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Abstract

Operating system memory managers fail to consider
the population of read versus write pages in the buffer
pool or outstanding I/O requests when writing dirty
pages to disk or network file systems. This leads to
bursty I/O patterns, which stall processes reading data
and reduce the efficiency of storage. We address these
limitations by adaptively allocating memory between
write buffering and read caching and by writing dirty
pages to disk opportunistically before the operating
system submits them for write-back. We implement and
evaluate our methods within the Linux R© operating
system and show performance gains of more than 30%
for mixed read/write workloads.

1 Introduction

Scaling trends in processor speed and disk per-
formance (access time and throughput) have brought
write performance into the critical path. Traditionally,
reads have been considered more important than writes:
appropriately given that reads are synchronous and
writes are generally asynchronous. We refer to I/Os as
synchronous and asynchronous to describe whether the
issuing applications or the operating system is block-
ing awaiting their completion. Most cache-management
algorithms focus on directing the population of read
pages [11, 12, 17, 20]. However, as processors increase
in speed, systems have the ability to create dirty pages
at rates well beyond the disk’s ability to clean them.
Gill et al. [8] point out an annual growth rate of
60% for processors and 8% for disk access time. In
such an environment, the synchronous reads depend
upon the asynchronous writes, because (1) dirty pages
consume memory that is unavailable for read caching

and (2) write traffic to clean pages interferes with
read requests. In a sense, there is a priority inversion
[23] between reads and writes to which we need to
apply priority scheduling, preferring reads to writes,
and priority inheritance, performing writes that block
high priority reads.

The static write and flush policies used by operating
system memory managers are insensitive to processes
that are actively reading data, the distribution of read
versus write pages in the buffer pool, and outstanding
I/O requests. This leads to bursty I/O patterns, which
both stall other processes reading data and reduce
the efficiency of storage. For different workloads, the
operating system destages pages either too aggressively
or not aggressively enough. We give several examples
in Section 2.

Operating system caching is no longer a read-only
problem. Operating system memory managers need to
be enhanced to balance read and write workloads and
to define adaptive destaging policies that are sensitive
to workload and the population of read, write and free
pages in memory. Recent research has identified the
importance of improving write performance. Most of
this work addresses write performance independent of
reads, e.g. through improved scheduling [8] or separate
non-volatile caches [4, 6, 22]. Works that consider reads
and writes combined do so in the context of second-
tier caches in order to determine what written data are
likely to be read again [14].

We define an adaptive framework for destaging dirty
pages to disk that reduces the interference of write traf-
fic on read performance and increases the performance
of the I/O subsystem. Depending on the workload,
it controls the aggressiveness of the destaging policy
in order to keep memory available in the page cache
and increases disk throughput, while having a minimal
impact on cache hit rates. The framework dynamically
tunes the allocation of memory between read and write
pages. To do so, it employs several techniques:
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Figure 1: Number of pages under write-back when writing a
512MB file

(1) smart scheduling of asynchronous writes that
adapts operating system destaging policies based
on available memory and workload;

(2) balancing the population of read and write
pages through multiple ghost caches that track the
allocation of memory; and,

(3) opportunistic write scheduling using a unified
memory/device scheduler I/O queue that allows
the I/O system to actively flush dirty pages prior
to the pages being submitted for write-back.

The framework does not define new algorithms for
managing a read cache. Rather, it works with existing
algorithms, e.g. ARC [17], LIRS [11], 2Q [12], adjust-
ing the memory available for read caching. Also, these
techniques do not affect the reliability or durability of
data in that all operating systems policies, e.g. periodic
update deadlines, are enforced.

To demonstrate the benefits of these techniques,
we perform experiments based on microbenchmarks
and macrobenchmarks that capture a wide range of
workloads. Depending on the workload we are able
to improve system throughput by more than 30% on
average. Finally, the results show that our optimizations
are valid not only for local file systems but also for
network file systems, such as NFS.

2 Background: Deferred Writing

We give several examples in which the static poli-
cies used in operating systems result in poor system
performance. We do so by demonstrating that different
workloads require different parameterization of the
same system variables. Our treatment focuses on Linux,
but applies to other operating systems as well. It is also
valid for both local and network file systems.

Modern operating systems defer the writing of dirty
memory buffers to storage because this noticeably im-
proves performance. In doing so, multiple writes to the
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Figure 2: Write latency at each file offset when writing a
512MB file

same page may be aggregated and performed in a single
update. Also, spatially related writes may be performed
together, even when they occur at different times. Write
operations are less critical than read operations, because
a process is not suspended as a consequence of a write
system call, whereas delayed reads block processes.

A dirty page might stay in memory until the last
possible moment—sometimes system shutdown. How-
ever, keeping the page in volatile memory for a long
period of time has two major drawbacks: first, in case
of a failure all unstable updates will be lost and,
second, dirty writes occupy memory pages that could
be better used for read caching or other purposes, such
as anonymous paging.

Traditional UNIX R©[25] systems use a periodic up-
date policy in which individual dirty blocks are flushed
when their age reaches a predefined limit [18]. Modern
systems use an additional criterion to decide when to
destage dirty pages to storage. When the number of
dirty pages in memory exceeds a certain percentage—
the system-wide parameter dirty background ratio in
Linux—a flushing daemon wakes up and starts writing
dirty pages to disk until an adequate number of dirty
pages have reached storage. By this operation, the
flushing daemon ensures that there are always enough
free pages available in order to allocate more memory
to satisfy new reads and writes.

