
BORG: Block-reORGanization for Self-optimizing

Storage Systems

Medha Bhadkamkar Jorge Guerra Luis Useche
Sam Burnett Jason Liptak

Raju Rangaswami Vagelis Hristidis

Florida International University

March 9, 2009

1 / 33

Problem

◮ I/O is the bottleneck

X Legacy filesystems favor sequential access.
X Realistic workloads are not necessarily sequential

◮ Proposed Solution

X Co-locate data based on workload block access patterns
X Improve sequentiality

2 / 33

Workload Characteristics that motivate BORG

◮ Workloads

X office - browser, OpenOffice applications, gnuplot, etc
X developer - emacs, gcc, gdb, etc
X Subversion (SVN) server - Sources and document repository
X Web server - Department web server

◮ Workloads Statistics Summary

Workload File System Total [GB] Total [GB]
type size [GB] Reads Writes

office 8.29 6.49 0.32
developer 45.59 3.82 10.46
SVN server 2.39 0.29 0.62
web server 169.54 21.07 2.24

3 / 33

Non-uniform Access Frequency Distribution

◮ Frequently accessed data is usually a small portion of the
entire data.

◮ Frequently accessed data is spread over entire disk area

Workload File System Unique [GB] Unique [GB] Top 20%
type size [GB] Reads Writes data access

office 8.29 1.63 0.22 51.40 %
developer 45.59 2.57 3.96 60.27 %
SVN server 2.39 0.17 0.18 45.79 %
web server 169.54 7.32 0.33 59.50 %

4 / 33

Non-uniform Access Frequency Distribution

A
cc

es
s

F
re

q
u
en

cy

The Opportunity

Co-locating frequently accessed data can improve I/O performance.

5 / 33

Workload Characteristics - Partial Determinism

◮ Non-sequential accesses repeat in a block access sequence

Workload Partial
type determinism

office 65.42 %
developer 61.56 %
SVN server 50.73 %
web server 15.55 %

The Opportunity

Using partial determinism information can improve sequentiality of
accesses.

6 / 33

Temporal Locality

◮ There is a substantial overlap in the working sets across days.

 0

 20

 40

 60

 80

 100

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

D
at

a
ac

ce
ss

 o
ve

rla
p

w
ith

 D
ay

 1
 (

%
)

Days of the week

All accesses
Top 20% accesses

The Opportunity

Using information of past I/O activity for optimizing layout can
improve performance.

7 / 33

BORG in a nutshell

◮ Uses block access patterns to identify hot block sequences in
the workload.

◮ Reorganizes blocks in a separate BORG OPTimized partition
(BOPT)

◮ Assimilates write request in the partition

◮ Operates in the background

◮ Can be dynamically inserted or removed when required

◮ Is independent of filesystems

◮ Maintains consistency by maintaining a persistent page-level
indirection map.

8 / 33

System Architecture

VFS

Page Cache

File Systems
(EXT3, JFS...)

BORG Layer

I/O Scheduler

Device Driver

Legend: Existing components New components

Application

Kernel

User

9 / 33

System Architecture

VFS

Page Cache

File Systems
(EXT3, JFS...)

BORG Layer

I/O Scheduler

Device Driver

I/O
Trace

Layout
Plan

Legend: Existing components New components

Kernel−space components

Profiler
I/O

Reconfigurator

I/O Indirector

BOPT−space

User−space components
Application

Kernel

User
Analyzer Planner

10 / 33

System Architecture

VFS

Page Cache

File Systems
(EXT3, JFS...)

BORG Layer

I/O Scheduler

Device Driver

I/O
Trace

Layout
Plan

Legend: Existing components New components

Kernel−space components

Profiler
I/O

Reconfigurator

I/O Indirector

BOPT−space

User−space components
Application

Kernel

User
Analyzer Planner

11 / 33

I/O Profiler

◮ Each I/O operation logged with:

X Temporal Attribute: Timestamp
X Process-level Attributes: Process ID, name
X Block-level attribute: Start LBA, length of I/O, Mode (R/W)

Sample Trace

[Timestamp] [PID] [Exec.] [StartLBA] [Size] [Mode]

705423195774700 5745 screen 6914207 32 R

705423259644748 5755 utempter 24379775 8 R

705423379492524 5755 utempter 24787567 8 R

705423421266908 5753 bash 7498311 24 R

705423454005104 5755 utempter 24793415 8 R

705423493292648 5753 bash 34543375 64 R

705423565122668 5766 stty 34543439 16 R

...

