
USENIX Association 7th USENIX Conference on File and Storage Technologies 57

DIADS: Addressing the “My-Problem-or-Yours” Syndrome with Integrated
SAN and Database Diagnosis

Shivnath Babu
Duke University

shivnath@cs.duke.edu

Nedyalko Borisov
Duke University

nedyalko@cs.duke.edu

Sandeep Uttamchandani
IBM Almaden Research Center

sandeepu@us.ibm.com

Ramani Routray
IBM Almaden Research Center

routrayr@us.ibm.com

Aameek Singh
IBM Almaden Research Center

singh@us.ibm.com

Abstract
We present DIADS, an integrated DIAgnosis tool for
Databases and Storage area networks (SANs). Existing
diagnosis tools in this domain have a database-only (e.g.,
[11]) or SAN-only (e.g., [28]) focus. DIADS is a first-
of-a-kind framework based on a careful integration of in-
formation from the database and SAN subsystems; and
is not a simple concatenation of database-only and SAN-
only modules. This approach not only increases the ac-
curacy of diagnosis, but also leads to significant improve-
ments in efficiency.

DIADS uses a novel combination of non-intrusive ma-
chine learning techniques (e.g., Kernel Density Estima-
tion) and domain knowledge encoded in a new symptoms
database design. The machine learning component pro-
vides core techniques for problem diagnosis from mon-
itoring data, and domain knowledge acts as checks-and-
balances to guide the diagnosis in the right direction.
This unique system design enables DIADS to function
effectively even in the presence of multiple concurrent
problems as well as noisy data prevalent in production
environments. We demonstrate the efficacy of our ap-
proach through a detailed experimental evaluation of DI-
ADS implemented on a real data center testbed with Post-
greSQL databases and an enterprise SAN.

1 Introduction
“The online transaction processing database myOLTP
has a 30% slow down in processing time, compared to
performance two weeks back.” This is a typical prob-
lem ticket a database administrator would create for the
SAN administrator to analyze and fix. Unless there is an
obvious failure or degradation in the storage hardware
or the connectivity fabric, the response to this problem
ticket would be: “The I/O rate for myOLTP tablespace
volumes has increased 40%, with increased sequential
reads, but the response time is within normal bounds.”
This to-and-fro may continue for a few weeks, often driv-
ing SAN administrators to take drastic steps such as mi-
grating the database volumes to a new isolated storage
controller or creating a dedicated SAN silo (the inverse

of consolidation, explaining in part why large enterprises
still continue to have highly under-utilized storage sys-
tems). The myOLTP problem may be fixed eventually
by the database administrator realizing that a change in a
table’s properties had made the plan with sequential data
scans inefficient; and the I/O path was never an issue.

The above example is a realistic scenario from large
enterprises with separate teams of database and SAN
administrators, where each team uses tools specific to
its own subsystem. With the growing popularity of
Software-as-a-Service, this division is even more pre-
dominant with application administrators belonging to
the customer, while the computing infrastructure is pro-
vided and maintained by the service provider administra-
tors. The result is a lack of end-to-end correlated infor-
mation across the system stack that makes problem diag-
nosis hard. Problem resolution in such cases may require
either throwing iron at the problem and re-creating re-
source silos, or employing highly-paid consultants who
understand both databases and SANs to solve the perfor-
mance problem tickets.

The goal of this paper is to develop an integrated di-
agnosis tool (called DIADS) that spans the database and
the underlying SAN consisting of end-to-end I/O paths
with servers, interconnecting network switches and fab-
ric, and storage controllers. The input to DIADS is a
problem ticket from the administrator with respect to a
degradation in database query performance. The out-
put is a collection of top-K events from the database and
SAN that are candidate root causes for the performance
degradation. Internally, DIADS analyzes thousands of
entries in the performance and event logs of the database
and individual SAN devices to shortlist an extremely se-
lective subset for further analysis.

1.1 Challenges in Integrated Diagnosis
Figure 1 shows an integrated database and SAN tax-
onomy with various logical (e.g., sort and scan opera-
tors in a database query plan) and physical components
(e.g., server, switch, and storage controller). Diagnosis
of problems within the database or SAN subsystem is an

58 7th USENIX Conference on File and Storage Technologies USENIX Association

SalesReports
[J2EE Enterprise Reporting Application]

SalesAppDB
[Postgres]

Query QueryQuery

Index ScanTable [Product]

Redhat Linux
[Server]

WWN: 10000000C959F676
[HBA]

WWN: 1000000051E90550
[FCSwitch]

WWN: 1000000042D89053
[FCSwitch]

Fabric

Enterprise Class
[Storage Subsystem]

Pool2
[Storage Pool]

v4
[Storage Volume]

v1
[Storage Volume]

v2
[Storage Volume]

v3
[Storage Volume]

Pool1
[Storage Pool]

Disk
1

Disk
6

Disk
7

Disk
8

Disk
5

Disk
2

Disk
3

Disk
4

Record Fetch

Sort

Groupby

Index on Product.Price

Figure 1: Example database/SAN deploy-
ment.

Figure 2: Taxonomy of scenarios for root-cause analysis.

area of ongoing research (described later in Section 2).
Integrated diagnosis across multiple subsystems is even
more challenging:

• High-dimensional search space: Integrated analysis
involves a large number of entities and their combi-
nations (see Figure 1). Pure machine learning tech-
niques that aim to find correlations in the raw mon-
itoring data—which may be effective within a sin-
gle subsystem with few parameters—can be ineffec-
tive in the integrated scenario. Additionally, real-
world monitoring data has inaccuracies (i.e., the data
is noisy). The typical source of noise is the large
monitoring interval (5 minutes or higher in produc-
tion environments) which averages out the instanta-
neous effects of spikes and other bursty behavior.

• Event cascading and impact analysis: The cause and
effect of a problem may not be contained within a
single subsystem (i.e., event flooding may result).
Analyzing the impact of an event across multiple
subsystems is a nontrivial problem.

• Deficiencies of rule-based approaches: Existing di-
agnosis tools for some commercial databases [11]
use a rule-based approach where a root-cause tax-
onomy is created and then complemented with rules

to map observed symptoms to possible root causes.
While this approach has the merit of encoding valu-
able domain knowledge for diagnosis purposes, it
may become complex to maintain and customize.

1.2 Contributions
The taxonomy of problem determination scenarios han-
dled by DIADS is shown in Figure 2. The events in
the SAN subsystem can be broadly classified into con-
figuration changes (such as allocation of new applica-
tions, change in interconnectivity, firmware upgrades,
etc.) and component failure or saturation events. Simi-
larly, database events could correspond to changes in the
configuration parameters of the database, or a change in
the workload characteristics driven by changes in query
plans, data properties, etc. The figure represents a matrix
of change events, with relatively complex scenarios aris-
ing due to combinations of SAN and database events. In
real-world systems, the no change category is mislead-
ing, since there will always be change events recorded
in management logs that may not be relevant or may not
impact the problem at hand; those events still need to be
filtered by the problem determination tool. For complete-
ness, there is another dimension (outside the scope of this
paper) representing transient effects, e.g., workload con-

USENIX Association 7th USENIX Conference on File and Storage Technologies 59

tention causing transient saturation of components.
The key contributions of this paper are:

• A novel workflow for integrated diagnosis that uses
an end-to-end canonical representation of database
query operations combined with physical and logical
entities from the SAN subsystem (referred to as de-
pendency paths). DIADS generates these paths by an-
alyzing system configuration data, performance met-
rics, as well as event data generated by the system or
by user-defined triggers.

• The workflow is based on an innovative combination
of machine learning, domain knowledge of configu-
ration and events, and impact analysis on query per-
formance. This design enables DIADS to address the
integrated diagnosis challenges of high-dimensional
space, event propagation, multiple concurrent prob-
lems, and noisy data.

• An empirical evaluation of DIADS on a real-world
testbed with a PostgreSQL database running on an
enterprise-class storage controller. We describe prob-
lem injection scenarios including combinations of
events in the database and SAN layers, along with a
drill-down into intermediate results given by DIADS.

