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MEMS-based storage devices and standard disk interfaces:
A square peg in a round hole?

Steven W. Schlosser, Gregory R. Ganger
Carnegie Mellon University

Abstract

MEMS-based storage devices (MEMStores) are sig-
nificantly different from both disk drives and semicon-
ductor memories. The differences motivate the ques-
tion of whether they need new abstractions to be utilized
by systems, or if existing abstractions will be sufficient.
This paper addresses this question by examining the fun-
damental reasons that the abstraction works for existing
devices, and by showing that these reasons also hold for
MEMStores. This result is shown to hold through sev-
eral case studies of proposed roles MEMStores may take
in future systems and potential policies that may be used
to tailor systems’ access to MEMStores. With one noted
exception, today’s storage interfaces and abstractions are
as suitable for MEMStores as for disks.

1 Introduction
MEMS-based storage devices (MEMStores) offer an
interesting new component for storage system design-
ers. With tiny mechanical positioning components,
MEMStores offer disk-like densities (which are consis-
tently greater than FLASH or MRAM projections) with
order of magnitude latency and power reductions rela-
tive to high-performance and low-power disks, respec-
tively. These features make MEMStores worthy of ex-
ploration now, so that designers are ready when the de-
vices become available.

A debate has arisen, during this exploration, about
which form of algorithms and interfaces are appropriate
for MEMStores. Early work [11, 28] mapped the linear
logical block number (LBN) abstraction of standard stor-
age interfaces (SCSI and IDE/ATA) onto MEMStores,
and concluded that MEMStores looked much like disks.
From anecdotal evidence, it is clear that many re-
searchers are unhappy with this; since MEMStore me-
chanics are so different from disks, they assume that
MEMStores must need a new abstraction. Several
groups [14, 29, 35] are exploring more device-specific
approaches. As is often the case with such debates, we
believe that each “side” is right in some ways and wrong
in others. There is clearly a need for careful, balanced
development of input for this debate.

We divide the aspects of MEMStore use in systems
into two categories: roles and policies. MEMStores can

take on various roles in a system, such as disk replace-
ment, cache for hot blocks, metadata-only storage, etc.
For the debate at hand, the associated sub-question is
whether a system using a MEMStore is exploiting some-
thing MEMStore-specific (e.g., because of a particularly
well-matched access pattern) or just benefitting from its
general properties (e.g., that they are faster than current
disks). In any given role, external software uses various
policies, such as data layout and request scheduling, for
managing underlying storage. The sub-question here is
whether MEMStore-specific policies are needed, or are
those used for disk systems sufficient.

The contribution of this paper is to address this core
question about the use of MEMStores in systems:

Do MEMStores have unique, device-specific
characteristics that a computer system de-
signer should care about, or can they just be
viewed as small, low-power, fast disk drives?

Of course, MEMStores may realize performance and
power characteristics that are unachievable with real
disk technologies. The question restated, then, is: would
a hypothetical disk, scaled from existing technology to
the same average performance as a MEMStore, look
the same to the rest of the system as a MEMStore? If
MEMStores have characteristics that are sufficiently dif-
ferent from disk drives, then systems should use a differ-
ent abstraction to customize their accesses to take advan-
tage of the differences. If MEMStores do not have suffi-
ciently different characteristics, then systems can simply
treat MEMStores as fast disks and use the same abstrac-
tion for both.

To help answer this question, we use two simple ob-
jective tests. The first test, called the specificity test,
asks: Is the potential role or policy truly MEMStore-
specific? To test this, we evaluate the potential role or
policy for both a MEMStore and a (hypothetical) disk
drive of equivalent performance. If the benefit is the
same, then the potential role or policy (however effec-
tive) is not truly MEMStore-specific and could be just
as beneficial to disk drives. The second test, called the
merit test, asks: Given that a potential role or policy
passes the specificity test, does it make enough of an
impact in performance (e.g., access speed or energy con-
sumption) to justify a new abstraction? The test here is



a simple improvement comparison, e.g., if the system
is less than 10% faster when using the new abstraction,
then it’s not worth the cost.

