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Motivation
❖ Large systems hard to secure

• Upwards of hundreds of thousands of nodes
• Peta- to exabytes of data, gigabyte size files
• Files striped across thousands of devices

❖ HPC workloads are demanding
• Highly Parallel
• Bursty, flash crowds, short inter-arrival times
• Large, long lasting I/O

❖ How do we scale security for such a file system?
• Maat - security for big, parallel file systems
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Extended Capabilities

❖ Reduces capability generation
❖ Authorize I/O for any number of users and files
❖ Secured w/ asymmetric cryptography
❖ Enforces confinement w/ Merkle hash trees
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Automatic Revocation

❖ Revocation is scalable
❖ Capabilities have short lifetimes
❖ expiration = revocation
❖ Shift problem from revocation to renewal
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Scalable, Secure Delegation

❖ Secure group computation
❖ Open a file on behalf of many
❖ Delegate key pair rather than capability alone
❖ POSIX I/O extension: openg() and openfh()
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Status
❖ Initial design discussion in an earlier paper

❖ Being implemented in Ceph petascale, parallel file system

❖ Future work:
• Scalable on-disk security
• Explore untrusted remote storage

❖ Questions?
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