

aka Industrial strength NFS tracing

Industrial strength NFS tracing

- Wanted to collect customer NFS traces
- Applying existing techniques failed
- Going to explain how we did it
 - Many incremental improvements
 - Need most of them
 - Details in paper
- Summary:
 - If you take traces, re-read the paper, apply the lessons
 - Our workload is quite different from previous ones

Why do we take traces?

- Understand "real" workloads
 - How many operations occur?
 - -How big are the files?
 - How cacheable are they?
 - How sequential are the accesses?
 - -What trends are present?
- Evaluate new systems
 - Figure out new possible designs
 - Estimate performance on "real" workloads

Why new traces?

Existing tools insufficient \rightarrow Develop new ones

Workloads highly variable \rightarrow Collect many more traces

Improved tools

Overall trace analysis process

environment > raw form

raw → cooked

 $cooked \rightarrow data$

 $data \rightarrow information$

Details in paper

Tools, traces are open source

The customer

- Feature animation (movie) company
 - Read models, textures, animation curves
 - Write intermediates and pictures
 - ~3 years/movie
- Dramatis personae:
 - Thousands of clients (renderfarm)
 - Tens of NFS servers
 - Twenties of NFS caches
 - Many rack switches
 - Few core routers

Capture (2003)

- Challenge:
 - Non-intrusive data capture
 - 2. Parse readdir, etc.
 - 3. Enable offline conversion
 - 4. NFS traffic bursts>1Gbit/s
 - 5. Prefer long capture times (days)

Solution:

- 1. Port mirroring on switch
- 2. Full packet capture
- Capture to parallel JBOD
- 4. Special Linux-specific capture tool (*lindump*)
- 5. Dynamic compression via tmpfs buffer

Capture, improved

- 2004: new switches with smaller buffers
 - → 10Gb/s network interface card In-driver packet capture (*driverdump*)
- 2007: sustained 5Gb/s
 - → Special capture card (*endacedump*)
 Integrated dynamic compression

Capture Conversion Analysis/Simulation Graphing/Reporting

Capture: observed rates

Capture: discussion

No more papers reporting packet drops

Conversion

- Challenge:
 - 1. Flexible logical representation
 - 2. Efficient physical representation
 - 3. Rapid trace conversion
 - 4. Trace anonymization

Solution:

- Relational data model, multiple tables
- DataSeries structured serial data format
- 3. Two-pass parallelism
- 4. Reversible encryption

- Challenge:
 - 1. Huge (50 billion row) data sets
 - 2. Large intermediates
 - Many possible grouping options
 - 4. Bursty, non-normally distributed data

Solution:

- Custom DataSeries analysis
- 2. Streaming analysis
- 3. Develop efficient data cube
- 4. Use approximate quantiles

Capture Conversion Analysis/Simulation Graphing/Reporting

Graphing/Reporting techniques

- Challenge:
 - Moderate-size summary data
 - 2. Many possible graphs

- Solution:
 - Store data in SQL database
 - 2. Select with mercuryplot

Example mercury-plot command:

```
plot quantile as x, value as y from nfs_hostinfo_cube
  where operation = 'read' and direction = 'send'
```


Collect more traces

Analysis: distribution of operation rate

Shows NFS-level burstiness **Validates** use of quantiles rather than mean and stddev

Analysis: distribution of file sizes

Each accessed file counted once

Most files are small

Moderately wide size distribution

Horizontal line is NFS read and write size

Analysis: reads in a single group

Each group is the set of reads with a maximum inter-read gap of 30 seconds

Analysis: reads in a single group

Conclusion

- Capture techniques
 - → no more packet loss
- Conversion and analysis techniques
 - → handle huge datasets on moderate hardware
- Workload is very different:
 - Very intense
 - -Small files
- Much more detail and discussion in paper
- Tools and traces open source

Questions?

Author/Speaker: eric.anderson4@hp.com

Software: http://tesla.hpl.hp.com/opensource/

Datasets: http://apotheca.hpl.hp.com/pub/datasets/animation-bear/

http://iotta.snia.org/traces/list/NFS

Tracing BoF: 8:30-9:30 pm, San Francisco A