2 Related Work
We give an overview of relevant database (DB), storage,
and systems diagnosis work, some of which is comple-
mentary and leveraged by our integrated approach.

2.1 Independent DB and Storage Diagnosis
There has been significant prior research in performance
diagnosis and problem determination in databases [11,
10, 20] as well as enterprise storage systems [25, 28].
Most of these techniques perform diagnosis in an isolated
manner attempting to identify root cause(s) of a perfor-
mance problem in individual database or storage silos. In
contrast, DIADS analyzes and correlates data across the
database and storage layers.
DB-only Diagnosis: Oracle’s Automatic Database Diag-
nostic Monitor (ADDM) [10, 11] performs fine-grained
monitoring to diagnose database performance problems,
and to provide tuning recommendations. A similar sys-
tem [6] has been proposed for Microsoft SQLServer. (In-
terested readers can refer to [33] for a survey on database
problem diagnosis and self-tuning.) However, these tools
are oblivious to the underlying SAN layer. They cannot
detect problems in the SAN, or identify storage-level root
causes that propagate to the database subsystem.
Storage-only Diagnosis: Similarly, there has been re-
search in problem determination and diagnosis in en-
terprise storage systems. Genesis [25] uses machine
learning to identify abnormalities in SANs. A disk I/O
throughput model and statistical techniques to diagnose
performance problems in the storage layer are described

in [28]. There has also been work on profiling tech-
niques for local file systems [3, 36] that help collect data
useful in identifying performance bottlenecks as well as
in developing models of storage behavior [18, 30, 21].
Drawbacks: Independent database and storage analysis
can help diagnose problems like deadlocks or disk fail-
ures. However, independent analysis may fail to diag-
nose problems that do not violate conditions in any one
layer, rather contribute cumulatively to the overall poor
performance. Two additional drawbacks exist. First, it
can involve multiple sets of experts and be time consum-
ing. Second, it may lead to spurious corrective actions as
problems in one layer will often surface in another layer.
For example, slow I/O due to an incorrect storage vol-
ume placement may lead a DB administrator to change
the query plan. Conversely, a poor query plan that causes
a large number of I/Os may lead the storage administra-
tor to provision more storage bandwidth.

Studies measuring the impact of storage systems on
database behavior [27, 26] indicate a strong interdepen-
dence between the two subsystems, highlighting the im-
portance of an integrated diagnosis tool like DIADS.

2.2 System Diagnosis Techniques
Diagnosing performance problems has been a popular re-
search topic in the general systems community in recent
years [32, 8, 9, 35, 4, 19]. Broadly, this work can be split
into two categories: (a) systems using machine learn-
ing techniques, and (b) systems using domain knowl-
edge. As described later, DIADS uses a novel mix where
machine learning provides the core diagnosis techniques
while domain knowledge serves as checks-and-balances
against spurious correlations.
Diagnosis based on Machine Learning: PeerPressure
[32] uses statistical techniques to develop models for a
healthy machine, and uses these models to identify sick
machines. Another proposed method [4] builds models
from process performance counters in order to identify
anomalous processes that cause computer slowdowns.
There is also work on diagnosing problems in multi-
tier Web applications using machine learning techniques.
For example, modified Bayesian network models [8] and
ensembles of probabilistic models [35] that capture sys-
tem behavior under changing conditions have been used.
These approaches treat data collected from each subsys-
tem equally, in effect creating a single table of perfor-
mance metrics that is input to machine learning modules.
In contrast, DIADS adds more structure and semantics to
the collected data, e.g., to better understand the impact
of database operator performance vs. SAN volume per-
formance. Furthermore, DIADS complements machine
learning techniques with domain knowledge.
Diagnosis based on Domain Knowledge: There are also
many systems, especially in the DB community, where

60 7th USENIX Conference on File and Storage Technologies USENIX Association

domain knowledge is used to create a symptoms database
that associates performance symptoms with underlying
root causes [34, 19, 24, 10, 11]. Commercial vendors
like EMC, IBM, and Oracle use symptom databases for
problem diagnosis and correction. While these databases
are created manually and require expertise and resources
to maintain, recent work attempts to partially automate
this process [9, 12].

We believe that a suitable mix of machine learning
techniques and domain knowledge is required for a diag-
nosis tool to be useful in practice. Pure machine learning
techniques can be misled by spurious correlations in data
resulting from noisy data collection or event propaga-
tion (where a problem in one component impacts another
component). Such effects need to be addressed using ap-
propriate domain knowledge, e.g., component dependen-
cies, symptoms databases, and knowledge of query plan
and operator relationships.

It is also important to differentiate DIADS from
tracing-based techniques [7, 1] that trace messages
through systems end-to-end to identify performance
problems and failures. Such tracing techniques require
changes in production system deployments and often add
significant overhead in day-to-day operations. In con-
trast, DIADS performs a postmortem analysis of moni-
tored performance data collected at industry-standard in-
tervals to identify performance problems.

Next, we provide an overview of DIADS.

3 Overview of DIADS

Suppose a query Q that a report-generation application
issues periodically to the database system shows a slow-
down in performance. One approach to track down the
cause is to leverage historic monitoring data collected
from the entire system. There are several product of-
ferings [13, 15, 16, 17, 31] in the market that collect and
persist monitoring data from IT systems.

DIADS uses a commercial storage management
server—IBM TotalStorage Productivity Center [17]—
that collects monitoring data from multiple layers of the
IT stack including databases, servers, and the SAN. The
collected data is transformed into a tabular format, and
persisted as time-series data in a relational database.
SAN-level data: The collected data includes: (i) con-
figuration of components (both physical and logical), (ii)
connectivity among components, (iii) changes in config-
uration and connectivity information over time, (iv) per-
formance metrics of components, (v) system-generated
events (e.g., disk failure, RAID rebuild) and (vi) events
generated by user-defined triggers [14] (e.g., degradation
in volume performance, high workload on storage sub-
system).
Database-level data: To execute a query, a database sys-
tem generates a plan that consists of operators selected

Admin identifies instances of a query Q when it ran fine and when it did not

If plans are
different

Module PD: Look for changes in the plan used to execute Q when its
performance was satisfactory Vs. when performance was unsatisfactory

Same plan P involved in
good and bad performance

Plan−change analysis to pinpoint the cause
of plan changes (ex: index dropping, change in data
properties, change in configuration parameters, etc.)

Module CO: Correlate P’s slowdown with the running−time data of P’s operators

Module DA: Generate dependency paths for correlated operators from Module CO.
Prune the paths by correlating operator running times with component performance

Find causes with high confidence scores

Module SD: Match symptoms from Modules CR, CO, and

DA with symptoms database.

Module IA: For each high−confidence cause identified, find

Extract more symptoms
as needed by the database

how much of plan P’s slowdown can be explained by it

Module CR: Correlate P’s slowdown
with record−count data of P’s operators

Query

Plans

Operators

Components

Events

Symptoms

Impact

Figure 3: DIADS’s diagnosis workflow

from a small, well-defined family of operators [14]. Let
us consider an example query Q:
SELECT Product.Category, SUM(Product.Sales)
FROM Product
WHERE Product.Price > 1000
GROUP BY Product.Category

Q asks for the total sales of products, priced above 1000,
grouped per category. Figure 1 shows a plan P to exe-
cute Q. P consists of four operators: an Index Scan of
the index on the Price attribute, a Fetch to bring match-
ing records from the Product table, a Sort to sort these
records on Category values, and a Grouping to do the
grouping and summation. For each execution of P , DI-
ADS collects some monitoring data per operator O. The
relevant data includes: O’s start time, stop time, and
record-count (number of records returned in O’s output).
DIADS’s Diagnosis Interface: DIADS presents an inter-
face where an administrator can mark a query as having
experienced a slowdown. Furthermore, the administrator
either specifies declaratively or marks directly the runs of
the query that were satisfactory and those that were un-
satisfactory. For example, runs with running time below
100 seconds are satisfactory, or all runs between 8 AM
and 2 PM were satisfactory, and those between 2 PM and
3 PM were unsatisfactory.
Diagnosis Workflow: DIADS then invokes the workflow
shown in Figure 3 to diagnose the query slowdown based
on the monitoring data collected for satisfactory and un-
satisfactory runs. By default, the workflow is run in a

USENIX Association 7th USENIX Conference on File and Storage Technologies 61

batch mode. However, the administrator can choose to
run the workflow in an interactive mode where only one
module is run at a time. After seeing the results of each
module, the administrator can edit the data or results be-
fore feeding them to the next module, bypass or reinvoke
modules, or stop the workflow. Because of space con-
straints, we will not discuss the interactive mode further
in this paper.