If applications dirty pages faster than the daemon
flushes them to storage, the system will eventually
reach the memory pressure state: the point at which the
maximum allowed number of dirty pages in the system
has been reached. Typically this limit is set close to
half the size of the available RAM. Memory pressure
hampers performance severely because it blocks all
writing applications until there is free space for dirty
buffers in RAM, which effectively makes all write
operations synchronous. Memory pressure has an effect
on reads as well. All pending writes that must be
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Figure 4: Time to compile Apache for ext3 and NFS over
RDMA

written to storage interfere with concurrent reads, which
results in queuing delays at the device level.

Figure 1 highlights the behavior of asynchronous
writes. It shows the number of pages under write-
back as a function of time. During a large file write,
dirty pages are accumulated in memory until the num-
ber of dirty pages exceeds the dirty background ratio
threshold. Then (after a few seconds in Figure 1), the
flushing thread wakes up and starts writing pages to
disk until their number is below the threshold. The
remaining pages are written to the device when the
period that dirty pages are allowed to stay in memory
expires. Figure 2 shows that memory pressure occurs
at two points in time while writing the file, producing
significant increases in latency and, thus, a drop in the
overall throughput.

The value of the dirty background ratio that triggers
the flushing daemon to start the write-out is critical
to system performance. Figure 3 shows the throughput
of a process for writing a 2GB file sequentially under
different values of the flushing threshold. The highest
throughput occurs when the background updates start
as soon as possible. The early start of the flushing op-
eration ensures that there are always enough available
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Figure 5: Average number of disk operations per second when
compiling Apache
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Figure 6: Read throughput for Zipf and sequential access
patterns

memory pages. Figure 4 shows the time required to
unzip and compile the Apache web server under various
values of the same parameter. A less aggressive flushing
policy yields the best performance. This is because the
specific workload exhibits many short-lived files and
block overwrites. More importantly, keeping the data
in memory longer lowers the number of disk I/Os, a
practice that makes buffering essential in the presence
of concurrent I/O intensive processes (Figure 5).

The effect of the parameters on system throughput
is also apparent in the case of NFS/RDMA over Infini-
band. The high bandwidth of the device, significantly
higher than the disk bandwidth especially in the case
of an asynchronous NFS server, makes write buffering
undesirable (Figures 3,4). Thus, the capability of the
storage devices should be another factor in deciding
when to start the write-out process.

An important, but over-looked, issue is the inter-
ference of writes and reads at the memory level.
Asynchronous writes create dirty buffers that stay in
memory for a period of time. This effectively reduces
the number of blocks cached as a result of previous read
operations. Most systems deal with the sharing of RAM
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between write (dirty) and read (cached) pages by setting
a hard limit on the maximum number of dirty blocks
in memory in order to preserve space for frequently or
recently accessed clean pages used to satisfy reads. This
hard limit defines the memory pressure point. Thus,
the decision of how much memory to use for buffering
writes is again critical to the system throughput. Using
more memory for reads allows for more cache. On
the other hand, it causes the system to reach memory
pressure faster.

Figure 6 demonstrates the sensitivity of throughput
to the amount of write buffering allowed by the system.
These IOzone [10] microbenchmarks show the through-
put of a process that performs read and write I/O to two
separate 512MB files. In one case, reads are sequential.
In the other, the location of reads is drawn from a Zipf
distribution. In both cases, writes are sequential. For
sequential reads, more write buffering results in less
competition for the disk bandwidth between read and
background write requests, and, thus, improves perfor-
mance. For Zipf reads, a very aggressive write buffering
policy reduces the cache hit rate of read requests
and hampers performance. However, too little write
buffering does not yield optimal throughput either,
because of the asynchronous nature, writes represent a
background load on disk. The obtrusiveness of this load
is a significant factor on the experienced throughput of
all concurrent synchronous requests. The effect of the
write traffic on the system performance is important
even though, from the application perspective, writes
are completed as soon as the kernel marks the modified
buffers dirty.

Another performance concern—unrelated to system
parameters and valid for local file systems only—is
the selection of dirty pages to destage. The memory
manager does not consider the I/O cost when selecting
the dirty pages to write back to the device. Instead,
it selects pages in the order they were accessed and
submits them to the I/O scheduler which chooses the
sequence of requests to be sent to disk. The memory
manager is oblivious to the I/O cost because it has no
information about which pages reside in the scheduler
queue. On the other hand, the scheduler is able to
reorganize only the buffers that reside on its queues;
it has no knowledge of the memory contents. Dirty
buffers remain in memory until the flushing policy
selects the corresponding page to be written out to
the device. During this period, the I/O scheduler may
serve I/O requests that are physically close to the block
locations of dirty buffered pages. Dirty memory pages,
although proximal to the blocks that are about to be
dispatched to the storage device, cannot be scheduled
for writing. This behavior results in extra disk traffic
and increases the number of disk seeks, because the

dirty pages will eventually reach the disk at a later time
when their flushing condition is met.

Our work modifies the destaging mechanisms of
modern operating systems in order to improve the per-
formance of asynchronous writes and, at the same time,
to ameliorate the effects of the competition between
synchronous and asynchronous requests at the device
and at the memory level. We adaptively tune the write-
back process to take into account current workload
patterns and, as a result, improve write bandwidth and
latency. Also, we develop an algorithm that shares
memory between read and write pages, preserving the
performance of read caching while improving write
throughput. Finally, we implement an architectural
change that integrates the memory manager and the I/O
scheduler in order to make asynchronous writes less
obtrusive, thus, reducing the interference with reads at
the disk level.