In most aspects, we find that viewing MEMStores
as fast disks works well. Although faster than disks,
MEMStores share many of their access characteris-
tics. Signal processing and media access mechanisms
strongly push for a multi-word storage unit, such as the
ubiquitous 512 byte block used in disks. MEMStore
seek times are strongly distance-dependent, correlated
with a single dimension, and a dominant fraction of ac-
cess time, motivating data layouts and scheduling al-
gorithms that are similar to those used for disks. Af-
ter positioning, sequential access is most efficient, just
like in disks. The result is that most disk-based poli-
cies will work appropriately, without specialization for
MEMStores, and that most roles could equally well be
filled by hypothetical disks with equivalent average-case
performance and power characteristics.

Our model of MEMStores is based on lengthy discus-
sions with engineers who are designing the devices, and
on an extensive study of the available literature. How-
ever, as MEMStores are not yet available to test and
characterize, it is impossible to know for sure whether
the model is entirely accurate. Therefore, the conclu-
sions of this paper are subject to the assumptions that
we, and others, have made. The theme of the paper re-
mains, though, that researchers should apply the objec-
tive tests to determine whether a suggested role or policy
is specific to MEMStores. As time goes on and our un-
derstanding of MEMStore performance becomes more
detailed, or as alternative designs appear, we believe it is
useful for these tests to be re-applied.

In a few aspects, MEMStore-specific features can pro-
vide substantial benefits for well-matched access pat-
terns, beyond the performance and power levels that
would be expected from hypothetical fast disks. This
paper discusses three specific examples. First, tip-subset
parallelism flexibility, created by expected power and
component sharing limitations, can be exploited for two-
dimensional data structures accessed in both row- and
column-order. Second, lack of access-independent mo-
tion (e.g., continuous rotation) makes repeated access to
the same location much more efficient than in disks, fit-
ting read-modify-write access sequences well. Third,
the ratio of access bandwidth to device capacity is al-
most two orders of magnitude higher than disk drives,
making full device scans a more reasonable access pat-
tern.

The rest of this paper is organized as follows. Sec-
tion 2 overviews MEMS-based storage and related work.
Section 3 describes the standard storage interface and
how it works for disks. Section 4 explores how key
aspects of this interface fit with MEMStore characteris-

Actuators Media
sled

Read/write tips access data in parallel

Figure 1: High-level view of a MEMStore. The major components
of a MEMStore are the sled containing the recording media, MEMS
actuators that position the media, and the read/write tips that access
the media. The simplified device shown here has a ten by ten array
of read/write tips, each of which accesses its own portion (or square)
of the media. As the media is positioned, each tip accesses the same
position within its square, thus providing parallel access to data.

tics. Section 5 gives results applying the objective tests
to several roles and policies for MEMStores. Section 6
identifies unique features of MEMStores and how they
could be exploited for specific application access pat-
terns. Section 7 discusses major assumptions and their
impact on the conclusions. Section 8 summarizes the
paper.

2 Background

MEMStores store data in a very small physical medium
that is coated on the surface of a silicon chip. This stor-
age is non-volatile, just as in disk drives. Physically, the
devices are much smaller than disks, on the order of a
few square centimeters, they store several gigabytes of
data, and they access data in a few milliseconds. This
section describes in some detail how MEMStores are
built, how various designs differ, and what they have in
common.

Microelectromechanical systems (MEMS) are micro-
scopic mechanical machines that are fabricated on the
surface of silicon chips using techniques similar to those
used to make integrated circuits [18]. MEMS de-
vices are used in a wide range of applications, such
as accelerometers for automotive airbag systems, high-
quality projection systems, and medicine delivery sys-
tems. MEMStores use MEMS machinery to position a
recording medium and access the data stored in it.

