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Limitations of distributed locking 

  Distributed locking semantics do not suffice to 
guarantee correct serialization of disk requests and 
hence do not ensure application-level data safety. 
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Data integrity violation: an example  
Client 1 – updating resource R 

Client 2 – reading resource R 

DLM 
SAN 

X X X X X X X X X X 

Shared 
resource R 
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Data integrity violation: an example  
Client 1 – updating resource R 

Client 2 – reading resource R 

DLM 

Shared 
resource R 

SAN 

X X X X X X X X X X 

Lock(R) 

owns lock on R 

Lock(R) 

waiting for lock on R 

- OK 

Write(B, offset=3, data=                   ) Y Y Y Y Y Y Y Y 

CRASH! 

Client 1 

Client 2 owns lock on R 

- OK 
Read(R, offset=0, data=                      ) 

X X X X X 

Read(R, offset=5, data=                      ) 

X X X Y Y X X X 
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Data integrity violation: an example  

Client 2 – reading resource R 

X X X Y Y Y Y X X X 

X X X X X Y Y X X X 

  Both clients obey the locking protocol, but Client 1 
observes only partial effects of Client 2’s update. 

  Update atomicity is violated. 

Shared 
resource R 
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  The lock service represents an additional point of 
failure. 

  DLM failure  loss of lock management state             
application downtime. 

Availability limitations of distributed locking 
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  Standard fault tolerance techniques can be applied to 
mitigate the effects of DLM failures 
  State machine replication 

  Dynamic election 

  These techniques necessitate some form of global 
agreement. 

  Agreement requires an active majority 
  Makes it difficult to tolerate network-level failures and large-

scale node failures. 

Availability limitations of distributed locking 



10 

DLM1 DLM2 

DLM3 

SAN 

C1 

C2 

C3 

C4 

Application cluster 

DLM replicas C3 and C4 stop making process 

Example: a partitioned network 
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Minuet overview   

  Minuet is a new synchronization primitive for shared-
disk applications and middleware that seeks to 
address these limitations. 
  `Guarantees safe access to shared state in the face of 

arbitrary asynchrony 
  Unbounded network transfer delays 
  Unbounded clock drift rates 

  Improves application availability 
  Resilience to network partitions and large-scale node failures. 
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Our approach   

  We focus on ensuring safe ordering of disk requests 
at target storage devices. 

  A “traditional” cluster lock service provides the 
guarantees of mutual exclusion and focuses on 
preventing conflicting lock assignments. 

Lock(R) 
Read(R, offset=0, data=                      ) 

Read(R, offset=5, data=                      ) 
Unlock(R) 

Client 2 – reading resource R 
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Session isolation 

Read1.1(R) C1 

Lock(R, Shared) 

Read1.2(R) 

UpgradeLock(R, Excl) 

Write1.1(R) 

Write1.2(R) 

DowngradeLock(R, Shared) 

Read1.3(R) 

Unlock(R) 

C2 

Lock(R, Shared) 

Read2.1(R) 

UpgradeLock(R, Excl) 

Write2.1(R) 

Write2.2(R) 
Unlock(R) 

Shared 
session 

Shared 
session 

Excl 
session 

Excl 
session 

  Session isolation: R.owner must observe the prefixes   
of all sessions to R in strictly serial order, such that 

R Owner 

  No two requests in a shared session are interleaved by an 
exclusive-session request from another client. 
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Session isolation 

Read1.1(R) C1 

Lock(R, Shared) 

Read1.2(R) 

UpgradeLock(R, Excl) 

Write1.1(R) 

Write1.2(R) 

DowngradeLock(R, Shared) 

Read1.3(R) 

Unlock(R) 

C2 

Lock(R, Shared) 

Read2.1(R) 

UpgradeLock(R, Excl) 

Write2.1(R) 

Write2.2(R) 
Unlock(R) 

Shared 
session 

Shared 
session 

Excl 
session 

Excl 
session 

  Session isolation: R.owner must observe the prefixes   
of all sessions to R in strictly serial order, such that 

R Owner 

  No two requests in an exclusive session are interleaved by a 
shared- or exclusive-session request from another client. 
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Enforcing session isolation 
  Each session to a shared resource is assigned a 

globally-unique session identifier (SID) at the time of 
lock acquisition. 