The first module in the workflow, called Module Plan-
Diffing (PD), looks for significant changes between the
plans used in satisfactory and unsatisfactory runs. If such
changes exist, then DIADS tries to pinpoint the cause of
the plan changes (which includes, e.g., index addition or
dropping, changes in data properties, or changes in con-
figuration parameters used during plan selection). The
techniques used in this module contain details specific to
databases, so they are covered in a companion paper [5].

The remaining modules are invoked if DIADS finds a
plan P that is involved in both satisfactory and unsat-
isfactory runs of the query. We give a brief overview
before diving into the details in Section 4:
• Module Correlated Operators (CO): DIADS finds

the (nonempty) subset of operators in P whose
change in performance correlates with the query
slowdown. The operators in this subset are called
correlated operators.

• Module Dependency Analysis (DA): Having identi-
fied the correlated operators, DIADS uses a combina-
tion of correlation analysis and the configuration and
connectivity information collected during monitoring
to identify the components in the system whose per-
formance is correlated with the performance of the
correlated operators.

• Module Correlated Record-counts (CR): Next,
DIADS checks whether the change in P ’s perfor-
mance is correlated with the record-counts of P ’s op-
erators. If significant correlations exist, then it means
that data properties have changed between satisfac-
tory and unsatisfactory runs of P .

• Module Symptoms Database (SD): The correla-
tions identified so far are likely symptoms of the root
cause(s) of query slowdown. Other symptoms may
be present in the stream of system-generated events
and trigger-generated (user-defined) semantic events.
The combination of these symptoms is used to probe
a symptoms database that maps symptoms to the un-
derlying root cause(s). The symptoms database im-
proves diagnosis accuracy by dealing with the propa-
gation of faults across components as well as missing
symptoms, unexpected symptoms (e.g., spurious cor-
relations), and multiple simultaneous problems.

• Module Impact Analysis (IA): The symptoms
database computes a confidence score for each sus-
pected root cause. For each high-confidence root

cause R, DIADS performs impact analysis to answer
the following question: if R is really a cause of
the query slowdown, then what fraction of the query
slowdown can be attributed to R. To the best of our
knowledge, DIADS is the first automated diagnosis
tool to have an impact-analysis module.

Integrated database/SAN diagnosis: Note that the
workflow “drills down” progressively from the level of
the query to plans and to operators, and then uses de-
pendency analysis and the symptoms database to further
drill down to the level of performance metrics and events
in components. Finally, impact analysis is a “roll up”
to tie potential root causes back to their impact on the
query slowdown. The drill down and roll up are based
on a careful integration of information from the database
and SAN layers; and is not a simple concatenation of
database-only and SAN-only modules. Only low over-
head monitoring data is used in the entire process.

Machine learning + domain knowledge: DIADS’s
workflow is a novel combination of elements from ma-
chine learning with the use of domain knowledge. A
number of modules in the workflow use correlation anal-
ysis which is implemented using machine learning; the
details are in Sections 4.1 and 4.2. Domain knowledge is
incorporated into the workflow in Modules DA, SD, and
IA; the details are given respectively in Sections 4.2–4.4.
(Domain knowledge is also used in Module PD which is
beyond the scope of this paper.) As we will demonstrate,
the combination of machine learning and domain knowl-
edge provides built-in checks and balances to deal with
the challenges listed in Section 1.

4 Modules in the Workflow
We now provide details for all modules in DIADS’s diag-
nosis workflow. Upfront, we would like to point out that
our main goal is to describe an end-to-end instantiation
of the workflow. We expect that the specific implemen-
tation techniques used for the modules will change with
time as we gain more experience with DIADS.

4.1 Identifying Correlated Operators
Objective: Given a plan P that is involved in both sat-
isfactory and unsatisfactory runs of the query, DIADS’s
objective in this module is to find the set of correlated
operators. Let O1, O2, . . . , On be the set of all opera-
tors in P . The correlated operators form the subset of
O1, . . . , On whose change in running time best explains
the change in P ’s running time (i.e., P ’s slowdown).

Technique: DIADS identifies the correlated oper-
ators by analyzing the monitoring data collected
during satisfactory and unsatisfactory runs of P .
This data can be seen as records with attributes
A, t(P), t(O1), t(O2), . . . , t(On) for each run of P .

62 7th USENIX Conference on File and Storage Technologies USENIX Association

Here, attribute t(P) is the total time for one complete run
of P , and attribute t(Oi) is the running time of operator
Oi for that run. Attribute A is an annotation (or label)
associated with each record that represents whether the
corresponding run of P was satisfactory or not. Thus,
A takes one of two values: satisfactory (denoted S) or
unsatisfactory (denoted U).

Let the values of attribute t(Oi) in records with an-
notation S be s1, s2, . . . , sk, and those with annotation
U be u1, u2, . . . , ul. That is, s1, . . . , sk are k observa-
tions of the running time of operator Oi when the plan P
ran satisfactorily. Similarly, u1, u2, . . . , ul are l observa-
tions of the running time of Oi when the running time of
P was unsatisfactory. DIADS pinpoints correlated oper-
ators by characterizing how the distribution of s1, . . . , sk

differs from that of u1, . . . , ul. For this purpose, DIADS
uses Kernel Density Estimation (KDE) [22].

KDE is a non-parametric technique to estimate the
probability density function of a random variable. Let Si

be the random variable that represents the running time
of operator Oi when the overall plan performance is sat-
isfactory. KDE applies a kernel density estimator to the
k observations s1, . . . , sk of Si to learn Si’s probability
density function fi(Si).

fi(Si) =

k
j=1 K(Si−sj

h)
kh

(1)

Here, K is a kernel function and h is a smoothing param-
eter. A typical kernel is the standard Gaussian function

K(x) = e
−x2

2√
2π

. (Intuitively, kernel density estimators are
a generalization and improvement over histograms.)

Let u be an observation of operator Oi’s running time
when the plan performance was unsatisfactory. Consider
the probability estimate prob(Si ≤ u) =

 u

−∞ fi(Si)dsi.
Intuitively, as u becomes higher than the typical range of
values of Si, prob(Si ≤ u) becomes closer to 1. Thus,
a high value of prob(Si ≤ u) represents a significant
increase in the running time of operator Oi when plan
performance was unsatisfactory compared to that when
plan performance was satisfactory.

Specifically, DIADS includes Oi in the set of corre-
lated operators if prob(Si ≤ u) ≥ 1 − α. Here, u is the
average of u1, . . . , ul and α is a small positive constant.
α = 0.1 by default. For obvious reasons, prob(Si ≤ u)
is called the anomaly score of operator Oi.

4.2 Dependency Analysis
Objective: This module takes the set of correlated op-
erators as input, and finds the set of system components
that show a change in performance correlating with the
change in running time of one of more correlated opera-
tors.

Technique: DIADS implements this module using de-
pendency analysis which is based on generating and

pruning dependency paths for the correlated operators.
We describe the generation and pruning of dependency
paths in turn.

Generating dependency paths: The dependency path of
an operator Oi is the set of physical (e.g., server CPU,
database buffer cache, disk) and logical (e.g., volume,
external workload) components in the system whose per-
formance can have an impact on Oi’s performance. DI-
ADS generates dependency paths automatically based on
the following data:

• System-wide configuration and connectivity data as
well as updates to this data collected during the exe-
cution of each operator (recall Section 3).