A high-level picture of a MEMStore appears in Fig-
ure 1. There are three main components: the media sled,
the actuators, and the read/write tips. Data is recorded in



a medium that is coated onto the media sled, so named
because it is free to move in two dimensions. It is at-
tached to the chip substrate by beam springs at each cor-
ner. The media sled is positioned by a set of actuators,
each of which pulls the sled in one dimension. Data
is accessed by a set of several thousand read/write tips,
which are analogous to the heads of a disk drive.

Accessing data requires two steps. First, the media
sled is positioned or “seeks” to the correct offset. Sec-
ond, the sled moves at a constant rate as the read/write
tips access the data stored in the medium. The appropri-
ate subset of tips is engaged to access the desired data.

There are three important differences between the po-
sitioning of disk drives and MEMStores. First, the media
in the MEMStore can be positioned much more quickly
than in a disk because the size, mass, and range of mo-
tion of the components are significantly smaller. The
seek time of a disk drive averages around 5 ms, while
that of a MEMStore is expected to be less than 1 ms.
Second, there is no access-independent motion in a
MEMStore like the rotation of a disk drive’s platters.1

The rotating media of a disk drive adds, essentially, a
random variable (uniform from zero to the full revolu-
tion time) that is independent of the access itself to po-
sitioning time. Third, positioning takes place in two di-
mensions.

The last of these differences, that positioning is two-
dimensional in nature, is one of the most radical depar-
tures of MEMStores from disk drives. Positioning in
each dimension takes place independently and in par-
allel, making the overall positioning time equal to the
longer of the two. Once the sled arrives at its destination,
there is expected to be a significant settle time while the
actuators eliminate oscillations. Section 4.2 discusses
the impact of this difference on systems.

2.1 Related work

Building practical MEMStores has been the goal of sev-
eral major research labs, universities, and startup compa-
nies around the world for over a decade. The three most
widely publicized are from IBM Research in Zurich,
Carnegie Mellon University, and HP Labs. The three
designs differ largely in the types of actuators used to
position the media and the methods used to record data
in the medium. IBM’s Millipede designs use electro-
magnetic motors and a novel thermomechanical record-
ing technique [19, 33]. The device being designed at
Carnegie Mellon University uses electrostatic motors for
positioning and standard magnetic recording [1, 2]. The

1Some MEMStore designers have discussed building devices that
operate in a resonant mode, in which the media sled moves in reso-
nance along the recording dimension. Such a design would change
this assumption and there would be access-independent motion, just
like the rotation of the platters in a disk drive.

Hewlett-Packard Atomic Resolution Storage project uti-
lizes electrostatic stepper motors, phase-change media,
and electron beams to record data [12]. Despite these
differences, however, each shares the same basic design
shown in Figure 1, utilizing a moving media sled and
a large array of read/write tips. In the Millipede chip,
the read/write tips are in constant physical contact with
the media, raising some questions about wear. The oth-
ers maintain a constant spacing between the tips and the
media.

The performance of the various actuator types seems
to be similar, but their energy consumption differs some-
what. The electromagnetic actuators of the IBM Milli-
pede chip draw more current, and hence consume more
energy, as the media sled is pulled further from its rest
position [23, 33]. The electrostatic actuators require
higher voltages as the sled is displaced further, but re-
quire little current, so the energy consumption is lower
overall. This difference could lead to interesting trade-
offs between positioning distance and energy consump-
tion for MEMStores with electromagnetic actuators.

Since MEMStores are still being developed, systems
researchers with knowledge of how they may be used
can influence their design. Researchers have studied the
many physical parameters of MEMStores and how those
parameters should be chosen to improve performance on
various workloads [7, 17].

Several researchers have studied the various roles that
MEMStores may take in computer systems. Schlosser
et al. [28] simulated various application workloads on
MEMStores, and found that runtime decreased by 1.9–
4.4�. They also found that using MEMStores as a
disk cache improved I/O response time by up to 3.5�.
Hong [13] evaluated using MEMStores as a metadata
cache, improving system performance by 28–46% for
user workloads. Rangaswami et al. [22] proposed using
MEMStores in streaming media servers as buffers be-
tween the disks and DRAM. Uysal et al. [32] evaluated
the use of MEMStores as components in disk arrays. In
evaluating the various roles that a MEMStore may take
in a system, it is useful to apply the two objective tests
described in Section 1. In this way, one can determine if
benefits come from the fact that the workload is particu-
larly well-matched to a MEMStore, or just the fact that
a MEMStore is faster than current disks.