3 Adaptive Write Scheduling
We propose a new, adaptive, destaging algorithm

for volatile caches that manage pages in a read-write
cache. Previous studies propose a variety of adaptive
algorithms for write-only, non-volatile caches all of
which attempt to maintain the cache occupancy as high
as possible in order to optimize the order of writes
to disk and minimize the I/O operations [3, 19, 27]. In
non-volatile caches, pages are stable as soon as they
reach memory. Thus, no deadline is assigned to a buffer
and there are no starvation nor reliability issues. These
methods are not directly applicable to our memory
model.

3.1 A Write-Only Cache

At first, we will focus on the simple case where
the memory is used only to accommodate writes.
Subsequently, we enhance the algorithm to optimize
performance in a unified read-write cache.

A destaging algorithm for a write-only memory
cache should keep the cache occupancy as high as pos-
sible to enable ordering optimizations when dispatching
pages. At the same time, it should avoid cache overflow
so that no synchronous writes are forced (memory
pressure). For a destaging mechanism to be effective,
write requests should either be a cache hit or empty
space should be available in the cache so that a new
page allocation succeeds.

Previous work has compared a number of different
destaging algorithms and has shown the performance
benefits of a high-low watermark algorithm [27]. When
the high threshold is crossed, the memory manager
starts writing data out to disk until the percentage of
dirty blocks is below the low threshold. The combina-
tion of two thresholds controls the start and stop of the
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flushing of dirty buffered pages.
The most significant drawback of the high-low

watermark scheme is that both thresholds are time-
invariant. Deciding on the correct values is a hard
problem and, more importantly, their optimal values
depend heavily on the workload (Section 2). Under
light I/O, the high threshold should have a large value
in order to increase the write cache ratio. On the other
hand, under heavy I/O, it is important for the system to
maintain a sufficient number of available clean pages
and a smaller value for the threshold is preferable.

We take a rate-based, adaptive approach to setting
the high watermark, deriving its value from the rate at
which the system dirties pages.

Let h(t) be the value of the time-variant high
watermark and d(t) the rate that processes are dirtying
new pages. This rate is measured by examining the
number of “set dirty bit” operations at every time unit.

For an incoming I/O rate d(t), the value for the high
watermark at the end of the period is h(t). If the data
rate changes, we adjust the value of h(t) based on the
following intuition:

• If d(t) ≥ d(t − 1) then the value of h(t) should
be reduced

• If d(t) ≤ d(t − 1) then the value of h(t) should
be increased

Due to the computational requirements of perform-
ing complex arithmetic calculations in the kernel and
the frequency of the operation, none of the advanced
smoothing algorithms [2] are suitable for adoption.
Control theory methods are also not practical because
the watermark variance is not linear and depends heav-
ily on the workload, making linear approximations hard
[28].

We picked a simple smoothing function to adjust the
high watermark value, based on the statistics we collect
about the incoming data rate. Specifically, we use a
formula for the relative change in the value of h(t) so
that the value of the threshold is inversely proportional
to the change in the incoming data rate.

h(t) = h(t − 1)
d(t − 1)

d(t)

.
We experimented with several different functions

and algorithms to adjust the value of h(t), such as
moving average methods, step functions or exponential
increase and backoff. This simple scheme provides
competitive results along with very low computational
requirements—an important factor given the frequency
of this operation in the kernel. Nam and Park [19]
provide some more mathematical insight to a similar
scheme when describing a destaging algorithm for
RAID-5 arrays. A detailed analytical study of the

watermark variance problem, part of future work, may
highlight areas of improvement and potentially lead to
optimizations to our framework.

We also take a similar adaptive approach to setting
the low watermark, deriving its value from both the
process writing rate and on the I/O rate that the storage
device can sustain. The difference between the low
and high watermark determines the amount of data
to destage upon activation of the write-out process.
The value of the low watermark l(t) cannot be higher
than h(t) and it depends on the the rate c(t) the
memory manager is able to clean pages, i.e. flush data
to the device. If the device can sustain a high I/O rate
compared to the incoming data rate then flushing can
be less aggressive and l(t) can have a higher value.
On the other hand, if the incoming rate is higher than
the outgoing rate, it is essential for the system to make
clean pages available and l(t) should be low. We define
l(t) as:

l(t) = l(t − 1)
d(t − 1)

d(t)

c(t)

c(t − 1)

Again, we experimented with other scaling functions
in adjusting the low watermark, but found that this
simple scheme performed well in practice and has low
computational requirements.

To avoid overtuning the watermarks, we rate limit
the change of h(t) and l(t) so that 1

2
l(t − 1) ≤ l(t) ≤

2l(t− 1) and 1

2
h(t − 1) ≤ h(t) ≤ 2h(t − 1).

The parameter t defines the time at which the
system samples the I/O rates and sets the value of
the watermarks. The value of the interval between two
measurements of the incoming d(t) and outgoing c(t)
rates is critical in how fast the system adapts to the
workload patterns. Frequent measurements allow the
system to adapt more quickly. On the other hand, sam-
pling the page states too often increases computational
overhead.We discuss the importance of the time unit
selection in the experimental section.

3.2 A Read-Write Cache

The goal of a unified read-write caching scheme
differs from that of a write-only cache. A write-only
cache attempts to keep as many dirty buffered pages
as possible without running out of available memory.
A read-write cache must preserve a useful population
of read-cache pages. Reserving more memory pages to
buffer writes reduces cache hit rates, because it reduces
the effective size of the read cache.

