
Scaling Security for Big, 
Parallel File Systems

Andrew Leung and Ethan Miller
University of California, Santa Cruz

{aleung, elm}@cs.ucsc.edu
FAST 2007 Work-in-Progress



Motivation
❖ Large systems hard to secure

• Upwards of hundreds of thousands of nodes
• Peta- to exabytes of data, gigabyte size files
• Files striped across thousands of devices

❖ HPC workloads are demanding
• Highly Parallel
• Bursty, flash crowds, short inter-arrival times
• Large, long lasting I/O

❖ How do we scale security for such a file system?
• Maat - security for big, parallel file systems

2



Extended Capabilities

❖ Reduces capability generation
❖ Authorize I/O for any number of users and files
❖ Secured w/ asymmetric cryptography
❖ Enforces confinement w/ Merkle hash trees

3

open()open()open()

Extended
Capability

Cap Cap Cap

Users root hash
Files root hash

Mode
T_start, T_end

Signature

Authorize I/O 
for multiple 
users & !les

Verify Sign

Cache Cap

Perform I/O

MDS

OSD

Client



Automatic Revocation

❖ Revocation is scalable
❖ Capabilities have short lifetimes
❖ expiration = revocation
❖ Shift problem from revocation to renewal

4

MDS

Client

OSD

T1
C1C2 C3

T2
C2 C1 C3 !"#"$%&%'%()*(+#%,(*"'*-.

C4

C4

/(0(1"&
/(23()'

!45*!6
7+'(0)%809:;5

7+'(0
9:;5
7+'(0

9:;5
7+'(0

C1 C4 C6

C5 CnC1
T2, T3

7+'(0)%80*<8,
0*="#)*30'%&
'%>(*-?



Scalable, Secure Delegation

❖ Secure group computation
❖ Open a file on behalf of many
❖ Delegate key pair rather than capability alone
❖ POSIX I/O extension: openg() and openfh()

5

Comp Prv Key

Comp Pub Key

openg()

Comp
Pub
Key

Client creates
Pub/Prv compute keys

Client

MDS

OSD

File Handle

Path, Mode
Capability
T_s, T_e
Signature

Cap names
comp pub key

File
Handle,
Prv Key

I/O I/O I/O



Status
❖ Initial design discussion in an earlier paper

❖ Being implemented in Ceph petascale, parallel file system

❖ Future work:
• Scalable on-disk security
• Explore untrusted remote storage

❖ Questions?

6