Various policies for tailoring access to MEMStores
have been suggested. Griffin et al. [11] studied schedul-
ing algorithms, layout schemes, and power manage-
ment policies, using a disk-like interface. Lin et
al. [15] also studied several power conservation strate-
gies for MEMStores. Several groups have suggested
MEMStore-specific request scheduling algorithms [14,
36]. These groups have not applied their scheduling al-
gorithms to disk drives to see if they are MEMStore-



specific, and we believe it is likely that their algorithms
will apply equally well to disks. Lastly, two groups have
proposed using tip-subset parallelism in MEMStores to
efficiently access tabular data structures [29, 35, 37].
Again, in evaluating potential policies that will be used
for MEMStores, one can use the two objective tests to
decide whether the policy is MEMStore-specific, or if it
can be applied to both MEMStores and disk systems.

3 Standard storage abstractions
High-level storage interfaces (e.g., SCSI and ATA) hide
the complexities of mechanical storage devices from the
systems that use them, allowing them to be used in
a standard, straightforward fashion. Different devices
with the same interface can be used without the system
needing to change. Also, the system does not need to
manage the low-level details of the storage device. Such
interfaces are common across a wide variety of storage
devices, including disk drives, disk arrays, and FLASH-
and RAM-based devices.

Today’s storage interface abstracts a storage device
as a linear array of fixed-sized logical blocks (usually
512 bytes). Details of the mapping of logical blocks to
physical media locations are hidden. The interface al-
lows systems to READ and WRITE ranges of blocks by
providing a starting logical block number (LBN) and a
block count.

Unwritten contract : Although no performance spec-
ifications of particular access types are given, an unwrit-
ten contract exists between host systems and storage de-
vices supporting these standard interfaces (e.g., disks).
This unwritten contract has three terms:

� Sequential accesses are best, much better than non-
sequential.

� An access to a block near the previous access in
LBN space is usually considerably more efficient
than an access to a block farther away.

� Ranges of the LBN space are interchangeable, such
that bandwidth and positioning delays are affected
by relative LBN addresses but not absolute LBN ad-
dresses.

Application writers and system designers assume the
terms of this contract in trying to improve performance.

3.1 Disks and standard abstractions
Disk drives are multi-dimensional machines, with data
laid out in concentric circles on one or more media plat-
ters that rotate continuously. Data is divided into fixed-
sized units, called sectors (usually 512 bytes to match
the LBN size). The sector (and, thereby, LBN) size was
originally driven by a desire to amortize both positioning
costs and the overhead of the powerful error-correcting
codes (ECC) required for robust magnetic data storage.

The densities and speeds of today’s disk drives would
be impossible without these codes, and many disk tech-
nologists would like the sector size (and, thus, the LBN
size) to grow by an order of magnitude to support more
powerful codes. Each sector is addressed by a tuple, de-
noting its cylinder, surface, and rotational position.

LBNs are mapped onto the physical sectors of the disk
to take advantage of the disk’s characteristics. Sequen-
tial LBNs are mapped to sequential rotational positions
within a single track, which leads to the first point of
the unwritten contract. Since the disk is continuously
rotating, once the heads are positioned, sequential ac-
cess is very efficient. Non-sequential access incurs large
re-positioning delays. Successive tracks of LBNs are tra-
ditionally mapped to surfaces within cylinders, and then
to successive cylinders. This leads to the second point of
the unwritten contract: that distant LBNs map to distant
cylinders, leading to longer seek times.