• Domain knowledge of how each database operator
executes. For example, the dependency path of a sort
operator that creates temporary tables on disk will be
different from one that does not create temporaries.

We distinguish between inner and outer dependency
paths. The performance of components in Oi’s inner
dependency path can affect Oi’s performance directly.
Oi’s outer dependency path consists of components that
affect Oi’s performance indirectly by affecting the per-
formance of components on the inner dependency path.
As an example, the inner dependency path for the Index
Scan operator in Figure 1 includes the server, HBA, FC-
Switches, Pool2, Volume v2, and Disks 5-8. The outer
dependency path will include Volumes v1 and v3 (be-
cause of the shared disks) and other database queries.

Pruning dependency paths: The fact that a component C
is in the dependency path of an operator Oi does not nec-
essarily mean that Oi’s performance has been affected by
C’s performance. After generating the dependency paths
conservatively, DIADS prunes these paths based on cor-
relation analysis using KDE.

Recall from Section 3 that the monitoring data col-
lected by DIADS contains multiple observations of the
running time of operator Oi both when the overall plan
ran satisfactorily and when the plan ran unsatisfacto-
rily. For each run of Oi, consider the performance data
collected by DIADS for each component C in Oi’s de-
pendency path; this data is collected in the [tb, te] time
interval where tb and te are respectively Oi’s (abso-
lute) start and stop times for that run. Across all runs,
this data can be represented as a table with attributes
A, t(Oi),m1, . . . ,mp. Here, m1-mp are performance
metrics of component C, and the annotation attribute A
represents whether Oi’s running time t(Oi) was satis-
factory or not in the corresponding run. It follows from
Section 4.1 that we can set A’s value in a record to U
(denoting unsatisfactory) if prob(Si ≤ t(Oi)) ≥ 1 − α;
and to S otherwise.

Given the above annotated performance data for an
〈Oi, C〉 operator-component pairing, we can apply cor-

USENIX Association 7th USENIX Conference on File and Storage Technologies 63

symp
2

symp
1

symp
3

symp
4

1R

2R

3R
1 1

1

111

0

0 0

0

1 0

Figure 4: Example Codebook

relation analysis using KDE to identify C’s performance
metrics that are correlated with the change in Oi’s per-
formance. The details are similar to that in Section 4.1
except for the following: for some performance metrics,
observed values lower than the typical range are anoma-
lous. This correlation can be captured using the condi-
tion prob(M ≤ v) ≤ α, where M is the random variable
corresponding to the metric, v is a value observed for M ,
and α is a small positive constant.

In effect, the dependency analysis module will iden-
tify the set of components that: (i) are part of Oi’s de-
pendency path, and (ii) have at least one performance
metric that is correlated with the running time of a cor-
related operator Oi. By default, DIADS will only con-
sider the components in the inner dependency paths of
correlated operators. However, components in the outer
dependency paths will be considered if required by the
symptoms database (Module SD).

Recall Module CR in the diagnosis workflow where
DIADS checks for significant correlation between plan
P ’s running time and the record counts of P ’s operators.
DIADS implements this module using KDE in a manner
almost similar to the use of KDE in dependency analysis;
hence Module CR is not discussed further.

4.3 Symptoms Database
The modules so far in the workflow drilled down from
the level of the query to that of physical and logical com-
ponents in the system; in the process identifying corre-
lated operators and performance metrics. While this in-
formation is useful, the detected correlations may only
be symptoms of the true root cause(s) of the query slow-
down. This issue, which can mask the true root cause(s),
is generally referred to as the event (fault) propagation
problem in diagnosis. For example, a change in data
properties at the database level may, in turn, propagate
to the volume level causing volume contention, and to
the server level increasing CPU utilization. In addition,
some spurious correlations may creep in and manifest
themselves as unexpected symptoms in spite of our care-
ful drill down process.
Objective: DIADS’s Module SD tries to map the ob-
served symptoms to the actual root cause(s), while deal-
ing with missing as well as unexpected symptoms arising
from the noisy nature of production systems.
Technique: DIADS uses a symptoms database to do the
mapping. This database streamlines the use of domain
knowledge in the diagnosis workflow to:

• Generate more accurate diagnosis results by dealing
with event propagation.

• Generate diagnosis results that are semantically more
meaningful to administrators (for example, reporting
lock contention as the root cause instead of reporting
some correlated metrics only).

We considered a number of formats proposed previously
in the literature to input domain knowledge for aiding
diagnosis. Our evaluation criteria were the following:
I. How easy is the format for administrators to use?

Here, usage includes customization, maintenance
over time, as well as debugging. When a diagnosis
tool pinpoints a particular cause, it is important that
the administrators are able to understand and validate
the tool’s reasoning. Otherwise, administrators may
never trust the tool enough to use it.

II. Can the format deal with the noisy conditions in
production systems, including multiple simultane-
ous problems, presence of spurious correlations, and
missing symptoms.

One of the formats from the literature [16] is an expert
knowledge-base of rules where each rule expresses pat-
terns or relationships that describe symptoms, and can be
matched against the monitoring data. Most of the focus
in this work has been on exact matches, so this format
scores poorly on Criterion II. Representing relationships
among symptoms (e.g., event X will cause event Y) us-
ing deterministic or probabilistic networks like Bayesian
networks [23] has been gaining currency recently. This
format has high expressive power, but remains a black-
box for administrators who find it hard to interpret the
reasoning process (Criterion I).

Another format, called the Codebook [34], is very in-
tuitive as well as implemented in a commercial prod-
uct. This format assumes a finite set of symptoms such
that each distinct root cause R has a unique signature
in this set. That is, there is a unique subset of symp-
toms that R gives rise to which differs makes it distin-
guishable from all other root causes. This information is
represented in the Codebook which is a matrix whose
columns correspond to the symptoms and rows corre-
spond to the root causes. A cell is mapped to 1 if the
corresponding root cause should show the corresponding
symptom; and to 0 otherwise. Figure 4 shows an exam-
ple Codebook where there are four hypothetical symp-
toms symp1–symp4 and three root causes R1–R3.

When presented with a vector V of symptoms seen in
the system, the Codebook computes the distance d(V, R)
of V to each row R (i.e., root cause). Any number of dif-
ferent distance metrics can be used, e.g., Euclidean (L2)
distance or Hamming distance [34]. d(V,R) is a mea-
sure of the confidence that R is a root cause of the prob-
lem. For example, given a symptoms vector 〈1, 0, 0, 1〉
(i.e., only symp1 and symp4 are seen), the Euclidean

64 7th USENIX Conference on File and Storage Technologies USENIX Association

distances to the three root causes in Figure 4 are 0,
√

2,
and 1 respectively. Hence, R1 is the best match.

The Codebook format does well on both our evalua-
tion criteria. Codebooks can handle noisy situations, and
administrators can easily validate the reasoning process.
However, DIADS needs to consider complex symptoms
such as symptoms with temporal properties. For exam-
ple, we may need to specify a symptom where a disk fail-
ure is seen within X minutes of the first incidence of the
query slowdown, where X may vary depending on the
installation. Thus, it is almost impossible in our domain
to fully enumerate a closed space of relevant symptoms,
and to specify for each root cause whether each symptom
from this space will be seen or not. These observations
led to DIADS’s new design of the symptoms database:

1. We define a base set of symptoms consisting of:
(i) operators in the database system that can be in-
cluded in the correlated set, (ii) performance met-
rics of components that can be correlated with op-
erator performance, and (iii) system-monitored and
user-defined events collected by DIADS.

2. The language defined by IBM’s Active Correlation
Technology (ACT) is used to express complex symp-
toms over the base set of symptoms [2]. The benefit
of this language comes from its support for a range
of built-in patterns including filter, collection, dupli-
cate, computation, threshold, sequence, and timer.
ACT can express symptoms like: (i) the workload
on a volume is higher than 200 IOPS, and (ii) event
E1 should follow event E2 in the 30 minutes pre-
ceding the first instance of query slowdown.