12 / 33

System Architecture

VFS

Page Cache

File Systems
(EXT3, JFS...)

BORG Layer

I/O Scheduler

Device Driver

Analyzer Planner

I/O
Trace

Layout
Plan

Legend: Existing components New components

Kernel−space components

Profiler
I/O

Reconfigurator

I/O Indirector

BOPT−space

User−space components
Application

Kernel

User

13 / 33

Analyzer

◮ Builds a per-process directed, weighted graph

◮ Vertex is the per request LBA range (Start LBA, length)

◮ Edge is a temporal dependency between two ranges

◮ Weights represent frequency of access

◮ Graphs merged into a single master access graph

Process graphs Master access graph after merging

r1:(0, 3)

s1 :(1, 6)

r2:(4, 2)

s2 :(9, 1)

r3:(8, 2)

r1:(0, 1) s1:(6, 1)

r1, s1:(1, 2) r2, s1 :(4, 2) r3:(8, 1)

s1:(3, 1) r3, s2:(9, 1)

1

1

2 1

1

1

1

1

1

1

14 / 33

Planner

◮ Uses master access graph as input

◮ Chooses the most connected node for initial placement

◮ Chooses the node most connected to already placed node-set

◮ Places it depending on its direction of the connecting edge

A

ED G

CB

J

F

H I

5

2

8

9

8 8

9

7

10

3 9 6

42

7 6 1 2 7

6 3

F → H → J→ A → G → C→ B→ E→ D

15 / 33

System Architecture

VFS

Page Cache

File Systems
(EXT3, JFS...)

BORG Layer

I/O Scheduler

Device Driver

I/O
Trace

Layout
Plan

Legend: Existing components New components

Kernel−space components

Profiler
I/O

Reconfigurator

I/O Indirector

BOPT−space

User−space components
Application

Kernel

User
Analyzer Planner

16 / 33

Reconfigurator

Planner

3. Writes plan

BOPT Read Cache BOPT Write Buffer

BOPT FS

Reconfigurator

2. Current Plan1. Graph G

C’

Source Dest.

4. Reads plan

W’

A

C

B

D

Leaving

FS
Space

Space
BOPT

D’

C

6. Writes to

FS

5. Reads from
BOPT

C’

Legend:

17 / 33

Reconfigurator

Planner

3. Writes plan

BOPT Read Cache BOPT Write Buffer

BOPT FS

BOPT BOPT

Reconfigurator

2. Current Plan1. Graph G

D"

C’

Source Dest.

4. Reads plan

D’

W’

A

C

B

D

D"

Leaving

Relocate FS
Space

Space
BOPT

D’

C

5. Reads from

BOPT

6. Writes to

BOPT

Legend:

18 / 33

Reconfigurator

Planner

3. Writes plan

BOPT Read Cache BOPT Write Buffer

6. Writes
to BOPT

BOPT FS

BOPT FS

BOPT BOPT
5. Reads
FS block

Reconfigurator

2. Current Plan1. Graph G

C’ C

Source Dest.

B
4. Reads plan

D’

W’

A

C

B

B’

D

D"

Leaving

Incoming

Relocate FS
Space

Space
BOPT

D"

B’

Legend:

19 / 33

System Architecture

VFS

Page Cache

File Systems
(EXT3, JFS...)

BORG Layer

I/O Scheduler

Device Driver

I/O
Trace

Layout
Plan

Legend: Existing components New components

Kernel−space components

Profiler
I/O

Reconfigurator

I/O Indirector

BOPT−space

User−space components
Application

Kernel

User
Analyzer Planner

20 / 33

I/O Indirector

Indirector
I/O

C 1

B 0B’

C’

borg_map

FS
Block

BOPT
Block Dirty

BOPT Read Cache BOPT Write Buffer

Request

B

B’
Read

A

C

B

B’

D

D"

FS
Space

Space
BOPT

Legend:

21 / 33

I/O Indirector

X

Indirector
I/O

C 1

B 0B’

C’

borg_map

FS
Block

BOPT
Block Dirty

BOPT Read Cache BOPT Write Buffer

Request

A

A

Read

A

C

B

B’

D

D"

FS
Space

Space
BOPT

Legend:

22 / 33

I/O Indirector

W’

A

C

B

B’

D

D"

FS
Space

Space
BOPT

Indirector
I/O

W’

C 1

B 0B’

C’

W’

borg_map

FS
Block

BOPT
Block Dirty

BOPT Read Cache BOPT Write Buffer

W

Request

W W’ 1

Write

Legend:

23 / 33

Evaluation

Goals

◮ How effective is BORG?