  Client annotates its outbound disk commands with its 
current SID for the respective resource. 

  SAN-attached storage devices are extended with a 
small application-independent logical component 
(“guard”), which: 
  Examines the client-supplied session annotations 

  Rejects commands that violate session isolation. 
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Enforcing session isolation 

R 

Guard 
module 

SAN 

Client 
node 

R 

Guard 
module 

SAN 
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Enforcing session isolation 
Client 
node 

R 

Guard 
module 

SAN 

R.clientSID = <TS, TX> 

R.curSType = {Excl / Shared / None} 
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Enforcing session isolation 
Client 
node 

R 

Guard 
module 

SAN 

R.clientSID = <TS, TX> 

R.curSType = {Excl / Shared / None} 

Establishing a session to resource R: 

R.clientSID  unique session ID 

Lock(R, Shared / Excl)  { 
R.curSType  Shared / Excl 

} 
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Enforcing session isolation 
Client 
node 

R 

Guard 
module 

SAN 

R.clientSID = <TS, TX> 

R.curSType = {Excl / Shared / None} 

Submitting a remote disk command: 

READ / WRITE (LUN, Offset, Length, …) 

verifySID = <Ts, Tx> updateSID = <Ts, Tx> R 

command 

session annotation 

Initialize the session annotation: 
IF (R.curSType = Excl)  { 

} 

verifySID  R.clientSID 
updateSID  R.clientSID 
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Enforcing session isolation 
Client 
node 

R 

Guard 
module 

SAN 

R.clientSID = <TS, TX> 

R.curSType = {Excl / Shared / None} 

Submitting a remote disk command: 

READ / WRITE (LUN, Offset, Length, …) 

verifySID = <Ts, Tx> updateSID = <Ts, Tx> R 

command 

session annotation 

Initialize the session annotation: 
IF (R.curSType = Shared)  { 

} 

verifySID.Ts  EMPTY 
verifySID.Tx  R.clientSID.TX 
updateSID  R.clientSID 
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Enforcing session isolation 
Client 
node 

R 

Guard 
module 

SAN 

R.clientSID = <TS, TX> 

R.curSType = {Excl / Shared / None} 

Submitting a remote disk command: 

READ / WRITE (LUN, Offset, Length, …) 

verifySID = <Ts, Tx> updateSID = <Ts, Tx> R 

command 

session annotation 

Initialize the session annotation: 
IF (R.curSType = Shared)  { 

} 

verifySID.Ts  EMPTY 
verifySID.Tx  R.clientSID.TX 
updateSID  R.clientSID 

disk cmd. 

annotation 
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Client 
node 

Enforcing session isolation 
Client 
node 

R 

Guard 
module 

SAN 

R.clientSID = <TS, TX> 

R.curSType = {Excl / Shared / None} 

disk cmd. 

annotation 

R 

Guard 
module 
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Client 
node 

Enforcing session isolation 

R 

Guard 
module 

SAN 

disk cmd. 

annotation 

R 

Guard 
module 

Guard logic at the storage controller: R.ownerSID = <Ts, Tx> 

IF (verifySID.Tx < R.ownerSID.Tx) 

decision  REJECT 

ELSE IF ((verifySID.Ts ≠ EMPTY) AND (verifySID.Ts < R.ownerSID.Ts))  

decision  REJECT 

ELSE 
decision  ACCEPT 
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Client 
node 

Enforcing session isolation 

R 

Guard 
module 

SAN 

disk cmd. 

annotation 

R 

Guard 
module 

Guard logic at the storage controller: R.ownerSID = <Ts, Tx> 

IF (decision = ACCEPT) { 

Drop the command 

R.ownerSID.Ts  MAX(R.ownerSID.Ts, updateSID.Ts)  