3. DIADS’s symptoms database is a collection of root
cause entries each of which has the format Cond1

& Cond2 & . . . & Condz , for some z > 0 which
can differ across entries. Each Condi is a Boolean
condition of the form ∃sympj (denoting presence of
sympj) or ¬∃sympj (denoting absence of sympj).
Here, sympj is some base or complex symptom.
Each Condi is associated with a weight wi such the
sum of the weights for each individual root cause
entry is 100%. That is,

z
i=1 wi = 100%.

4. Given a vector of base symptoms, DIADS computes
a confidence score for each root cause entry R as the
sum of the weights of R’s conditions that evaluate
to true. Thus, the confidence score for R is a value
in [0%, 100%] equal to

z
i=1 wi|Condi = true.

DIADS’s symptoms database tries to balance the expres-
sive power of rules with the intuitive structure and robust-
ness of Codebooks. The symptoms database differs from
conventional Codebooks in a number of ways. For each

root cause entry, DIADS avoids the “closed-world” as-
sumption for symptoms by mapping symptoms to 0, 1, or
“don’t care”. Conventional Codebooks are constrained to
0 or 1 mappings. DIADS’s symptoms database can con-
tain mappings for fixes to problems in addition to root
causes. This feature is useful because it may be easier
to specify a fix for a query slowdown (e.g., add an in-
dex) instead of trying to find the root cause. DIADS also
allows multiple distinct entries for the same root cause.
Generation of the symptoms database: Companies
like EMC, IBM, HP, and Oracle are investing signifi-
cant (currently, mostly manual) effort to create symp-
toms databases for different subsystems like network-
ing infrastructure, application servers, and databases
[34, 19, 24, 9, 10, 11]. Symptoms databases created by
some of these efforts are already in commercial use. The
creation of these databases can be partially automated,
e.g., through a combination of fault injection and ma-
chine learning [9, 12]. In fact, DIADS’s modules like
correlation, dependency, and impact analysis can be used
to identify important symptoms automatically.

4.4 Impact Analysis
Objective: The confidence score computed by the symp-
toms database module for a potential root cause R cap-
tures how well the symptoms seen in the system match
the expected symptoms of R. For each root cause R
whose confidence score exceeds a threshold, the impact
analysis module computes R’s impact score. If R is an
actual root cause, then R’s impact score represents the
fraction of the query slowdown that can be attributed to
R individually. DIADS’s novel impact analysis module
serves three significant purposes:
• When multiple problems coexist in the system, im-

pact analysis can separate out high-impact causes
from the less significant ones; enabling prioritization
of administrator effort in problem solving.

• As a safeguard against misdiagnoses caused by spu-
rious correlations due to noise.

• As an extra check to find whether we have identified
the right cause(s) or all cause(s).

Technique: Interestingly, one approach for impact anal-
ysis is to invert the process of dependency analysis from
Section 4.2. Let R be a potential root cause whose im-
pact score needs to be estimated:
1. Identify the set of components, denoted comp(R),

that R affects in the inner dependency path of the
operators in the query plan. DIADS gets this infor-
mation from the symptoms database.

2. For each component C ∈ comp(R), find the sub-
set of correlated operators, denoted op(R), such that
for each operator O in this subset: (i) C is in O’s
inner dependency path, and (ii) at least one perfor-
mance metric of C is correlated with the change in

USENIX Association 7th USENIX Conference on File and Storage Technologies 65

O’s performance. DIADS has already computed this
information in the dependency analysis module.

3. R’s impact score is the percentage of the change in
plan running time (query slowdown) that can be at-
tributed to the change in running time of operators
in op(R). Here, change in running time is computed
as the difference between the average running times
when performance is unsatisfactory and that when
performance is satisfactory.

The above approach will work as long as for any pair of
suspected root causes R1 and R2, op(R1)∩op(R2) = ∅.
However, if there are one or more operators common to
op(R1) and op(R2) whose running times have changed
significantly, then the above approach cannot fully sepa-
rate out the individual impacts of R1 and R2.

DIADS addresses the above problem by leveraging
plan cost models that play a critical role in all database
systems. For each query submitted to a database system,
the system will consider a number of different plans, use
the plan cost model to predict the running time (or some
other cost metric) of each plan, and then select the plan
with minimum predicted running time to run the query
to completion. These cost models have two main com-
ponents:
• Analytical formula per operator type (e.g., sort, index

scan) that estimates the resource usage (e.g., CPU
and I/O) of the operator based on the values of input
parameters. While the number and types of input pa-
rameters depend on the operator type, the main ones
are the sizes of the input processed by the operator.

• Mapping parameters that convert resource-usage es-
timates into running-time estimates. For example,
IBM DB2 uses two such parameters to convert the
number of estimated I/Os into a running-time esti-
mate: (i) the overhead per I/O operation, and (ii) the
transfer rate of the underlying storage device.

The following are two examples of how DIADS uses plan
cost models:
• Since DIADS collects the old and new record-counts

for each operator, it estimates the impact score of
a change in data properties by plugging the new
record-counts into the plan cost model.

• When volume contention is caused by an external
workload, DIADS estimates the new I/O latency of
the volume from actual observations or the use of de-
vice performance models. The impact score of the
volume contention is computed by plugging this new
estimate into the plan cost model.

DIADS’s use of plan cost models is a general technique
for impact analysis, but it is limited by what effects are
accounted for in the model. For example, if wait times
for locks are not modeled, then the impact score can-
not be computed for locking-based problems. Address-
ing this issue—e.g., by extending plan cost models or by

using planned experiments at run time—is an interesting
avenue for future work.

5 Experimental Evaluation
The taxonomy of scenarios considered for diagnosis in
the evaluation follows from Figure 2. DIADS was used
to diagnose query slowdowns caused by (i) events within
the database and the SAN layers, (ii) combinations of
events across both layers, as well as (iii) multiple con-
current problems (a capability unique to DIADS). Due to
space limitations, it is not possible to describe all the sce-
nario permutations from Figure 2. Instead, we start with
a scenario and make it increasingly complex by combin-
ing events across the database and SAN. We consider:
(i) volume contention caused by SAN misconfiguration,
(ii) database-level problems (change in data properties,
contention due to table locking) whose symptoms prop-
agate to the SAN, and (iii) independent and concurrent
database-level and SAN-level problems.

We provide insights into how DIADS diagnoses these
problems by drilling down to the intermediate results like
anomaly, confidence, and impact scores. While there is
no equivalent tool available for comparison with DIADS,
we provide insights on the results that a database-only
or SAN-only tool would have generated; these insights
are derived from hands-on experience with multiple in-
house and commercial tools used by administrators to-
day. Within the context of the scenarios, we also report
sensitivity analysis of the anomaly score to the number
of historic samples and length of the monitoring interval.

5.1 Setup Details
Our experimental testbed is part of a production SAN
environment, with the interconnecting fabric and stor-
age controllers being shared by other applications. Our
experiments ran during low activity time-periods on
the production environment. The testbed runs data-
warehousing queries from the popular TPC-H bench-
mark [29] on a PostgreSQL database server configured to
access tables using two Ext3 filesystem volumes created
on an enterprise-class IBM DS6000 storage controller.
The database server is a 2-way 1.7 GHz IBM xSeries
machine running Linux (Redhat 4.0 Server), connected
to the storage controller via Fibre Channel (FC) host bus
adaptor (HBA). Both the storage volumes are RAID 5
configurations consisting of (4 + 2P) 15K FC disks.

An IBM TotalStorage Productivity Center [17] SAN
management server runs on a separate machine record-
ing configuration details, statistics, and events from the
SAN as well as from PostgreSQL (which was instru-
mented to report the data to the management tool). Fig-
ure 6 shows the key performance metrics collected from
the database and SAN. The monitoring data is stored as
time-series data in a DB2 database. Each module in DI-

66 7th USENIX Conference on File and Storage Technologies USENIX Association

ADS’s workflow is implemented using a combination of
Matlab scripts (for KDE) and Java. DIADS uses a symp-
toms database that was developed in-house to diagnose
query slowdowns in database over SAN deployments.