We define hmax as the maximum possible occu-
pancy of memory with dirty pages before the write-
back starts, so that the inequality h(t) < hmax is
always valid. We extend the destaging algorithm pre-
sented in the previous section by adaptively varying the
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Figure 7: Using two ghost caches to identify the current working set

maximum occupancy ratio hmax. The intuition behind
varying the hmax value is to provide an upper bound
to the number of dirty pages in memory so that new
dirty pages do not replace pages that are used for read
caching by processes. Based on the fact that a read
blocks the calling application whereas a write does not,
our main goal is to maximize the read hit rate. To do so,
we use a set of heuristics to identify what percentage
of the RAM is actively used by processes to cache read
data.

We use a ghost cache that holds meta-data infor-
mation on blocks recently evicted from the cache (the
ghost miss cache in Figure 7). In this way, we
record the history of a larger set of blocks than can
be accommodated in the actual cache. In the ghost
miss cache, we keep an index of the blocks that were
replaced as a result of write buffering only. If a clean
block is replaced by another block, due to the regular
eviction policy after a read, we do not add it to the
ghost cache.

When a process issues a read, we look at the cache
to determine whether it contains the requested block. If
the block is not found, but it was recently replaced due
to write buffering, its metadata information resides in
the ghost cache. This indicates that if the system were
buffering fewer write pages then this request would
have resulted in a cache hit. An actual cache miss that
hits in the ghost cache indicates that aggressive write
buffering is interfering with read cache performance
and that the value of hmax should be reduced. We note
that our ghost cache does not rely on a specific eviction
policy. It simply tracks recently evicted pages.

The ghost cache contains indexes of already evicted
blocks, and, consequently, the effectiveness of the
scheme is limited, because the signaling of over-
buffering comes too late—the blocks must be fetched
again from the storage device.

To make our scheme more proactive, we introduce
a second ghost cache. For clarity reasons we call the
first cache a ghost miss cache and the second a ghost
hit cache. In contrast to the miss cache, the hit cache
does not contain evicted blocks. Rather, the ghost hit

cache contains the contents of a smaller virtual memory
(Figure 7). The ghost hit cache contains all of the write
buffered pages and the most recent/frequent read cache
pages. The memory area outside of the ghost hit cache
contains the least recent/frequent read cache pages. As
an extreme example, if all the hmax fraction of the
available memory contained dirty buffered pages then
all read cache hits would occur in the reserved area.

The ghost hit cache allows us to detect the potential
negative effects of aggressive write buffering prior
to incurring penalties from cache misses. If all read
requests hit in the ghost hit cache then a smaller amount
of memory would capture the current working set and
more write buffering can be allowed. Alternatively, read
requests that are cache hits but are misses in the ghost
hit cache indicate that further write buffering, shrinking
the available read cache, will probably result in reduced
cache hit rates, because the effective memory space for
read caching is running out. Read cache hits both inside
and outside the ghost hit cache scale the amount of
memory available for write buffering and read caching
based on the current memory usage and workload.

Our ghost hit cache works for all modern read
caching algorithms that maintain recency and/or fre-
quency queues. Our implementation derives the ghost
hit cache and reserved regions from Linux’s two queue
approximate LRU implementation, which identifies the
pages that would be evicted were the memory smaller.
Many other recency and frequency based caching algo-
rithms [11, 12, 17, 20] make similar information avail-
able.

We vary the value of hmax(t) based on the hit rates
of the two ghost caches as follows:

hmax(t) = hmax

(
1 −

C(t) − GH(t) + GM(t)

reads(t)

)

in which C(t), GH(t), and GM(t) are the number of
hits in the page cache, ghost hit cache, and ghost miss
cache, reads(t) is the number of total read requests
during the last time interval respectively. The quantity
C(t) − GH(t) + GM(t) counts the read requests that
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fall into the reserved area and in recently evicted pages.
A large fraction of read requests falling in these regions
indicates that aggressive write buffering is consuming
memory in the ghost hit cache needed for read caching
or that the current working set is larger than the
available memory in the ghost hit cache.

We note that hmax(t) is always lower than hmax.
hmax(t) reduces the high threshold based on the dis-
tribution of reads in the previous time period only. If
there are no read requests, the value defaults to hmax.
Thus, the initial value hmax should indicate the highest
possible amount of RAM that the system administrator
wants to devote to buffering. To avoid pathological
cases that arise when over-tuning hmax(t), we rate
limit the change so that 1

2
hmax(t − 1) ≤ hmax(t) ≤

2hmax(t − 1).
Our implementation sets the ghost hit cache size

to be an hmax fraction of the available memory. The
ghost miss cache keeps an index of the blocks that
would remain in the cache if the amount of available
RAM were larger by 20%. The size of the ghost caches
affects the responsiveness of the system in case of cache
misses. In a small ghost cache, a few missed reads will
force write buffering to be less aggressive. On the other
hand, a larger cache requires a higher number of misses
to limit write buffering.

The value of the static hmax parameter should
depend on the relative cost of reads and writes in the
system. In a RAID-5 system in which writes are expen-
sive, more buffering space will improve performance.
On the other hand, if a log-structured file system is
used, more space should be devoted to read caching. In
the results section we provide more information about
the importance of parameter selection.

Finally, it is important to differentiate between the
hmax threshold and the memory pressure point at which
all writes become synchronous until enough pages are
freed. Our framework does not stall writes even if they
occupy more than hmax percent of the cache size, it just
mandates more aggressive write-back. In the AWOL
implementation, we define the memory pressure point
hpres = Cachesize−hmax

2
. If the number of dirty pages

reaches hpres buffered writes become synchronous.