}  ELSE  { 

Respond to client with 

R.ownerSID.TX  MAX(R.ownerSID.TX, updateSID.TX)  

Enqueue and process the command 

} 

Status = BADSESSION 

R.ownerSID 
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Client 
node 

Enforcing session isolation 

R 

Guard 
module 

SAN 
annotation 

R 

Guard 
module 

Guard logic at the storage controller: R.ownerSID = <Ts, Tx> 

IF (decision = ACCEPT) { 

Drop the command 

R.ownerSID.Ts  MAX(R.ownerSID.Ts, updateSID.Ts)  

}  ELSE  { 

Respond to client with 

R.ownerSID.TX  MAX(R.ownerSID.TX, updateSID.TX)  

Enqueue and process the command 

} 

ACCEPT 
disk cmd. 

Status = BADSESSION 

R.ownerSID 
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Client 
node 

Enforcing session isolation 

R 

Guard 
module 

SAN R 

Guard 
module 

R.ownerSID = <Ts, Tx> Guard logic at the storage controller: 

IF (decision = ACCEPT) { 

Drop the command 

R.ownerSID.Ts  MAX(R.ownerSID.Ts, updateSID.Ts)  

}  ELSE  { 

Respond to client with 

R.ownerSID.TX  MAX(R.ownerSID.TX, updateSID.TX)  

Enqueue and process the command 

Status = BADSESSION 

R.ownerSID 

} 

REJECT Status = BADSESSION 

R.ownerSID 
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Client 
node 

Enforcing session isolation 

R 

Guard 
module 

SAN R 

Guard 
module 

R.ownerSID = <Ts, Tx> 

REJECT Status = BADSESSION 

R.ownerSID 

Client 
node 

  Upon command rejection: 
  Storage device responds to the client with a special status code 

(BADSESSION) and the most recent value of R.ownerSID. 

  Application at the client node 
  Observes a failed disk request and forced lock revocation. 

  Re-establishes its session to R under a new SID and retries. 
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  The guard module addresses the safety problems 
arising from delayed disk request delivery and 
inconsistent failure observations. 

  Enforcing safe ordering of requests at the storage 
device lessens the demands on the lock service.  
  Lock acquisition state need not be kept consistent at all 

times. 

  Flexibility in the choice of mechanism for coordination. 

Assignment of session identifiers 
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Assignment of session identifiers 

Loosely-
consistent 

Traditional DLM 
Enabled by Minuet 

Optimistic 

- Clients choose their SIDs 
independently and do not 
coordinate their choices. 

- Resilient to network partitions 
and massive node failures.  

- Performs well under low 
rates of resource contention. 

- Minimizes latency overhead of 
synchronization. 

Strong 

- Strict serialization of Lock/
Unlock requests. 

- Disk command rejection 
does not occur. 

- SIDs are assigned by a 
central lock manager.     

- Performs well under high 
rates of resource contention. 
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Supporting distributed transactions 
  Session isolation provides a building block for more 

complex and useful semantics. 

  Serializable transactions can be supported by 
extending Minuet with ARIES-style logging and 
recovery facilities. 

  Minuet guard logic: 
  Ensures safe access to the log and the snapshot during 

recovery. 

  Enables the use of optimistic concurrency control, whereby 
conflicts are detected and resolved at commit time. 

(See paper for details) 
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Minuet implementation 
  We have implemented a proof-of-concept Linux-based 

prototype and several sample applications.  

iSCSI  

TCP/IP 

Storage cluster  
- Linux 

- iSCSI Enterprise Target [2]  

[2] http://iscsitarget.sourceforge.net/  [1] http://www.open-iscsi.org/ 

Application cluster 

- Linux 

- Open-iSCSI initiator [1] 

- Minuet client library 

TCP/IP 

- Linux 

- Minuet lock            
manager process 

Lock manager  
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Sample applications 

1.  Parallel chunkmap (340 LoC) 
  Shared disks store an array of fixed-length data blocks. 

  Client performs a sequence of read-modify-write operations 
on randomly-selected blocks. 