Our experimental results focus on the slowdown of the
plan shown in Figure 5 for Query 2 from TPC-H. Fig-
ure 5 shows the 25 operators in the plan, denoted O1–
O25. In database terminology, the operators Index Scan
and Sequential Scan are leaf operators since they access
data directly from the tables; hence the leaf operators are
the most sensitive to changes in SAN performance. The
plan has 9 leaf operators. The other operators process
intermediate results.

5.2 Scenario 1: Volume Contention due to
SAN Misconfiguration

Problem Setting

In this scenario, a contention is created in volume V1
(from Figure 5) causing a slowdown in query perfor-
mance. The root cause of the contention is another ap-
plication workload that is configured in the SAN to use
a volume V’ that gets mapped to the same physical disks
as V1. For an accurate diagnosis result, DIADS needs
to pinpoint the combination of SAN configuration events
generated on: (i) creation of the new volume V’, and (ii)
creation of a new zoning and mapping relationship of the
server running the workload that accesses V’.

Module CO

DIADS analyzes the historic monitoring samples col-
lected for each of the 25 query operators. The moni-
toring samples for an operator are labeled as satisfactory
or unsatisfactory based on past problem reports from the
administrator. Using the operator running times in these
labeled samples, Module CO in the workflow uses KDE
to compute anomaly scores for the operators (recall Sec-
tion 4.1). Table 1 shows the anomaly scores of the oper-
ators identified as the correlated operators; these opera-
tors have anomaly scores ≥ 0.8 (the significance of the
anomaly scores is covered in Section 4.1). The following
observations can be made from Table 1:
• Leaf operators O8 and O22 were correctly identified

as correlated. These two are the only leaf operators
that access data on the Volume V1 under contention.

• Eight intermediate operators were ranked highly as
well. This ranking can be explained by event prop-
agation where the running times of these operators
are affected by the running times of the “upstream”
operators in the plan (in this case O8 and O22).

• A false positive for leaf operator O4 which operates
on tables in Volume V2. This could be a result of
noisy monitoring data associated with the operator.

In summary, Module CO’s KDE analysis has zero false
negatives and one false positive from the total set of 9

Figure 5: Query plan, operators, and dependency paths
for the experimental results

leaf operators. The false positive gets filtered out later in
the symptoms database and impact analysis modules.

To further understand the anomaly scores, we con-
ducted a series of sensitivity tests. Figure 7 shows the
sensitivity of the anomaly scores of three representative
operators to the number of samples available from the
satisfactory runs. O22’s score converges quickly to 1 be-
cause O22’s running time under volume contention is al-
most 5X the normal. However, the scores for leaf op-
erator O11 and intermediate operator O1 take around 20
samples to converge. With fewer than these many sam-
ples, O11 could have become a false positive. In all our
results, the anomaly scores of all 25 operators converge
within 20 samples. While more samples may be required
in environments with higher noise levels, the relative
simplicity of KDE (compared to models like Bayesian

USENIX Association 7th USENIX Conference on File and Storage Technologies 67

Database Metrics Server Metrics Network Metrics Storage Metrics

Operator Start Stop Times
Record-counts
Plan Start Stop Times
Locks outstanding and
held
Lock wait times
Space Usage
Blocks Read
Buffer Hits
Index Scans
Index Reads
Index Fetches
Sequential Scans

CPU Usage (%ge)
CPU Usage (Mhz)
Handles
Threads
Processes
Heap Memory Usage(KB)
Physical Memory Usage (%)
Kernel Memory(KB)
Memory Being Swapped(KB)
Reserved Memory
Capacity(KB)
Wait I/O
Network Bandwidth (HBA)

Bytes Transmitted
Bytes Received
Packets Transmitted
Packets Received
LIP Count
NOS Count
Error Frames
Dumped Frames
Link Failures
CRC Errors
Address Errors

Bytes Read
Bytes Written
Contaminating Writes
PhysicalStorageRead Operations
Physical Storage Read Time
PhysicalStorageWriteOperations
Physical Storage Write Time
Sequential Read Requests
Sequential Write Requests
Total IOs

Figure 6: Important performance metrics collected by DIADS

Operator Operator Type Anomaly Score
O2 Non-leaf 1.00
O3 Non-leaf 1.00
O6 Non-leaf 1.00
O7 Non-leaf 1.00
O8 Leaf (sequential scan) 1.00
O18 Non-leaf 1.00
O20 Non-leaf 1.00
O21 Non-leaf 1.00
O22 Leaf (index scan) 1.00
O17 Non-leaf 0.969
O4 Leaf (index scan) 0.965

Table 1: Anomaly scores for query operators from Figure
5 in Scenario 1

2 4 6 8 101214161820 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1

Number of samples

An
om

al
y

sc
or

e

O1
O11
O22

Figure 7: Sensitivity of anomaly scores to the number of
satisfactory samples. While O22 shows highly anoma-
lous behavior, scores for O1 and O11 should be low

networks) keeps this number low.
Figure 8 shows the sensitivity of O22’s anomaly score

to the length of the monitoring interval during a 4-hour
period. Intuitively, larger monitoring intervals suppress
the effect of spikes and bursty access patterns. In our ex-
periments, the query running time was around 4 minutes
under satisfactory conditions. Thus, monitoring intervals
of 10 minutes and larger in Figure 8 cause the anomaly
score to deviate more and more from the true value.

Module DA

This module generates and prunes dependency paths for
correlated operators in order to relate operator perfor-

5min(48) 10min(24)20min(12) 40min(6) 80min(3)
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time Interval(Number of samples)

An
om

al
y

sc
or

e
Figure 8: Sensitivity of anomaly scores to noise in the
monitoring data

Volume, Anomaly Score Anomaly Score
Perf. Metric (no contention in V2) (contention in V2)
V1, writeIO 0.894 0.894

V1, writeTime 0.823 0.823
V2, writeIO 0.063 0.512

V2, writeTime 0.479 0.879
Table 2: Anomaly scores computed during dependency
analysis for performance metrics from Volumes V1, V2

mance to database and SAN component performance.
For ease of presentation, we will focus on the leaf opera-
tors in Figure 5 since they are the most sensitive to SAN
performance. Given the configuration of our experimen-
tal testbed in Figure 5, the primary difference between
the dependency paths of various operators is in the vol-
umes they access: V1 is in the dependency path of O8

and O22, and V2 is in the paths of O4, O11, O14, O16,
O19, O23, and O25.

The set of correlated operators from Module CO are
O4, O8, and O22. Thus, DIADS will compute anomaly
scores for the performance metrics of both V1 and V2.
Table 2’s second column shows the anomaly scores for
two representative metrics each from V1 and V2. (Table
2’s third column is described later in this section.) As ex-
pected, none of V2’s metrics are identified as correlated
because V2 has no contention; while those of V1 are.

Module CR

Anomaly scores are low in this module because data
properties do not change.

68 7th USENIX Conference on File and Storage Technologies USENIX Association

Module SD

The symptoms identified up to this stage are:
• High anomaly scores for operators dependent on V1.
• High anomaly scores for V1’s performance metrics.
• High anomaly score for only one V2-dependent op-

erator (out of seven such operators).

These symptoms are strong evidence that V1’s perfor-
mance is a cause of the query slowdown, and V2’s per-
formance is not. Thus, even when a symptoms database
is not available, DIADS correctly narrows down the
search space an administrator has to consider during di-
agnosis. An impact analysis will further point out that
the false positive symptom due to O4 has little impact on
the query slowdown.