4 Opportunistic Queuing
Our adaptive high-low watermark algorithm at-

tempts to optimize the write-out of dirty pages by
deciding when to start the destaging process (high wa-
termark) and how much data to flush (low watermark).
Deciding what to destage is another important factor
that affects the system performance. For example, it
is preferable to flush a buffer that is physically close
to a stream of read requests currently being serviced
by the disk. This kind of optimization is not feasible

in the memory, because the memory manager has no
knowledge of file system and device characteristics, e.g.
the device LBN corresponding to a dirty page. Our
framework addresses this problem by delegating the
responsibility of selecting which pages to be cleaned to
the I/O scheduler. We achieve this by introducing a uni-
fied memory-scheduler queue. We have implemented
our modifications, valid for local file systems only, in
Linux. However they apply to most operating systems.

A typical I/O scheduler differentiates between syn-
chronous (read) and asynchronous (write) requests by
using two separate sets of queues for each type of
request. Synchronous requests have a short deadline,
on the order of microseconds, so that requests are
dispatched quickly and the application does not block
waiting for the operation to complete. On the other
hand, asynchronous operations have less strict dead-
lines, on the order of a few milliseconds, depending on
the scheduler’s policy.

In both queues, the I/O scheduler keeps the list of
pending I/O requests sorted by logical block number.
When a new I/O request is issued, it is inserted into the
LBN sorted list of pending requests. This prevents the
drive head from seeking all around the disk to service
I/O requests. Instead, by keeping the list sorted, the
disk head moves in a straight line around the disk. If
the hard drive is busy servicing a request at one part of
the disk and a new request comes in to the same part
of the disk, that request can be serviced before moving
off to other parts of the disk.

We enhance the scheduler by adding a third queue
for pages, namely the opportunistic queue. This queue
maintains an LBN sorted list of pages that are in
memory and have not yet been submitted to the device
for write-back. When an application issues a write, the
kernel marks the buffers dirty and, at the same time,
it places a pointer to the buffers in the opportunistic
queue. In contrast to the conventional scheduler queues,
requests in the opportunistic queue do not have an
assigned deadline. Requests may remain in the queue
until the memory manager dispatches the corresponding
page to the storage layer. Then, the buffer is moved to
the asynchronous list and its priority is determined by
the scheduling algorithm.

When the scheduler is ready to dispatch the next
request from the pending queue, it searches both the
asynchronous and the opportunistic list for requests
that are close to the one that is about to be issued.
Figure 8 illustrates this process—it represents a single
queue at the device for simplicity. The spatial criterion
for proximity follows the same policy that current
schedulers use and is based on the logical block number
(LBN). Head positioning information and knowledge
about the physical layout on the disk are not available
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Figure 8: Opportunistic queuing

at this layer. Prior studies have proved the efficacy of
a scheduling scheme based on LBNs [8, 15].

If one or more proximal requests are found, the
I/O scheduler adds them into the dispatch list and
removes them from the opportunistic queue. After the
I/O is complete, it notifies the memory manager that
the corresponding page is clean, so that the dirty
bit is removed. If no appropriate request is found
in the opportunistic list, the scheduler moves on to
the next request in the synchronous queue. There is
no performance penalty when no dirty buffered pages
are dispatched; the opportunistic queuing scheme is
an optimization, requiring only a few bytes of extra
memory to keep the index of the buffer heads.

We implemented opportunistic queuing by modify-
ing the deadline scheduler. Note that, this optimization
requires modification to the data structures and logic
of the scheduler but makes no assumption about the
scheduling algorithm itself. Therefore, this mechanism
is applicable to I/O schedulers in general and to the
other Linux I/O schedulers in particular. In order to
decide which requests to consider proximal, we select
a simple criterion: its LBN must lie between those of
the two next requests to be dispatched to the device.

The opportunistic queuing mechanism allows the
system to commit pages to stable storage prior to them
being submitted for write-back. This minimizes the
interference of reads and writes at the disk level. The
unified memory/scheduler queue reduces the average
time for writes by ordering requests to the disk so that
the service time for each request is minimized.

5 Evaluation
We have implemented our proposed changes in the

2.6.21 Linux kernel. We ran the experiments on a
dual-core Xeon R© machine with 2GB of RAM out of
which about 1.5GB can be used for the page cache.

The rest of RAM is reserved for the operating system
itself and for running applications. For experiments on
a local file system, we used a dedicated SATAII-300
hard drive. To evaluate our framework in a heteroge-
neous environment, we also performed measurements
over the Network File System (NFS) using two dif-
ferent networks: gigabit Ethernet and 10-Gbps Infini-
band. For Infiniband, we measured the performance
of NFS/RDMA: a high-bandwidth, low-latency setup.
The NFS server has 8GB of RAM and exports the
filesystem asynchronously. By performing memory-to-
memory operations (NFS client to NFS server), we
measured the performance of the memory optimizations
without the bottleneck of the disk device. Finally,
throughout the experiments, we adjusted the value of
the watermarks every one second. We experimented
with different values of this parameter later in this
section.

In order to evaluate our solution, we performed a
series of microbenchmark and macrobenchmark ex-
periments. The first set of experiments were based
on IOzone: a popular benchmark suite that measures
throughput and latency of I/O operations.

We use the following IOzone microbenchmarks:

• No Reader, Sequential Writer (NRSW): One
process writing to a 1GB file sequentially.

