BORG: Block-reORGanization for Self-optimizing
Storage Systems

Medha Bhadkamkar Jorge Guerra Luis Useche
Sam Burnett Jason Liptak
Raju Rangaswami Vagelis Hristidis

Florida International University

March 9, 2009

Problem

» |/O is the bottleneck

v’ Legacy filesystems favor sequential access.

v" Realistic workloads are not necessarily sequential
» Proposed Solution

v Co-locate data based on workload block access patterns
v" Improve sequentiality

Workload Characteristics that motivate BORG

» Workloads
v’ office - browser, OpenOffice applications, gnuplot, etc
v developer - emacs, gcc, gdb, etc
V" Subversion (SVN) server - Sources and document repository
v" Web server - Department web server

» Workloads Statistics Summary

Workload File System | Total [GB] | Total [GB]
type size [GB] Reads Writes
office 8.29 6.49 0.32
developer 45.59 3.82 10.46
SVN server 2.39 0.29 0.62
web server 169.54 21.07 2.24

Non-uniform Access Frequency Distribution

» Frequently accessed data is usually a small portion of the
entire data.

» Frequently accessed data is spread over entire disk area

Workload File System | Unique [GB] | Unique [GB] Top 20%
type size [GB] Reads Writes data access
office 8.29 1.63 0.22 51.40 %
developer 45.59 2.57 3.96 60.27 %
SVN server 2.39 0.17 0.18 45.79 %
web server 169.54 7.32 0.33 59.50 %

Non-uniform Access Frequency Distribution

1e+86

188800

18880

1008

Access Frequency

The Opportunity
Co-locating frequently accessed data can improve |/O performance.

Workload Characteristics - Partial Determinism

» Non-sequential accesses repeat in a block access sequence

Workload Partial
type determinism
office 65.42 %
developer 61.56 %
SVN server 50.73 %
web server 15.55 %

The Opportunity

Using partial determinism information can improve sequentiality of
accesses.

Temporal Locality

» There is a substantial overlap in the working sets across days.

Allaccesses

==
—

Data access overlap with Day 1 (%)

% Il £
Dayl1 Day2z Day3

The Opportunity

Using information of past |/O activity for optimizing layout can
improve performance.

BORG in a nutshell

» Uses block access patterns to identify hot block sequences in
the workload.

v

Reorganizes blocks in a separate BORG OPTimized partition
(BOPT)

Assimilates write request in the partition
Operates in the background
Can be dynamically inserted or removed when required

Is independent of filesystems

vVVvYvYyyvyy

Maintains consistency by maintaining a persistent page-level
indirection map.

System Architecture

Application
User

Kernel

Page Cache

File Systems
(EXT3, JFS...

Device Driver

[Legend: [Existing components m New componef

o/22

System Architecture

User-space components

Application
User L
Kernel VES
Page Cache I/0 Layout
Trace Plan
File Systems

Device Driver

[Legend: [Existing components = New componehts

10 / 2

System Architecture

User-space components

Application
User L
Kernel VES
Page Cache I/0 Layout
Trace Plan
File Systems

Device Driver

[Legend: [Existing components = New componehts

11 / 2

1/O Profiler

» Each 1/O operation logged with:

v' Temporal Attribute: Timestamp
V" Process-level Attributes: Process ID, name
V' Block-level attribute: Start LBA, length of 1/0, Mode (R/W)

Sample Trace

[Timestamp] [PID] [Exec.] [StartLBA] [Size] [Mode]
705423195774700 5745 screen 6914207 32 R
705423259644748 5755 utempter 24379775 8
705423379492524 5755 utempter 24787567 8
705423421266908 5753 bash 7498311 24
705423454005104 5755 utempter 24793415 8
705423493292648 5753 bash 34543375 64
705423565122668 5766 stty 34543439 16

f=-J=-=~ = - = - A=

19 /22

System Architecture

User-space components

Application
v | fnaiyzor g Plannr

Kernel VES
Page Cache Ie] Layout
Trace Plan
File Systems

Device Driver

[Legend: [Existing components = New componehts

12 /22

Analyzer

» Builds a per-process directed, weighted graph

» Vertex is the per request LBA range (Start LBA, length)
» Edge is a temporal dependency between two ranges

» Weights represent frequency of access

» Graphs merged into a single master access graph

Process graphs Master access graph after merging

n:(0,3) r:(0,1)

51:(3,1)

14 / 2

Planner

» Uses master access graph as input
» Chooses the most connected node for initial placement
» Chooses the node most connected to already placed node-set

» Places it depending on its direction of the connecting edge

FoH-J>5A>G—->C—>B—E—D

1E /22

System Architecture

User-space components

Application
User L
Kernel VES
Page Cache I/0 Layout
Trace Plan
File Systems
(EXT3, JFS... |
BOPT-spacef
| Reconfiguratorg
[VOindirector |
I I

I/O Scheduler Kernel-space components

Device Driver

[Legend: [Existing components = New componehts

1A / 2

Reconfigurator

5. Reads from

BOPT _____
L Cﬂc‘i Planner Mﬁn |
. BOPT
; Space
3. Writes plan ‘
Source Dest. |
Cleaving | o | c |
BOPT = Fs 3 2
| 6. Writes ti &
1 6. Writes to A Space
'FS
,,,,,,,,,, = C
4. Reads plan B

Legend: [0 BOPT Read Cache HEEl BOPT Write Buffpr

17 /2

Reconfigurator

5. Reads from

(@]

BOPT ____
1.Graph G 2. Current Plan |
Plannerq——— !
| =
3. Writes plan g‘, |
Reconfigurator|--~---'
6. Writes to
Source | Dest.
,,,,,,,,,,, BOPT
Leaving C C
BOPT —= F§
Relocate D’ D"
BOPT — BOPT]| : :
4. Reads plan