However, without a symptoms database or further di-
agnosis effort from the administrator, the root cause of
V1’s change of performance is still unknown among pos-
sible candidates like: (i) change of performance of an ex-
ternal workload, (ii) a runaway query in the database, or
(iii) a RAID rebuild. We will now report results from the
use of a symptoms database that was developed in-house.
DIADS uses this database as described in Section 4.3 ex-
cept that instead of reporting numeric confidence scores
to administrators, DIADS reports confidence as one of
High (score ≥ 80%), Medium (80% > score ≥ 50%),
or Low (50% > score ≥ 0%). The summary of Module
SD’s output in the current scenario is:
• All root causes with contention-related symptoms for

V2 have Low confidence (few symptoms are found).
• RAID rebuild gets Low confidence because no RAID

rebuild start or end events are found.
• V1 contention due to changes in data properties gets

Low confidence because symptoms are missing.
• V1 contention due to change in external workload

gets Low confidence because no external workload
was on the outer dependency path of a correlated op-
erator when performance was satisfactory.

• V1 contention due to change in database workload
gets Medium confidence because of a weak corre-
lation between the performance of some correlated
operators and the rest of the database workload.

• V1 contention due to the SAN misconfiguration
problem gets High confidence because all specified
symptoms are found including: (i) creation of a new
volume (parametrized with the physical disk infor-
mation), and (ii) creation of new masking and zoning
information for the volume.

The symptoms database had an entry for the actual root
cause because this problem is common. Hence, DI-
ADS was able to diagnose the root cause for this sce-
nario. Note that DIADS had to consider more than 900
events (system generated as well as user-defined) for the
database and SAN generated during the course of the sat-

isfactory and unsatisfactory runs for this experiment.

Module IA

Impact analysis done using the inverse dependency anal-
ysis technique gives an impact score of 99.8% for the
high-confidence root cause found. This score is high be-
cause the slowdown is caused entirely by the contention
in V1.

In keeping with our experimental methodology, we
complicated the problem scenario to test DIADS’s ro-
bustness. Everything was kept the same except that we
created extra I/O load on Volume V2 in a bursty manner
such that this extra load had little impact on the query
beyond the original impact of V1’s contention. Without
intrusive tracing, it would not be possible to rule out the
extra load on V2 as a potential cause of the slowdown.

Interestingly, DIADS’s integrated approach is still able
to give the right answer. Compared to the previous sce-
nario, there will now be some extra symptoms due to
higher anomaly scores for V2’s performance metrics (as
shown in the third column in Table 2). However, root
causes with contention-related symptoms for V2 will still
have Low confidence because most of the leaf operators
depending on V2 will have low anomaly scores as before.
Also, impact scores will be low for these causes.

Unlike DIADS, a SAN-only diagnosis tool may spot
higher I/O loads in both V1 and V2, and attribute both of
these as potential root causes. Even worse, the tool may
give more importance to V2 because most of the data is
on V2. A database-only tool can pinpoint the slowdown
in the operators. However, this tool cannot track the root
cause down to the SAN level because it has no visibility
into SAN configuration or performance. From our expe-
rience, database-only tools may give several false posi-
tives in this context, e.g., suboptimal bufferpool setting
or a suboptimal choice of execution plan.

5.3 Scenario 2: Database-layer Problem
Propagating to the SAN-layer

In this scenario we cause a query slowdown by changing
the properties of the data, causing extra I/O on Volume
V2. The change is done by an update statement that mod-
ifies the value of an attribute in some records of the part
table. The overall size of all tables, including part, are
unchanged. There are no external causes of contention
on the volumes.

Modules CO, DA, and CR behave as expected. In par-
ticular, module CR correctly identifies all the operators
whose record-counts show a correlation with plan per-
formance: operators O1, O2, O3, and O4 show increased
record-counts, while operators O5 and O6 show reduced
record-counts. The root-cause entry for changes in data
properties gets High confidence in Module SD because
all needed symptoms match. All other root-cause entries

USENIX Association 7th USENIX Conference on File and Storage Technologies 69

get Low confidence, including contention due to changes
in external workload and database workload because no
correlations are detected on the outer dependency paths
of correlated operators (as expected).

The impact analysis module gives the final confirma-
tion that the change in data properties is the root cause,
and rules out the presence of high-impact external causes
of volume contention. As described in Section 4.4, we
can use the plan cost model from the database to estimate
the individual impact of any change in data properties. In
this case, the impact score for the change in data proper-
ties is 88.31%. Hence, DIADS could have diagnosed the
root cause of this problem even if the symptoms database
was unavailable or incomplete.

5.4 Scenario 3: Concurrent Database-
layer and SAN-layer Problems

We complicate Scenario 2 by injecting contention on
Volume V2 due to SAN misconfiguration along with the
change in data properties. Both these problems individu-
ally cause contention in V2. The SAN misconfiguration
is the higher-impact cause in our testbed. This key sce-
nario represents the occurrence of multiple, possibly re-
lated, events at the database and SAN layers, complicat-
ing the diagnosis process. The expected result from DI-
ADS is the ability to pinpoint both these events as causes,
and giving the relative impact of each cause on query
performance.

The CO, DA, and CR Modules behave in a fashion
similar to Scenario 2, and drill down to the contention
in Volume V2. We considered DIADS’s performance
in two cases: with and without the symptoms database.
When the symptoms database is unavailable or incom-
plete, DIADS cannot distinguish between Scenarios 2
and 3. However, DIADS’s impact analysis module com-
putes the impact score for the change in data properties,
which comes to 0.56%. (This low score is representa-
tive because the SAN misconfiguration has more than
10X higher impact on the query performance than the
change in data properties.) Hence, DIADS final answer
in this case is as follows: (i) a change in data properties is
a high-confidence but low-impact cause of the problem,
and (ii) there are one or more other causes that impact
V2 which could not be diagnosed.

When the symptoms database is present, both the ac-
tual root causes are given High confidence by Module
SD because the needed symptoms are seen in both cases.
Thus, DIADS will pinpoint both the causes. Furthermore,
impact analysis will confirm that the full impact on the
query performance can be explained by these two causes.

A database-only diagnosis tool would have success-
fully diagnosed the change in data properties in both Sce-
narios 2 and 3. However, the tool may have difficulty
distinguishing between these two scenarios or pinpoint-

ing causes at the SAN layer. A SAN-only diagnosis tool
will pinpoint the volume overload. However, it will not
be able to separate out the impacts of the two causes.
Since the sizes of the tables do not change, we also sus-
pect that such a tool may even rule out the possibility of
a change in data properties being a cause.

5.5 Discussion
The scenarios described in the experimental evaluation
were carefully chosen to be simple, but not simplis-
tic. They are representative of event categories occur-
ring within the DB and SAN layers as shown in Fig-
ure 2. We have additionally experimented with different
events within those categories such as CPU and mem-
ory contention in the SAN in addition to disk-level satu-
ration, different types of database misconfiguration, and
locking-based database problems. Locking-based prob-
lems are hard to diagnose because they can cause differ-
ent types of symptoms in the SAN layer, including con-
tention as well as underutilization. We have also consid-
ered concurrent occurrence of three or more problems,
e.g., change in data properties, SAN misconfiguration,
and locking-based problems. The insights from these ex-
periments are similar to those seen already, and further
confirm the utility of an integrated tool. However:
• High levels of noise in the monitoring data can re-

duce DIADS’s effectiveness.
• While DIADS would still be effective when the symp-

toms database is incomplete, more manual effort will
be needed to pinpoint actual root causes.

• Incomplete or inaccurate plan cost models reduce the
accuracy of impact analysis.

6 Conclusions and Future Work
We presented an integrated database and storage diagno-
sis tool called DIADS. Using a novel combination of
machine learning techniques with database and storage
expert domain-knowledge, DIADS accurately identifies
the root cause(s) of problems in query performance; ir-
respective of whether the problem occurs in the database
or the storage layer. This integration enables a more ac-
curate and efficient diagnosis tool for system adminis-
trators. Through a detailed experimental evaluation, we
also demonstrated the robustness of our approach: with
its ability to deal with concurrent multiple problems as
well as presence of noisy data.