• No Reader, Zipf Writer (NRZW): One process
writing 1GB worth of data according to a Zipf
distribution. Thus, certain popular blocks receive
many accesses.

• No Reader, Variable Writers (NRVW): Several
IOzone clients executing the NRSW or the NRZW
workloads at random intervals. Each process uses
a file between 100MB and 512MB in size. There
are always between five and eight processes run-
ning in the system.

• Sequential Reader, Sequential Writer (SRSW):
Two processes reading and writing different 1GB
files sequentially.

• Random Reader, Random Writer (RRRW):
Two processes reading and writing different 1GB
files randomly.

• Zipf Reader, Zipf Writer (ZRZW): Two pro-
cesses reading and writing different 1GB files
according to a Zipf distribution.

• Variable Readers, Variable Writers (VRVW):
Several IOzone clients executing the SRSW or
the ZRZW workloads at random intervals. Each
process uses files between 100MB and 512MB
in size. There are always between five and eight
processes running in the system.
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Figure 9: Throughput of a sequential writer (NRSW)
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Figure 10: Throughput of a Zipf-distribution writer (NRZW)

5.1 The Adaptive High-Low Watermark Algorithm

First, we evaluate the effectiveness of the adaptive
high-low watermark (AHLW) destaging algorithm us-
ing the IOzone workloads that perform writes only
(NRZW and NRSW). These experiments do not use our
read-write caching or scheduling optimizations. Figure
9 shows the throughput of Default, Optimal and AHLW
under a sequential write (NRSW) workload. Default
is the mainstream kernel with the default settings for
deciding when to start the writeout (10% of available
RAM). In Optimal, we have modified the value of
the dirty background ratio to the optimal setting for
this particular workload, which is 1%. We derived this
number by manually altering the value of the parameter
and rerunning the experiment until the highest through-
put has been reached. Finally, AHLW is our modified
version of the Linux kernel. AHLW performs almost
as well as the optimal setup for the Linux kernel.

Figure 10 compares the throughput of Default, Op-
timal, and AHLW but this time under a workload that
exhibits many rewrites (NRZW). AHLW throughput
is slightly higher than Optimal—the optimal value of
the dirty background ratio in this experiment is 41%.
This is because the default Linux kernel uses a single
threshold as opposed to the double watermark config-
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Figure 11: Variance of the high watermark for the NRSW,
NRVW workloads and comparison with the optimal water-
mark values
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and GHOST (ZRZW)

uration. The double threshold decouples the decision
of when to destage pages from how many pages to
destage.

We now examine the performance of the weighting
function that controls the high watermark. For the
NRSW and NRVW benchmarks we plot the value of
the watermark along with the optimal watermark value.
We computed the optimal value by manually adjusting
its value, rerunning the experiment from each time
point and examining the number of destage I/Os, for
each value. This optimal value is dynamic, whereas
Figures 9, 10 use a static optimal. Figure 11 shows
that in the case of a steady-rate workload (NRSW), the
adaptive watermark quickly converges to its optimal
value. For the variable rate workload (NRVW), the
figure shows that there is room for improvement in the
AWOL framework for a non-static workload.

5.2 The AHLW Algorithm with Ghost Caching

We now concentrate on the effect of write buffering
on the cache hit rate. Specifically, we measure the
system throughput and the cache hit rate under a
workload that includes many re-reads and re-writes
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Figure 13: Execution times of Default, AHLW and GHOST
under a read-write workload (ZRZW)
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Figure 14: Variance of the high and low watermarks in
GHOST (ZRZW)

(ZRZW). We compare Default, AHLW with hmax =
0.3, AHLW with hmax = 0.6, and GHOST: the Linux
kernel enhanced with both the adaptive watermarks and
the ghost caching optimizations. For AHLW the hmax

value is static.
In this scenario, the cache hit rate affects the per-

formance dramatically. Figure 12 plots the cache hit
rate for each of the configurations. GHOST achieves
the highest hit rate. In contrast, AHLW with hmax =
0.3 yields the lowest hit rate but provides the fastest
writes (not shown). Overall, GHOST provides the best
performance. The slower the device the more evident
are the advantages of ghost caching (Figure 13).

Figure 14 shows the variation of the high and low
watermarks in GHOST as a function of time for the
last experiment. Due to block reuse (cache hits), the
rate of incoming I/O requests is not constant and the
watermarks increase and decrease. Also, the sudden
rises and drops in the value of h(t) are due to the hmax

constraint imposed by the ghost caching algorithm. The
value of the low watermark shows more instability due
to the non-constant rate that the device sustains for
random writes and reads.

Lastly, Figure 15 shows the read throughput of
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the relative read-write cost (ZRZW)
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Figure 16: Comparison of the read and write throughput with
and without opportunistic queuing (RRRW)

GHOST in the ZRZW benchmark for different values
of the hmax parameter as a function of the disk
read/write cost. In systems where disk writes are more
efficient than reads, e.g. log-structured designs, it is
important to maintain a high cache hit ratio, and, hence,
the value of hmax should be relatively low. In contrast,
in systems where writes are expensive, e.g. RAID-5,
the system should allow for more buffering. For this
experiment, we artificially delay its type of request
in the kernel to simulate the different environments.
Our adaptive scheme adjusts the hmax(t) value to the
experienced workload. In general, the hmax parameter
should be set to a high value (greater than 0.4 of the
available memory).

