
ReplayCache: Exploiting Similarities for Predicting the Future
Ganesh C.N., Jaishankar Sundararaman, Ali R. Butt, and Godmar Back∗

Dept. of Computer Science, Virginia Tech

1. INTRODUCTION
The access speed of mechanical disk devices continues to
be orders of magnitude lower than that of random access
memory. Consequently, successful caching and prefetch-
ing strategies are essential to achieving good I/O perfor-
mance [1, 2]. Caching attempts to keep data in memory
that will be accessed in the future, whereas prefetching ini-
tiates I/O requests for data an application is expected to
access in the future. If the memory is not large enough to
hold all the data accessed by the application, a cache re-
placement policy chooses which data to keep in the cache
and which to replace.
Efficient caching and prefetching remain challenging issues
because an application’s future accesses are not usually known.
Most caching strategies estimate the likelihood of future ac-
cesses based on some combination of recency, frequency, and
patterns of past accesses. Recently, online prediction tech-
niques [4] have been developed that use an application’s cur-
rent execution context (e.g., a snapshot of its call stack and
current program counter location) to predict the pattern of
accesses issued in that context. Although online prediction
can recognize many patterns, it fails to capture complex I/O
patterns, and often mispredicts patterns, leading to unnec-
essary prefetches or suboptimal replacement decisions [3, 4].
For example, if a repeated looping access pattern (best han-
dled by keeping the accessed data in the cache) is misidenti-
fied as a sequential access (best handled by discarding data
soon after use), overall application performance will be dras-
tically reduced.
In this paper, we propose ReplayCache, an offline prediction
framework that runs a workload in a recording mode, learn-
ing its access patterns and representing them in a way that
makes it possible to execute a similar workload in replay

mode. As an example, consider a typical scenario in which
the program “make” is used to build a large C or C++ pro-
gram out of different source files. An optimal caching and
prefetching strategy would prefetch and cache all header files
accessed by the C preprocessor. Temporary files, such as the
.i files created by the preprocessor, or the intermediate .s

assembly language files created by the C compiler, or the
.o object files should be cached until they are accessed by
subsequent stages, but can be purged from the cache soon
after. If such a strategy could be learned from executing
make on one project, it could benefit “make” processes with
similar, though not identical execution sequences that oper-
ate on different sets of files. Using such a technique, users
can record strategies for regularly run workloads — such as
compilation, backups, compression, scripted multimedia or
indexing workloads.
Our prediction technique relies on capturing the execution
context that combines the current executable, current pro-
gram counter, and call stack using a hash function, simi-
lar to PCC [4]. Our preliminary results indicate that these
hashes are strong predictors from which optimal caching and

∗{cnganesh, jaisunda, butta, gback}@cs.vt.edu

application

call−site
determination

/proc
entry

standard FS
kernel cache

1

2

a

b

b’

4

mmap
mmap_unlock
read_ahead
blk_release

3’
3

5

6
trace file

write 

standard FS
services

kernel mode

user mode

prefetching
driver

caching &

FUSE FS
trace

collector

m
a
k
e gc

c

FUSE 
kernel
module

Figure 1: Key Components of ReplayCache

prefetching strategies can be derived. These strategies can
be compactly stored and applied with small runtime over-
head. We have created a functioning prototype implementa-
tion of ReplayCache based on the FUSE [6] user-level filesys-
tem infrastructure in Linux.

2. DESIGN
The primary components of the prototype we used to test
the feasibility of our idea are shown in Figure 1. Most of
the framework is implemented in user space, minimizing the
amount of changes necessary to the underlying kernel.

Call-site determination and Tracing System: The call-
site determination module is the only major component that
is implemented in kernel space. In recording mode, the user-
mode trace collector module first instantiates the application
(Step 1 in the Figure). All read() and write() system calls
from the application are intercepted (2), the appropriate
signature (hash) for the current thread’s call stack is deter-
mined and exported via a /proc entry (a). For each access,
the module records the inode number to describe the file
being accessed and the logical block number within the file.
The system call is then handed over to the standard file
system components for servicing (3). Simultaneously, the
call-site signatures are read by the trace collector (b) and
written to an application-specific trace file (4). Similarly,
during the replay mode (2, 3’, 5, 6), the call-site signatures
are passed on to the prefetching and caching driver (a, b’).

Pattern Predictor: The pattern predictor (not shown)
post-processes and analyzes the traces recorded by the trac-
ing system. It augments the traces by assigning virtual time
values to each trace event and computes information such
as reuse distance that can be used to predict patterns. This
augmented trace file is then presented to one or more pat-
tern predictors. We designed the pattern predictor interface
to be pluggable, which provides the ability to choose from
different recognition strategies.