◮ What are the overheads?

◮ When is it not effective?

◮ How sensitive is it to different parameters?

Setup

◮ Metric - Total disk busy times

◮ 5 hosts with different configurations

◮ Linux 2.6.22 kernel

◮ reiserfs and ext3

24 / 33

Busy times for Webserver

Setup

◮ Over 1.1 million requests to over 255,000 files in one week.

◮ BOPT size 8 GB, 4 Reconfigurations

◮ Evaluated BORG with cumulative and partial traces

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

N
1

N
2

N
3

N
4

N
5

D
is

k
B

us
y

T
im

e
(s

ec
)

Phases

Vanilla
BORG-C
BORG-P

Summary

14-35% reduction in busy times for cumulative and 5-39% for partial traces.

25 / 33

Busy times for Webserver

Setup

◮ Over 1.1 million requests to over 255,000 files in one week.

◮ BOPT size 8 GB, 4 Reconfigurations

◮ Evaluated BORG with cumulative and partial traces

 0

 100

 200

 300

 400

 500

 600

 700

R
1

R
2

R
3

R
4

D
is

k
B

us
y

T
im

e
(s

ec
)

Phases

Vanilla
BORG-C
BORG-P

Summary

◮ Busy times higher in reconfiguration phases due to copy overheads.

26 / 33

BORG Overhead

Setup

◮ Over 1.1 million requests to over 255,000 files in one week.

◮ BOPT size 8 GB, 4 Reconfigurations

◮ Cumulative and partial traces

 0

 5000

 10000

 15000

 20000

 25000

 30000

C P C P C P C P

T
im

e
(s

ec
)

Reconfigurations

Analyzer
Planner

Reconfigurator

R4R3R2R1

Summary

◮ Linear increase in planning and analysis overheads for cumulative traces.

27 / 33

Sensitivity Analysis - Reconfiguration Interval

Setup

◮ Interval 8 hours - 3 days, 1 GB BOPT, with 50% write buffer

-20

 0

 20

 40

 60

 80

 100

3 days

2 days

1 day
12 hrs

8 hrs

R
ed

uc
tio

n
in

 b
us

y
tim

e
(%

)

Reconfiguration Interval

Developer
SVN

Summary

◮ Smaller intervals lead to better performance for frequently
changing workloads.

28 / 33

Sensitivity Analysis - BOPT Size

Setup

◮ BOPT size 256 MB - 8 GB, with 50% write buffer

-20

 0

 20

 40

 60

 80

 100

256M
B

512M
B

1GB
2GB

4GB
8GB

R
ed

uc
tio

n
in

 b
us

y
tim

e
(%

)

Size of BOPT

Developer
SVN

Summary

◮ Developer: Performance increases with increase in size

◮ SVN: Improvement is same due to smaller working set size.

29 / 33

Sensitivity Analysis - Write Buffer Size Variation

Setup

◮ Write buffer 0 - 100%

-20

 0

 20

 40

 60

 80

 100

0% 25%
50%

75%
100%

R
ed

uc
tio

n
in

 b
us

y
tim

e
(%

)

Write Buffer Fraction

Developer
SVN

Summary

◮ Incorrect size can impact performance

30 / 33

BORG Summary and Future Work

Conclusions

◮ BORG improves I/O sequentiality and restricts disk head
movement

◮ Disk busy times reduction ranges from 6% to 50% for
untuned systems

◮ Disk busy times can decrease upto 80% with careful tuning

◮ BORG overheads are within acceptable limits

Future Work

◮ Exploring alternate layout strategies

◮ Automated reconfigurations

◮ Automated configuration of parameters

31 / 33

Thank you!

32 / 33

Related Work

◮ File System Level Approaches - LFS, PLACE, HFS, FS2

◮ Block Level Approaches - Cylinder Shuffling, Disk Caching
Disk, ALIS

33 / 33