5.3 I/O Scheduler Optimizations

We now assess the effectiveness of the I/O scheduler
optimizations using the RRRW workload. The Linux
kernel enhanced with the opportunistic queuing mech-
anism performs 20% fewer disk operations than the
unmodified kernel. As a result, throughput is improved
by more than 35% for reads (Figure 16). Random writes
that are proximal to reads are scheduled immediately.
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for Default and AWOL
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Figure 18: Number of destage I/Os per time unit as a function
of time (VRVW)

This reduces the contention for disk bandwidth be-
tween reads and asynchronous write operations. Write
throughput increases only modestly, because all write
operations are asynchronous.

5.4 Putting it All together

We compare the performance of AWOL, our com-
plete framework, with the unmodified Linux kernel.
First, we compare the execution times of the SRSW and
ZRZW workloads in ext3. Figure 17 shows that AWOL
yields close to 35% improvement when compared
with unmodified Linux for Zipf-distributed reading and
writing (ZRZW). The performance improvement for
sequential reading and writing (SRSW) is close to
10%. For SRSW, the superior performance arises from
scheduler optimizations alone, because there are no
potential benefits from read caching.

In the next experiment we examine AWOL’s perfor-
mance under a variable rate (VRVW) workload. Figure
18 plots the number of I/O destages (reads or writes)
per time unit as a function of the time. The rises and
drops in the graph show the changing data rate. A
higher rate leads to more I/Os being dispatched to the
device. AWOL performs fewer destage I/O operations
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Figure 19: Average response times with a variable I/O rate
(VRVW)
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Figure 20: Throughput comparison under different values of
the sampling interval (NRSW,NRZW)

than Linux on average. Figure 19 shows the user-
perceived response times for the same experiment.
All writes are buffered and complete in microseconds.
Higher cache hit rates (ghost caching) and more effi-
cient I/O scheduling (opportunistic queueing) result in
much shorter average read response times for AWOL.

5.4.1 Adjusting the Sampling Frequency

Finally, we examine the importance of the sampling
frequency. Figure 20 shows the throughput of the
system under different values of this parameter for
the NRSW and NRZW workloads. For the sequential
writer example, frequent measurements allow the sys-
tem to reach the optimal watermark value faster, at
a price of higher CPU consumption (Figure 21). For
a Zipf writer, too frequent measurements are prone
to overtuning the watermarks, which results to lower
throughput. For a read-write workload (ZRZW) with
many re-reads, the cache hit rate is not affected by the
sampling frequency (Figure 22). As with other system
parameters, the optimal value of the sampling period
depends on the experienced workload. In practice, a
value of 1 second provides good throughput along with
low computational requirements.
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Figure 21: CPU consumption for AWOL under different
values of the sampling interval (NRSW)
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Figure 22: Cache hit rates for AWOL under different values
of the sampling interval (ZRZW)

5.5 Macrobenchmarks

In the next experiment, we measure the time to
untar and compile the Linux 2.6.20 kernel. This real-
world workload exhibits lots of overwrites and inter-
mediate, short-lived files. It accesses data sequentially
(for the most part) with reads and writes interleaved.
We compare the performance of Default and AWOL.
The scheduler and destaging algorithm optimizations
enable AWOL to reduce the execution time by almost
21% when compared with Default. Ghost caching also
has some effect on this experiment. The cache hit rate
(for both read and writes) is improved by 12%.

We also run TPC-C [26], a data-intensive, online
transaction processing benchmark, for approximately
one hour on a Postgres database. TPC-C issues small
4 KB random I/Os, two thirds of which are reads.
The metric for evaluating TPC-C performance is the
number of transactions completed per minute (tpmC).
The amount of RAM available is critical to the reported
performance. In our case, RAM covers only 20% to
30% of the working set. Figure 23 shows the throughput
of unmodified Linux relative toAWOL for ext3 and
NFS-RDMA. Our results are normalized because the
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Figure 23: Performance of the TPC-C benchmark

test is unaudited. AWOL improves performance by
more than 25%. The average value of h(t) is 0.03 and
its max value reaches 0.4. For the low threshold these
values are 0.01 and 0.3 respectively. The performance
difference of Default and AWOL comes as no surprise
given the data-intensive nature of the benchmark.

6 Related Work
Early works that compare write-back caching ob-

serve that using cache memory for dirty pages may
reduce read hit rates and identify that reads are more
important than writes [13]. In fact, this was one of the
fundamental arguments to continue using write-through
caching.

Concerns about running out of available memory for
dirty data, which results in slow write-back and stalls,
arise first in processor caches, owing to their smaller
sizes. Skadron [24] proposes the allocation of additional
memory for dirty data and lazy retirement policies to
mitigate these effects.

The periodic update policy used by most operating
systems, e.g. every 30 seconds, leads to I/O bursts
that can hamper system performance. Through analysis
and simulation, Carson and Setia [5] showed that for
many workloads periodic updates from a write-back
cache perform worse than write-through caching. They
suggest two alternate disciplines: (1) giving reads non-
preemptive priority and (2) interval periodic writes in
which each write gets its own fixed period in the cache.
The first may starve writes indefinitely. The second
requires complex queuing and timing mechanisms, but
does stagger writes in time, assuming that pages are
dirtied over time. Mogul [18] implements an approx-
imate interval periodic write-back policy that staggers
writes in time using a small (one second) timer. His
evaluation shows that interval periodic writes reduce
both response time and its variance.

Golding et al [9] propose to delay write-back until
the system reaches an “idle” period. This reduces the
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delays seen by reads by delaying competing writes
until idle periods, possibly with the help of non-volatile
memory. One aspect of AWOL defers write-back to
the same effect. However, AWOL also writes more
aggressively at times and adaptively chooses between
deferring and aggressively writing pages.