  Each operation is performed under the protection of an 
exclusive Minuet lock on the respective block. 
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Sample applications 

2.  Parallel key-value store (3400 LoC) 
  B+ Tree on-disk representation. 

  Transactional Insert, Delete, and Lookup operations. 

  Client caches recently accessed tree blocks in local 
memory. 

  Shared Minuet locks (and content of the block cache) are 
retained across transactions. 

  With optimistic coordination, stale cache entries are 
detected and invalidated at transaction commit time. 
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Emulab deployment and evaluation 
  Experimental setup: 

  32-node application cluster 
  850MHz Pentium III, 512MB DRAM, 7200 RPM IDE disk 

  4-node storage cluster 
  3.0GHz 64-bit Xeon, 2GB DRAM, 10K RPM SCSI disk 

  3 Minuet lock manager nodes 
  850MHz Pentium III, 512MB DRAM, 7200 RPM IDE disk 

  100Mbps Ethernet  
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Emulab deployment and evaluation 
  Measure application performance with two methods 

of concurrency control: 
  Strong 

  Application clients coordinate through one Minuet lock 
manager process that runs on a dedicated node. 

  “Traditional” distributed locking. 

  Weak-own 
  Each client process obtains locks from a local Minuet 

lock manager instance. 
  No direct inter-client coordination. 
  “Optimistic” technique enabled by our approach. 
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Parallel chunkmap: Uniform workload 
  250,000 data chunks striped across [1-4] storage nodes. 

  8KB chunk size, 32 chunkmap client nodes 

  Uniform workload:          
clients select chunks 
uniformly at random. 
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Parallel chunkmap: Hotspot workload 
  250,000 data chunks striped across 4 storage nodes. 

  8KB chunk size, 32 chunkmap client nodes 

  Hotspot(x) workload:  x% of operations touch a “hotspot” region of 
the chunkmap.  

     Hotspot size = 0.1% = 2MB. 
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Experiment 2: Parallel key-value store 

SmallTree 

Block size 

Fanout 

Depth 

Initial leaf occupancy 

Number of keys 

Total dataset size 

LargeTree 

8KB 

150 

3 levels 

50% 

187,500 

20MB 

8KB 

150 

4 levels 

50% 

18,750,000 

2GB 
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Experiment 2: Parallel key-value store 
  [1-4] storage nodes. 

  32 application client nodes. 

  Each client 
performs a series 
of random key-
value insertions. 
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Challenges 
  Practical feasibility and barriers to adoption 

  Extending storage arrays with guard logic 

  Medatada storage overhead (table of ownerSIDs). 

  SAN bandwidth overhead due to session annotations 

  Changes to the programming model 
  Dealing with I/O command rejection and forced lock 

revocations 
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Related Work 
  Optimistic concurrency control (OCC) in database 

management systems. 

  Device-based locking for shared-disk environments       
(Dlocks, Device Memory Export Protocol). 

  Storage protocol mechanisms for failure fencing                     
(SCSI-3 Persistent Reserve). 

  New synchronization primitives for datacenter 
applications (Chubby, Zookeeper). 
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Summary 
  Minuet is a new synchronization primitive for clustered 

shared-disk applications and middleware. 

  Augments shared storage devices with guard logic. 

  Enables the use of OCC as an alternative to 
conservative locking. 

  Guarantees data safety in the face of arbitrary 
asynchrony. 
  Unbounded network transfer delays 

  Unbounded clock drift rates 

  Improves application availability. 
  Resilience to large-scale node failures and network partitions  
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Thank you ! 
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Backup Slides 
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Related Work 
  Optimistic concurrency control (OCC) 

  Well-known technique from the database field. 

  Minuet enables the use of OCC in clustered SAN applications as 
an alternative to “conservative” distributed locking. 
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Related Work 
  Device-based synchronization                                   

(Dlocks, Device Memory Export Protocol) 
  Minuet revisits this idea from a different angle; provides a 

more general primitive that supports both OCC and traditional 
locking. 