Prefetching and Caching Driver: This component is
implemented as a custom FUSE [6] module. During replay,



Figure 2: Predicting Reuse Number From Observed

Call-site Signature

it uses the strategy computed by the predictor and applies
them to a particular workload. This driver performs the
actual caching. It interacts with the kernel’s page cache by
memory mapping files to be cached into its address space.
This mapping will create additional references to the file
data in the page cache. In addition, by pinning the pages,
we remove the kernel’s ability to replace the pages, ensuring
that they stay in physical memory. To replace a page in the
cache when we predict that the data will not be accessed
again, we unpin and unmap the file data first. Then, via a
hook we added to the kernel’s page cache, we request that
the kernel move the block to the list of inactive pages (which
are more likely candidates for eviction).

3. PATTERN PREDICTORS
Our goal is to find predictors that are strong, easy to com-
pute, and which can be stored compactly and do not incur
undue overhead when applied. In addition, these predictors
must yield information that can lead to decisions that are
beyond the capabilities of both conventional caching and
prefetching algorithms and online prediction.
When making a caching decision, the first question to decide
is whether a given block will be accessed repeatedly. Blocks
that aren’t accessed again should not be cached. Moreover,
knowing the exact number of accesses to a block would allow
targeted purging. For blocks that are reused, knowing the
reuse distance can help rank cached data so that data with
smaller reuse distance can be preferred if cached data must
be replaced.
We investigated whether the call-site signature can predict
which strategy to apply. The results of this investigation
are shown in Figure 2 for a workload that traces read()

calls for a run of “make” of the FUSE code itself. We
weighed each PC signature by the amount of data that was
accessed in that context. We partitioned the results in three
groups. Group 1 (Constant) contains those signatures for
which the number of accesses is a constant integer, allowing
the strongest prediction of appropriate caching. Group 2
(Repeated) contains those signatures in which all blocks
are accessed more than one time, but which do not fall in
Group 1. These signatures hint that a block will be accessed
again in the future, although it is impossible to say how of-
ten. Group 3 (Unpredictable) contains those signatures that
contained both blocks that were not reused and blocks that
were reused. For this group, we are unable to predict which
caching strategy to use. Our results show that this simple
strategy would have predicted an exact caching strategy for
51.9% of blocks, and would have provided reuse hints for an
additional 5.7% of blocks.
Although state-of-the-art algorithms such as ARC [5] also
attempt to differentiate between blocks that are accessed
once from those that are accessed more than once, they can

Figure 3: Synthetic Zig-Zag Load

fail if the working set size is larger than the cache (+ his-
tory) size. If this happens, these algorithms may degenerate
to a simple LRU scheme, which is known to make wrong
decisions in such cases.
When making a prefetching decision, we must know if an ac-
cess to a block predicts accesses to some or all of the other
blocks in that file. For the workload considered above, we
found—unsurprisingly—that all files are accessed in their
entirety, making the call-site signature a perfect predictor
by itself. By contrast, the default prefetching algorithm in
the Linux kernel would only prefetch a file if either the file
is small, or if a sequential access pattern is detected. Such
mispredictions may incur considerable runtime cost. We
used our prototype to measure the misprediction penalty
for a synthetic “zig-zag” access pattern in which a file is ac-
cessed in its entirety, but with widely varying offsets between
each access (as would be the case in a naive implementation
of quicksort on a memory-mapped file). Figure 3 shows the
results: whereas the Linux kernel fails to prefetch, simply en-
gaging in a sequential prefetch— which we can predict using
the call-site signature—could improve performance by 56%.

4. STATUS AND CONCLUSION
We believe that record and replay is a strategy that can
improve the I/O performance of frequently recurring work-
loads, which often involve multiple applications. Neither
recording nor replaying requires changes to the applications
themselves. Our current prototype can record pattern and
apply learned strategies. Our initial results indicate that
even simple predictors have the potential for significant per-
formance improvements. Our current research focuses on
the development of more sophisticated predictors, on an
evaluation of ReplayCache’s performance if the replayed work-
load exhibits larger differences from the recorded workload,
and on a in-depth performance comparison with other, pub-
lished caching strategies.

5. REFERENCES
[1] Ali R. Butt, Chris Gniady, and Y. Charlie Hu. The performance

impact of kernel prefetching on buffer cache replacement
algorithms. IEEE TOC, 56(7):889–908, 2007.

[2] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study of
integrated prefetching and caching strategies. SIGMETRICS
Performance Evaluation Review, 23(1):188–197, 1995.

[3] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation
and performance of integrated application-controlled file
caching, prefetching, and disk scheduling. ACM TOCS,
14(4):311–343, 1996.

[4] Chris Gniady, Ali R. Butt, and Y. Charlie Hu.
Program-counter-based pattern classification in buffer caching.
In Proc. 6th USENIX OSDI, 2004.

[5] Nimrod Megiddo and D. S. Modha. ARC: A Self-tuning, Low
Overhead Replacement Cache In Proc. USENIX FAST, 2003.

[6] Miklos Szeredi. FUSE: Filesystem in user space.
http://fuse.sourceforge.net/.