The notion of write-performance dominating overall
system performance has a long history in file and
storage system design. We invoke the same scaling ar-
guments as do other researchers. As processors increase
in speed relative to disk or network throughput, they
dirty pages faster than the storage subsystem can clean
them. This makes write performance the overall system
bottleneck. Ousterhout [21] invokes this argument in
the original paper on log-structured file systems.

Non-volatile memory (NVRAM) offers one way to
improve write-performance and tolerate write bursts
by making data persistent without sending it to disk
[4, 6, 22]. Because NV-RAM is more expensive than
regular RAM and the read cache does not need to be
persistent for correctness, NVRAM systems partition
memory into a volatile read cache and a non-volatile
write cache. Thus, they do not consider the balance of
read and write pages in a shared memory. Again owing
to its cost, NVRAM also tends to be deployed in server
systems or in hybrid disk devices, whereas we focus on
the adaptive allocation of memory within the operating
system.

RAID controllers that use non-volatile memory for
writes employ adaptive destaging policies that either
vary the rate of writing [27] or the destage thresholds
[19] based on memory occupancy and filling and drain-
ing rates. Such systems have quite different goals from
ours, because cached writes are persistent. They wish
to delay destaging data as long as possible. In contrast,
operating system memories contain volatile writes and,
thus, must destage data more aggressively consistent
with operating system age thresholds.

Also for RAID controllers, Gill et al. [8] integrate
recency into disk scheduling algorithms in order to
aggregate multiple writes to data prior to destaging
the data to disk. In the context of RAID controllers,
writes are particularly expensive as they involve disk
seeks among all disks in the RAID group. In our
opportunistic queuing optimization (Section 4), we also
employ information about page state into making write
scheduling decisions. However, Gill et al. do so to
delay writing pages that may be re-written and are in
NVRAM. We use it to perform opportunistic writing
when writes will be inexpensive because the disk head
is already near the write location. Alonso and Santonja
[3] also use recency of write access to defer writing
data for pages written multiple times.

Free-block scheduling [16] describes a framework

for enhancing disk head utilization and throughput by
interposing background reading/writing tasks into the
request stream. The authors include write-back as one
of many possible uses. The disk write discipline of
AWOL’s opportunistic queuing mechanism is similar
in concept to freeblock scheduling. In fact, we could
incorporate freeblock scheduling to implement a more
sophisticated version of our queuing optimization that
uses more accurate information about the position and
activity of the disk head. In contrast to freeblock
scheduling, AWOL changes the fundamental write-
scheduling framework. Pages are grabbed out of the
page cache and queued immediately before the oper-
ating system submits them for write-back. In addition,
our simple implementation, based on LBN alone, pro-
vides good empirical results without the complexity
of implementing freeblock scheduling outside of disk
firmware [15].

Recent caching work has explored the adaptive
allocation of memory between recency and frequency
for read pages. Two queue (e.g. 2Q [12]) versions of
LRU split the LRU queue into a lower queue for pages
accessed once (recency) and a higher queue (frequency)
for pages accessed more than once. Several papers
(ARC [17], LIRS [11]) size these queues adaptively
in response to workload shifts. They do not consider
the allocation of memory for write pages.

None of the described research balances the pop-
ulation of read and write pages in a shared memory
and dynamically allocates memory across these classes
of pages. EMC’s Enginuity [7] is the exception. This
storage controller manages a global memory for reads
and writes, allowing the region used for non-volatile
writes to grow and shrink over time in response to
workload shifts. No algorithms or details are given.

Li et al. [14] classify writes by type in order to
better manage a second-tier read cache. Writes that
correspond to dirty pages that are evicted from a first
level cache are good candidates for caching at the
second tier, whereas writes that periodically clean dirty
pages are poor candidates, because those pages are
likely still cached at the first tier. Our system also
implicitly classifies writes but in different dimensions.
We are concerned with whether writes are synchronous,
blocking an application, or asynchronous. We do not
use explicit hints.

Finally, ghost caching has been used quite exten-
sively to track pages beyond the size of available
memory. Megiddo and Modha in ARC [17] provide
an overview of the use of shadow (ghost) caches in
the many read-caching algorithms that balance multiple
queues. Wong and Wilkes [29] use the technique for
exclusive caching in a hierarchy of caches. The major
difference is that AWOL maintains two ghost caches;
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a larger cache to detect misses that would be hits in a
larger cache (similar to previous uses) and a smaller
ghost cache to detect hits that would be misses in
a smaller cache. The latter technique allows AWOL
to detect when increased write-back caching would
degrade cache hit rates and prevents AWOL from
consuming too much memory for dirty data.

7 Conclusions
In this paper, we demonstrate how the static write

policies used by the memory manager do not adapt well
to the variable workloads modern operating systems ex-
perience. Overly aggressive write buffering eliminates
the effective space for caching and hurts performance.
On the other hand, if the memory manager starts the
destaging process too early, the background write load
interferes with foreground reads.

Our modifications to the memory manager and I/O
scheduler enable the system to automatically tune the
destaging process, depending on the workload. Our
framework minimizes the interference of read and write
traffic at the device level and also maximizes cache hit
rates.

We implemented our changes to the memory man-
ager and I/O scheduler in the 2.6.21 Linux kernel.
We will make these changes available to the Linux
community prior to the publication of these results
under the GNU General Public License [1], which
means that the source code will be freely-distributed
and available.
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