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Problem

◮ I/O is the bottleneck

X Legacy filesystems favor sequential access.
X Realistic workloads are not necessarily sequential

◮ Proposed Solution

X Co-locate data based on workload block access patterns
X Improve sequentiality
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Workload Characteristics that motivate BORG

◮ Workloads

X office - browser, OpenOffice applications, gnuplot, etc
X developer - emacs, gcc, gdb, etc
X Subversion (SVN) server - Sources and document repository
X Web server - Department web server

◮ Workloads Statistics Summary

Workload File System Total [GB] Total [GB]
type size [GB] Reads Writes

office 8.29 6.49 0.32
developer 45.59 3.82 10.46
SVN server 2.39 0.29 0.62
web server 169.54 21.07 2.24
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Non-uniform Access Frequency Distribution

◮ Frequently accessed data is usually a small portion of the
entire data.

◮ Frequently accessed data is spread over entire disk area

Workload File System Unique [GB] Unique [GB] Top 20%
type size [GB] Reads Writes data access

office 8.29 1.63 0.22 51.40 %
developer 45.59 2.57 3.96 60.27 %
SVN server 2.39 0.17 0.18 45.79 %
web server 169.54 7.32 0.33 59.50 %
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Non-uniform Access Frequency Distribution
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The Opportunity

Co-locating frequently accessed data can improve I/O performance.
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Workload Characteristics - Partial Determinism

◮ Non-sequential accesses repeat in a block access sequence

Workload Partial
type determinism

office 65.42 %
developer 61.56 %
SVN server 50.73 %
web server 15.55 %

The Opportunity

Using partial determinism information can improve sequentiality of
accesses.
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Temporal Locality

◮ There is a substantial overlap in the working sets across days.
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The Opportunity

Using information of past I/O activity for optimizing layout can
improve performance.
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BORG in a nutshell

◮ Uses block access patterns to identify hot block sequences in
the workload.

◮ Reorganizes blocks in a separate BORG OPTimized partition
(BOPT)

◮ Assimilates write request in the partition

◮ Operates in the background

◮ Can be dynamically inserted or removed when required

◮ Is independent of filesystems

◮ Maintains consistency by maintaining a persistent page-level
indirection map.
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I/O Profiler

◮ Each I/O operation logged with:

X Temporal Attribute: Timestamp
X Process-level Attributes: Process ID, name
X Block-level attribute: Start LBA, length of I/O, Mode (R/W)

Sample Trace

[Timestamp] [PID] [Exec.] [StartLBA] [Size] [Mode]

705423195774700 5745 screen 6914207 32 R

705423259644748 5755 utempter 24379775 8 R

705423379492524 5755 utempter 24787567 8 R

705423421266908 5753 bash 7498311 24 R

705423454005104 5755 utempter 24793415 8 R

705423493292648 5753 bash 34543375 64 R

705423565122668 5766 stty 34543439 16 R

... ... ... ... ... ...
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Analyzer

◮ Builds a per-process directed, weighted graph

◮ Vertex is the per request LBA range (Start LBA, length)

◮ Edge is a temporal dependency between two ranges

◮ Weights represent frequency of access

◮ Graphs merged into a single master access graph
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Planner

◮ Uses master access graph as input

◮ Chooses the most connected node for initial placement

◮ Chooses the node most connected to already placed node-set

◮ Places it depending on its direction of the connecting edge
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Reconfigurator
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I/O Indirector
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I/O Indirector
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Evaluation

Goals

◮ How effective is BORG?

◮ What are the overheads?

◮ When is it not effective?

◮ How sensitive is it to different parameters?

Setup

◮ Metric - Total disk busy times

◮ 5 hosts with different configurations

◮ Linux 2.6.22 kernel

◮ reiserfs and ext3
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Busy times for Webserver

Setup

◮ Over 1.1 million requests to over 255,000 files in one week.

◮ BOPT size 8 GB, 4 Reconfigurations

◮ Evaluated BORG with cumulative and partial traces

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

N
1

N
2

N
3

N
4

N
5

D
is

k 
B

us
y 

T
im

e 
(s

ec
)

Phases

Vanilla
BORG-C
BORG-P

Summary

14-35% reduction in busy times for cumulative and 5-39% for partial traces.
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Busy times for Webserver

Setup

◮ Over 1.1 million requests to over 255,000 files in one week.

◮ BOPT size 8 GB, 4 Reconfigurations
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Summary

◮ Busy times higher in reconfiguration phases due to copy overheads.
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BORG Overhead

Setup

◮ Over 1.1 million requests to over 255,000 files in one week.

◮ BOPT size 8 GB, 4 Reconfigurations

◮ Cumulative and partial traces
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◮ Linear increase in planning and analysis overheads for cumulative traces.
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Sensitivity Analysis - Reconfiguration Interval

Setup

◮ Interval 8 hours - 3 days, 1 GB BOPT, with 50% write buffer
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Summary

◮ Smaller intervals lead to better performance for frequently
changing workloads.
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Sensitivity Analysis - BOPT Size

Setup

◮ BOPT size 256 MB - 8 GB, with 50% write buffer
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Summary

◮ Developer: Performance increases with increase in size

◮ SVN: Improvement is same due to smaller working set size.
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Sensitivity Analysis - Write Buffer Size Variation

Setup

◮ Write buffer 0 - 100%
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◮ Incorrect size can impact performance
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BORG Summary and Future Work

Conclusions

◮ BORG improves I/O sequentiality and restricts disk head
movement

◮ Disk busy times reduction ranges from 6% to 50% for
untuned systems

◮ Disk busy times can decrease upto 80% with careful tuning

◮ BORG overheads are within acceptable limits

Future Work

◮ Exploring alternate layout strategies

◮ Automated reconfigurations

◮ Automated configuration of parameters
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Thank you!
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Related Work

◮ File System Level Approaches - LFS, PLACE, HFS, FS2

◮ Block Level Approaches - Cylinder Shuffling, Disk Caching
Disk, ALIS
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