In future, we are interested in exploring two direc-
tions of research. First, we are investigating approaches
that further strengthen the analysis done as part of DI-
ADS modules, e.g., techniques that complement database
query plan models using planned run-time experiments.
Second, we aim to generalize our diagnosis techniques to
support applications other than databases in conjunction
with enterprise storage.

70 7th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,

REYNOLDS, P., AND MUTHITACHAROEN, A. Performance De-
bugging for Distributed Systems of Black Boxes. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP)
(2003), pp. 74–89.

[2] ANA BIAZETTI AND KIM GAJDA. Achieving Complex
Event Processing with Active Correlation Technology.
http://www.ibm.com/developerworks/library/
ac-acact/index.html.

[3] ARANYA, A., WRIGHT, C. P., AND ZADOK, E. Tracefs: A File
System to Trace Them All. In Proceedings of the 3rd USENIX
Conference on File and Storage Technologies (FAST) (2004),
pp. 129–145.

[4] BASU, S., DUNAGAN, J., AND SMITH, G. Why Did My PC
Suddenly Slow Down? In Proceedings of the 2nd USENIX work-
shop on Tackling computer systems problems with machine learn-
ing techniques (SYSML) (2007), pp. 1–6.

[5] BORISOV, N., UTTAMCHANDANI, S., ROUTRAY, R., AND
SINGH, A. Why Did My Query Slow Down? In Proceedings
of the Fourth Biennial Conference on Innovative Data Systems
Research (CIDR) (2009).

[6] CHAUDHURI, S., KÖNIG, A. C., AND NARASAYYA, V. R.
SQLCM: A Continuous Monitoring Framework for Relational
Database Engines. In Proceedings of the International Confer-
ence on Data Engineering (ICDE) (2004), pp. 473–485.

[7] CHEN, M. Y., ACCARDI, A., KICIMAN, E., LLOYD, J., PAT-
TERSON, D., FOX, A., AND BREWER, E. Path-based Faliure
and Evolution Management. In Proceedings of the Symposium on
Networked Systems Design and Implementation (NSDI) (2004),
pp. 23–23.

[8] COHEN, I., CHASE, J. S., GOLDSZMIDT, M., KELLY, T., AND
SYMONS, J. Correlating Instrumentation Data to System States:
A Building Block for Automated Diagnosis and Control. In Pro-
ceedings of the USENIX Symp. on Operating Systems Design and
Implementation (OSDI) (Dec. 2004), pp. 104–109.

[9] COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J.,
KELLY, T., AND FOX, A. Capturing, Indexing, Clustering, and
Retrieving System History. In ACM symposium on Operating
systems principles (SOSP) (2005), pp. 105–118.

[10] DAGEVILLE, B., DAS, D., DIAS, K., YAGOUB, K., ZAIT, M.,
AND ZIAUDDIN, M. Automatic SQL Tuning in Oracle 10g. In
Proceedings of the International Conference on Very Large Data
Bases (VLDB) (2004), pp. 1098–1109.

[11] DIAS, K., RAMACHER, M., SHAFT, U., VENKATARAMANI,
V., AND WOOD, G. Automatic Performance Diagnosis and Tun-
ing in Oracle. In Proceedings of Conference on Innovative Data
Systems Research (CIDR) (2005), pp. 84–94.

[12] DUAN, S., BABU, S., AND MUNAGALA, K. Fa: A System for
Automating Failure Diagnosis. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE) (Apr. 2009).

[13] EMC CONTROL CENTER FAMILY. http://www.emc.com/
products/storage management/controlcenter.
jsp.

[14] GARCIA-MOLINA, H., ULLMAN, J., AND WIDOM, J. Database
Systems: The Complete Book. Prentice Hall, Upper Saddle River,
New Jersey, 2001.

[15] HEWLETT PACKARD SYSTEMS INSIGHT MANAGER.
http://h18002.www1.hp.com/products/servers/
management/hpsim/index.html.

[16] IBM TIVOLI NETWORK MANAGER. http://
www-01.ibm.com/software/tivoli/products/
netcool-precision-ip.

[17] IBM TOTALSTORAGE PRODUCTIVITY CENTER.
http://www-306.ibm.com/software/tivoli/
products/totalstorage-data/.

[18] JOUKOV, N., TRAEGER, A., IYER, R., WRIGHT, C. P., AND
ZADOK, E. Operating System Profiling via Latency Analysis. In
Proceedings of the 7th symposium on Operating systems design
and implementation (OSDI) (2006), pp. 89–102.

[19] MANJI, A. Creating Symptom Databases to Rervice J2EE Ap-
plications in WebSphere Studio, 2004.

[20] MEHTA, A., GUPTA, C., WANG, S., AND DAYAL, U. Auto-
matic Workload Management for Enterprise Data Warehouses.
IEEE Data Eng. Bull. 31, 1 (2008), 11–19.

[21] MESNIER, M. P., WACHS, M., SAMBASIVAN, R. R., ZHENG,
A. X., AND GANGER, G. R. Modeling the Relative Fitness of
Storage. SIGMETRICS Perform. Eval. Rev. 35, 1 (2007), 37–48.

[22] PARZEN, E. On Estimation of a Probability Density Function
and Mode. Ann. Math. Stat. 33 (1962), 1065–1076.

[23] PEARL, J. Causality: Models, Reasoning, and Inference. Cam-
bridge University Press, Cambridge, UK, 2000.

[24] PERAZOLO, M. The Autonomic Computing Symptoms Format,
2005. IBM Library.

[25] POLLACK, K. T., AND UTTAMCHANDANI, S. Genesis: A
Scalable Self-Evolving Performance Management Framework
for Storage Systems. In IEEE International Conference on Dis-
tributed Computing Systems (ICDCS) (2006), p. 33.

[26] QIN, Y., SALEM, K., AND GOEL, A. K. Towards Adap-
tive Costing of Database Access Methods. In Proceedings of
the International Workshop on Self-Managing Database Systems
(SMDB) (2007), pp. 469–477.

[27] REISS, F., AND KANUNGO, T. A Characterization of the Sensi-
tivity of Query Optimization to Storage Access Cost Parameters.
In SIGMOD Conference (2003), pp. 385–396.

[28] SHEN, K., ZHONG, M., AND LI, C. I/O System Performance
Debugging Using Model-driven Anomaly Characterization. In
Proceedings of the 4th conference on USENIX Conference on File
and Storage Technologies (FAST) (2005), pp. 23–23.

[29] THE TPC-H DECISION SUPPORT BENCHMARK. www.tpc.
org/tpch.

[30] THERESKA, E., SALMON, B., STRUNK, J., WACHS, M., ABD-
EL-MALEK, M., LOPEZ, J., AND GANGER, G. R. Stardust:
Tracking Activity in a Distributed Storage System. SIGMETRICS
Perform. Eval. Rev. 34, 1 (2006), 3–14.

[31] VMWARE VIRTUAL CENTER. http://www.vmware.com/
products/vi/vc/.

[32] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND
WANG, Y.-M. Automatic Misconfiguration Troubleshooting
with PeerPressure. In Proceedings of USENIX OSDI Conference
(2004), pp. 245–258.

[33] WEIKUM, G., MOENKEBERG, A., HASSE, C., AND ZABBACK,
P. Self-tuning Database Technology and Information Services:
from Wishful Thinking to Viable Engineering. In Proceedings of
the VLDB Conference (Hongkong, China, 2002), pp. 20–31.

[34] YEMINI, S. A., KLIGER, S., MOZES, E., YEMINI, Y., AND
OHSIE, D. High Speed and Robust Event Correlation. IEEE
Communications Magazine 34 (1996).

[35] ZHANG, S., COHEN, I., SYMONS, J., AND FOX, A. Ensem-
bles of Models for Automated Diagnosis of System Performance
Problems. In Proceedings of International Conference on De-
pendable Systems and Networks (DSN) (2005), pp. 644–653.

[36] ZHOU, S., COSTA, H. D., AND SMITH, A. J. A File System
Tracing Package for Berkeley UNIX. Tech. rep., 1985.