The linear abstraction works for disk drives, despite
their clear three-dimensional nature, because two of the
dimensions are largely uncorrelated with LBN address-
ing. Access time is the sum of the time to position the
read/write heads to the destination cylinder (seek time),
the time for the platters to reach the appropriate rota-
tional offset (rotational latency), and the time to transfer
the data to or from the media (transfer time). Seek time
and rotational latency usually dominate transfer time.
The heads are positioned as a unit by the seek arm,
meaning that it usually doesn’t matter which surface is
being addressed. Unless the abstraction is stripped away,
rotational latency is nearly impossible to predict because
the platters are continuously rotating and so the starting
position is essentially random. The only dimension that
remains is that across cylinders, which determines the
seek time.

Seek time is almost entirely dependent on the distance
traversed, not on the absolute starting and ending points
of the seek. This leads to the third point of the unwritten
contract. Ten years ago, all disk tracks had the same
number of sectors, meaning that streaming bandwidths
(and, thus, transfer times) were uniform across the LBN
space. Today’s zoned disk geometries, however, violate
the third term since streaming bandwidth varies between
zones.

3.2 Holes in the abstraction boundary
Over its fifteen year lifespan, shortcomings of the inter-
face and unwritten contract have been identified. Per-
haps the most obvious violation has been the emergence
of multi-zone disks, in which the streaming bandwidth
varies by over 50% from one part of the disk to another.
Some application writers exploit this difference by ex-
plicitly using the low-numbered LBNs, which are usu-
ally mapped to the outer tracks. Over time, this may



become a fourth term in the unwritten contract.
Some have argued [4, 27] that the storage interface

should be extended for disk arrays. Disk arrays con-
tain several disks which are combined to form one or
more logical volumes. Each volume can span multi-
ple disks, and each disk may contain parts of multiple
volumes. Hiding the boundaries, parallelism, and re-
dundancy schemes prevents applications from exploiting
them. Others have argued [8] that, even for disks, the
current interface is not sufficient. For example, know-
ing track boundaries can improve performance for some
applications [26].

The interface persists, however, because it greatly
simplifies most aspects of incorporating storage compo-
nents into systems. Before this interface became stan-
dard, systems used a variety of per-device interfaces.
These were replaced because they complicated systems
greatly and made components less interchangeable. This
suggests that the bar should be quite high for a new stor-
age component to induce the introduction of a new in-
terface or abstraction.

It is worth noting that some systems usefully throw
out abstraction boundaries entirely, and this is as true in
storage as elsewhere. In particular, storage researchers
have built tools [25, 30] for extracting detailed charac-
teristics of storage devices. Such characteristics have
been used for many ends: writing blocks near the disk
head [39], reading a replica near the disk head [38], in-
serting background requests into foreground rotational
latencies [16], and achieving semi-preemptible disk
I/O [5]. Given their success, adding support for such
ends into component implementations or even extending
interfaces may be appropriate. But, they do not represent
a case for removing the abstractions in general.

4 MEMStores and standard abstractions

Using a standard storage abstraction for MEMStores has
the advantage of making them immediately usable by
existing systems. Interoperability is important for get-
ting MEMStores into the marketplace, but if the abstrac-
tions that are used make performance suffer, then there
is reason to consider something different.

This section explains how the details of MEMStore
operation make them naturally conform to the storage
abstraction used for today’s disks. Also, the unwritten
contract that applications expect will remain largely in-
tact.

4.1 Access method

The standard storage interface allows accesses (READs
and WRITEs) to ranges of sizeable fixed-sized blocks.
The question we ask first is whether such an access
method is appropriate for a MEMStore.

Is a 512 byte block appropriate, or should the abstrac-
tion use something else? It is true that MEMStores can
dynamically choose subsets of read/write tips to engage
when accessing data, and that these subsets can, in the-
ory, be arbitrarily-sized. However, enough data must be
read or written for error-correcting codes (ECC) to be
effective. The use of ECC enables high storage density
by relaxing error-rate constraints. Since the density of
a MEMStore is expected to equal or exceed that of disk
drives, the ECC protections needed will be comparable.
Therefore, block sizes of the same order of magnitude
as disks should be expected. Also, any block’s size must
be fixed, since it must be read or written in its entirety,
along with the associated ECC. Accessing less than a
full block, e.g., to save energy [15], would not be possi-
ble. The flexibility of being able to engage arbitrary sets
of read/write tips can still be used to selectively choose
sets of these fixed-sized blocks.

