
SeFS: Unleashing the Power of 
Full-text Search on File Systems

USENIX FAST ’07 (WiP)

Stergios V. Anastasiadis 
(joint work with G. Margaritis)

U. Ioannina, Greece



Motivation

• Full-text search in modern systems often used for
– Email
– Application help files
– Log files
– Any file that contains text
– ...

• Maybe full-text search should 
– Receive the attention it deserves from system designers
– Be made available as general system service to developers 

02/14/2007 (c) S. V. Anastasiadis 2



File System Features

• File size
– Most files are small BUT
– Most bytes are in large files

• File lifetime
– Is highly variable across different systems
– Varies from minutes to years
– Has median age = tens of days

• User expectations
– Perceive the file system as a reliable “storage medium”
– Anticipate changes to be made visible almost immediately

02/14/2007 (c) S. V. Anastasiadis 3



Attempt #1: Information Retrieval

• Upside
– Online support of Boolean queries and dynamic updates
– Mature technology (first ACM-SIGIR in 1978)

• Downside
– Technology initially developed for article archives
– “Dynamic update” mainly means addition of new articles
– Indexing structures biased from decade-old studies to serve 

the above assumptions

02/14/2007 (c) S. V. Anastasiadis 4



Index Maintenance in IR
• Inverted files

– Map terms to term positions in documents (posting lists)

• Decades ago
– Updated infrequently to include new articles
– Contiguously stored on disk to minimize query time

• Recently
– Updated dynamically to include new articles BUT
– Treating document changes as insertions/deletions
– Use complex relocation techniques to preserve contiguity

02/14/2007 (c) S. V. Anastasiadis 5



Question

• Why not allocate posting lists on fixed-size blocks?
– Avoid data relocation during inserts/appends
– Amortize disk seeks over large block sizes
– Simplify system structure without major performance penalty

• Several I/O demanding systems based on blocks
– Database systems
– The Google File System (chunks of 64MB)
– Video streaming storage
– …

02/14/2007 (c) S. V. Anastasiadis 6



Attempt #2: Web Search

• Upside
– Technology can handle large data sets
– Search results quite close to user expectations

• Downside
– The web is perceived as unreliable; infrequent updates ok
– Distributed nature make stats gathering difficult
– Dedicated hardware devoted to indexing

• Bottom line
– Despite commonalities, file systems differ from the web
– Exploit strengths without adopting weaknesses

02/14/2007 (c) S. V. Anastasiadis 7



Attempt #3: Relational Databases

• First approach
– Store all system metadata on a relational database system

E.g. SRB/SDSC, SCFS/MIT, Amino/Stony Brook
– Ok for ftp-like services
– BUT maybe too heavyweight for fine-grain accesses

• Why?
– File systems custom-developed/optimized for handling their 

metadata

02/14/2007 (c) S. V. Anastasiadis 8



Relational Databases (cont’d)

• Second approach
– Keep system metadata on custom file-system structures
– BUT maintain user metadata in a database
– Maybe ok but still insufficient for full-text search

• Why?
– Full-text search more than a few attribute/value pairs per file
– Inverted files most efficient structure for large text collections 

02/14/2007 (c) S. V. Anastasiadis 9



Conclusion

• File systems
– More flexible in their functionality than article repositories
– More reliable and amenable to stats gathering than the web
– More efficient in fine-granularity operations than RDBs

• Full-text search on file systems
– Useful for different applications and system services
– Should be designed from scratch, free from inherent 

drawbacks of solutions from other environments

02/14/2007 (c) S. V. Anastasiadis 10


	SeFS: Unleashing the Power of Full-text Search on File SystemsUSENIX FAST ’07 (WiP)
	Motivation
	File System Features
	Attempt #1: Information Retrieval
	Index Maintenance in IR
	Question
	Attempt #2: Web Search
	Attempt #3: Relational Databases
	Relational Databases (cont’d)
	Conclusion

