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Problem

» |/O is the bottleneck

v’ Legacy filesystems favor sequential access.

v" Realistic workloads are not necessarily sequential
» Proposed Solution

v Co-locate data based on workload block access patterns
v" Improve sequentiality



Workload Characteristics that motivate BORG

» Workloads
v’ office - browser, OpenOffice applications, gnuplot, etc
v developer - emacs, gcc, gdb, etc
V" Subversion (SVN) server - Sources and document repository
v" Web server - Department web server

» Workloads Statistics Summary

Workload File System | Total [GB] | Total [GB]
type size [GB] Reads Writes
office 8.29 6.49 0.32
developer 45.59 3.82 10.46
SVN server 2.39 0.29 0.62
web server 169.54 21.07 2.24




Non-uniform Access Frequency Distribution

» Frequently accessed data is usually a small portion of the
entire data.

» Frequently accessed data is spread over entire disk area

Workload File System | Unique [GB] | Unique [GB] Top 20%
type size [GB] Reads Writes data access
office 8.29 1.63 0.22 51.40 %
developer 45.59 2.57 3.96 60.27 %
SVN server 2.39 0.17 0.18 45.79 %
web server 169.54 7.32 0.33 59.50 %




Non-uniform Access Frequency Distribution
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The Opportunity
Co-locating frequently accessed data can improve |/O performance.




Workload Characteristics - Partial Determinism

» Non-sequential accesses repeat in a block access sequence

Workload Partial
type determinism
office 65.42 %
developer 61.56 %
SVN server 50.73 %
web server 15.55 %

The Opportunity

Using partial determinism information can improve sequentiality of
accesses.




Temporal Locality

» There is a substantial overlap in the working sets across days.

Allaccesses

==
—

Data access overlap with Day 1 (%)

% Il £
Dayl1  Day2z  Day3

The Opportunity

Using information of past |/O activity for optimizing layout can
improve performance.




BORG in a nutshell

» Uses block access patterns to identify hot block sequences in
the workload.

v

Reorganizes blocks in a separate BORG OPTimized partition
(BOPT)

Assimilates write request in the partition
Operates in the background
Can be dynamically inserted or removed when required

Is independent of filesystems
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Maintains consistency by maintaining a persistent page-level
indirection map.
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1/O Profiler

» Each 1/O operation logged with:

v' Temporal Attribute: Timestamp
V" Process-level Attributes: Process ID, name
V' Block-level attribute: Start LBA, length of 1/0, Mode (R/W)

Sample Trace

[Timestamp] [PID] [Exec.] [StartLBA] [Size] [Mode]
705423195774700 5745 screen 6914207 32 R
705423259644748 5755 utempter 24379775 8
705423379492524 5755 utempter 24787567 8
705423421266908 5753 bash 7498311 24
705423454005104 5755 utempter 24793415 8
705423493292648 5753 bash 34543375 64
705423565122668 5766 stty 34543439 16
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Analyzer

» Builds a per-process directed, weighted graph

» Vertex is the per request LBA range (Start LBA, length)
» Edge is a temporal dependency between two ranges

» Weights represent frequency of access

» Graphs merged into a single master access graph

Process graphs Master access graph after merging
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Planner

» Uses master access graph as input
» Chooses the most connected node for initial placement
» Chooses the node most connected to already placed node-set

» Places it depending on its direction of the connecting edge

FoH-J>5A>G—->C—>B—E—D
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Reconfigurator
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Evaluation

Goals

» How effective is BORG?
» What are the overheads?
» When is it not effective?

» How sensitive is it to different parameters?

» Metric - Total disk busy times
» 5 hosts with different configurations
» Linux 2.6.22 kernel

» reiserfs and ext3
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Busy times for Webserver

» Over 1.1 million requests to over 255,000 files in one week.
» BOPT size 8 GB, 4 Reconfigurations
» Evaluated BORG with cumulative and partial traces
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14-35% reduction in busy times for cumulative and 5-39% for partial traces.
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Busy times for Webserver
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» Busy times higher in reconfiguration phases due to copy overheads.
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BORG Overhead

» Over 1.1 million requests to over 255,000 files in one week.
» BOPT size 8 GB, 4 Reconfigurations

» Cumulative and partial traces
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Sensitivity Analysis - Reconfiguration Interval

» Interval 8 hours - 3 days, 1 GB BOPT, with 50% write buffer I
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Reconfiguration Interval

» Smaller intervals lead to better performance for frequently
changing workloads.
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Sensitivity Analysis - BOPT Size

» BOPT size 256 MB - 8 GB, with 50% write buffer
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Size of BOPT

» Developer: Performance increases with increase in size

» SVN: Improvement is same due to smaller working set size.
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Sensitivity Analysis - Write Buffer Size Variation

» Write buffer 0 - 100% I
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» Incorrect size can impact performance I
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BORG Summary and Future Work

Conclusions

» BORG improves 1/O sequentiality and restricts disk head
movement

» Disk busy times reduction ranges from 6% to 50% for
untuned systems

» Disk busy times can decrease upto 80% with careful tuning

» BORG overheads are within acceptable limits

Exploring alternate layout strategies

» Automated reconfigurations

» Automated configuration of parameters
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Thank you!
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Related Work

» File System Level Approaches - LFS, PLACE, HFS, FS2

» Block Level Approaches - Cylinder Shuffling, Disk Caching
Disk, ALIS
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