Legend: [BOPT Read Cache HEll BOPT Write Buff*;r

BOPT
Space

FS
Space

19 /22

Reconfigurator

6. Writes
©BOPT ___
1.Graph G Planner L2 Current Plan i
! BOPT
! Space
3. Writes plan !
Reconfigurator
Source | Dest. T
Cleaving | © c |
BOPT—=F§ 1 D
Relocate D’ D ! FS
! Space
BOPT —=BOPT| | s Read A p
,,,,,, e 5. Reads c
Incoming B B’ | FS block B
4. Readsplan]
FS—=BOPT P \

Legend: [0 BOPT Read Cache HEEl BOPT Write Buffpr

10 / 22

System Architecture

User-space components

Application
User L
Kernel VES
Page Cache I/0 Layout
Trace Plan
File Systems
(EXTS3, JFS... ‘
*i /O Indirector

I/O Scheduler Kernel-space components

Device Driver

[Legend: [Existing components = New componehts

20 / 2

|/O Indirector

BOPT
Space
bor g_map
FS BOPT .
Read Dirt
Rgauest B Block Block irty
B B’ 0
110
B ——|
Indirector C C’ 1 D
FS
A Space
C
B

Legend: [EX0 BOPT Read Cache HEll BOPT Write Bufﬂar

21 /22

1/O Indirector

BOPT
Space
borg_map
FS BOPT .
Egaﬂest Block Block | Dirty
B B’ 0
Ao 10
Indirector C C 1 D
! ! ! FS
A Space
T
B

Legend: [EX0 BOPT Read Cache HEll BOPT Write Bufﬂar

79 /22

1/O Indirector

BOPT
Space
bor g_nmap
Wri , FS BOPT | .
Renctﬁest w Block | Block |Dirty
B B’
W= lO 0
Indirector C C’ 1 D
FS
A Space
C

Legend: [0 BOPT Read Cache HEl BOPT Write Buffler

~2 /22

Evaluation

Goals

» How effective is BORG?
» What are the overheads?
» When is it not effective?

» How sensitive is it to different parameters?

» Metric - Total disk busy times
» 5 hosts with different configurations
» Linux 2.6.22 kernel

» reiserfs and ext3

\

Busy times for Webserver

» Over 1.1 million requests to over 255,000 files in one week.
» BOPT size 8 GB, 4 Reconfigurations
» Evaluated BORG with cumulative and partial traces

3500
P Vanilla &xxxxi
$ 3000 [BORG-C mmmmm 1
n
;, 2500 | BORG-P i
£ L]
i 2000
% 1500 | 1
@
< 1000 - 1
a 500 ~ 9

Phases

14-35% reduction in busy times for cumulative and 5-39% for partial traces.

A /22

Busy times for Webserver

» Over 1.1 million requests to over 255,000 files in one week.
» BOPT size 8 GB, 4 Reconfigurations
» Evaluated BORG with cumulative and partial traces

700
— Vanilla xxxx3
g 600 - BORG-C mmmm
& 500 i BORG-P |
(]
£
i 400
& 300 [
3
Q200 .
2 100 %I
8 - Il B
T 8, % %
Phases

» Busy times higher in reconfiguration phases due to copy overheads.

279G /

BORG Overhead

» Over 1.1 million requests to over 255,000 files in one week.
» BOPT size 8 GB, 4 Reconfigurations

» Cumulative and partial traces

30000 T T T
Reconfigurator
25000 [Planner b
Analyzer KXxXx1
—~ 20000 [Bl
o
o]
2
5 15000 B
£
= ooz
10000 |- %4]
KRXA
K58
5000 |- 838 1
—_— posest
o KX RRRA
C P [}

Ry

Sensitivity Analysis - Reconfiguration Interval

» Interval 8 hours - 3 days, 1 GB BOPT, with 50% write buffer I

< 100

< Developer Xxxxx

g 80 r SVN mmm |

S 60}

[%]

3

Qo 407 4

£

gl H a il

E 0 :

B

R T
&% 2 &% < %4,
% ‘?13, % % $

Reconfiguration Interval

» Smaller intervals lead to better performance for frequently
changing workloads.

29 /22

Sensitivity Analysis - BOPT Size

» BOPT size 256 MB - 8 GB, with 50% write buffer

< 100

S Developer Xxxxxi
g 80 SVN |
2 60

[%]

3

2 40

£

E 20

3 o

(5}

24 -20 L L L L L

% ‘%% G G G %y

Size of BOPT

» Developer: Performance increases with increase in size

» SVN: Improvement is same due to smaller working set size.

20 /22

Sensitivity Analysis - Write Buffer Size Variation

» Write buffer 0 - 100% I

—~ 100
S Developer Xxxxx
° 80 | SVN mmmm |
E
7 O 5 1
3 K
&
2 40 & 1
£ g
c k)
5 20 & 1
S s
S £
3 0
¢
-20 :

0% 96\0/ SOL {5\0/ \700
4 ° 4 %
Write Buffer Fraction

» Incorrect size can impact performance I

20 /22

BORG Summary and Future Work

Conclusions

» BORG improves 1/O sequentiality and restricts disk head
movement

» Disk busy times reduction ranges from 6% to 50% for
untuned systems

» Disk busy times can decrease upto 80% with careful tuning

» BORG overheads are within acceptable limits

Exploring alternate layout strategies

» Automated reconfigurations

» Automated configuration of parameters

21 /22

Thank you!

29 /22

Related Work

» File System Level Approaches - LFS, PLACE, HFS, FS2

» Block Level Approaches - Cylinder Shuffling, Disk Caching
Disk, ALIS

22 /22