  We extend storage devices with guard logic – a minimal 
functional component that enables both approaches. 
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Related Work 
  Storage protocol mechanisms for failure fencing                     

(SCSI-3 Persistent Reserve) 
  PR prevents out-of-order delivery of delayed disk commands 

from (suspected) faulty nodes. 

  Ensures safety but not availability in a partitioned network; 
Minuet provides both. 
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Related Work 
  New synchronization primitives for datacenter 

applications (Chubby, Zookeeper). 
  Minuet focuses on fine-grained synchronization for clustered 

SAN applications. 

  Minuet’s session annotations are conceptually analogous to 
Chubby’s lock sequencers. 
  We extend this mechanism to shared-exclusive locking. 
  Given the ability to reject out-of-order requests at the 

destination, global consistency on the state of locks and use of 
an agreement protocol may be more than necessary. 

  Minuet attains improved availability by relaxing these 
consistency constraints.  
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Clustered SAN applications and services 

SAN 

Application cluster Disk drive arrays 

FCP, iSCSI, … 
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Clustered SAN applications and services 

HBA 

                     OS  

Clustered  
storage middleware 

Application 

SAN 

File systems (Lustre, GFS, OCFS, GPFS) 

Relational databases (Oracle RAC) 

                          Hardware 

Block 
device driver 

FCP, iSCSI, … 

… 

Storage stack 
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Minuet implementation: application node 

SCSI disk driver  
drivers/scsi/sd.c 

SCSI mid level 

SCSI lower level    
Open-iSCSI initiator 

v.2.0-869.2 

User 

Linux kernel 

Block device driver 

iSCSI target 

Minuet lock 
manager 

TCP / IP 

iSCSI / TCP / IP 

Application 

Minuet client library 

SCSI disk driver  
drivers/scsi/sd.c 

SCSI mid level 

SCSI lower level    
Open-iSCSI initiator 

v.2.0-869.2 

User 

Linux kernel 

Block device driver 

iSCSI target 

Minuet lock 
manager 

TCP / IP 

iSCSI / TCP / IP 
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Minuet API 

•  MinuetUpgradeLock(resource_id, lock_mode); 
•  MinuetDowngradeLock(resource_id, lock_mode); 

•  MinueDiskRead(lun_id, resource_id, start_sector, length, data_buf); 
•  MinueDiskWrite(lun_id, resource_id, start_sector, length, data_buf); 

•  MinuetXactBegin(); 
•  MinuetXactLogUpdate(lun_id, resource_id, start_sector,   
                                    length, data_buf); 
•  MinuetXactCommit(readset_resource_ids[], writeset_resource_ids[]); 
•  MinuetXactAbort(); 
•  MinuetXactMarkSynched(); 

Lock service 

Remote disk I/O 

Transaction service 
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Experiment 2: B+ Tree 
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  Five stages of a transaction (T):        (see paper for details) 

1)  READ 

  Acquire shared Minuet locks on T.ReadSet; Read these 
resources from shared disk. 

2)  UPDATE 

  Acquire exclusive Minuet locks on the elements of T.WriteSet; 
Apply updates locally; Append description of updates to the log. 

3)  PREPARE 

  Contact the storage devices to verify validity of all sessions in T 
and lock T.WriteSet in preparation for commit. 

4)  COMMIT 

  Force-append a Commit record to the log. 

5)  SYNC  (proceeds asynchronously) 
  Flush all updates to shared disks and unlock T.WriteSet. 

Supporting serializable transactions 
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  Extensions to the storage stack: 
  Open-iSCSI Initiator on application nodes: 

  Minuet session annotations are attached to outbound command 
PDUs using the Additional Header Segment (AHS) protocol 
feature of iSCSI.  

  iSCSI Enterprise Target on storage nodes: 
  Guard logic (350 LoC; 2% increase in complexity). 

  ownerSIDs are maintained in main memory using a hash table. 

  Command rejection is signaled to the initiator via a Reject PDU. 

Minuet implementation 