Large block sizes are also motivated by embedded
servo mechanisms, coding for signal processing, and the
relatively low per-tip data rate of around 1 Mbit/s. The
latter means that data will have to be spread across mul-
tiple parallel-operating read/write tips to achieve an ag-
gregate bandwidth that is on-par with that of disk drives.
Spreading data across multiple read/write tips also in-
troduces physical redundancy that will allow for better
tolerance of tip failures. MEMStores will use embedded
servo [31], requiring that several bits containing posi-
tion information be read before any access in order to
ensure that the media sled is positioned correctly. Mag-
netic recording techniques commonly use transitions be-
tween bits rather than the bits themselves to represent
data, meaning that a sequence of bits must be accessed
together. Further, signal encodings use multi-bit code-
words that map a sequence of bits to values with inter-
pretable patterns (e.g., not all ones or all zeros). The
result is that, in order to access any data after a seek,
some amount of data (10 bits in our model) must be read
for servo information, and then bits must be accessed se-
quentially with some coding overhead (10 bits per byte
in our model). Given these overheads, a large block size
should be used to amortize the costs. This block will
be spread across multiple read/write tips to improve data
rates and fault tolerance.

Using current storage interfaces, applications can only
request ranges of sequential blocks. Such access is rea-
sonable for MEMStores, since blocks are laid out se-
quentially, and their abstraction should support the same
style of access. There may be utility in extending the
abstraction to allow applications to request batches of
non-contiguous LBNs that can be accessed by parallel
read/write tips. An extension like this is discussed in
Section 6.



4.2 Unwritten contract
Assuming that MEMStore access uses the standard stor-
age interface, the next step is to see if the unwritten con-
tract for disks still holds. If it does, then MEMStores can
be used effectively by systems simply as fast disks.

The first term of the unwritten contract is that sequen-
tial access is more efficient than random access. This
will continue to be the case for MEMStores because data
still must be accessed in a linear fashion. The signal pro-
cessing techniques that are commonly used in magnetic
storage are based on transitions between bits, rather than
the state of the bits in isolation. Moreover, they only
work properly when state transitions come frequently
enough to ensure clock synchronization so they encode
multi-bit data sequences into alternate codewords. These
characteristics dictate that the bits must be accessed se-
quentially. Designs based on recording techniques other
than magnetic will, most likely, encode data similarly.
Once the media sled is in motion, it is most efficient for
it to stay in motion, so the most efficient thing to access
is the next sequential data, just as it is for disks.

The second term of the unwritten contract is that the
difference between two LBN numbers maps well to the
physical distance between them. This is dependent on
how LBNs are mapped to the physical media, and this
mapping can easily be constructed in a MEMStore to
make the second point of the unwritten contract be true.
A MEMStore is a multi-dimensional machine, just like a
disk, but the dimensions are correlated differently. Each
media position is identified by a tuple of the X position,
the Y position, and the set of read/write tips that are en-
abled, much like the cylinder/head/rotational position tu-
ples in disks. There are thousands of read/write tips in a
MEMStore, and each one accesses its own small portion
of the media. Just as the heads in a disk drive are posi-
tioned as a unit to the same cylinder, the read/write tips
in a MEMStore are always positioned to the same off-
set within their own portion of the media. The choice of
which read/write tips to activate has no correlation with
access time, since any set can be chosen for the same
cost once the media is positioned.

As with disks, seek time for a MEMStore is a func-
tion of seek distance. Since the actuators on each axis
are independent, the overall seek time is the maximum
of the individual seek times in each dimension, X and
Y. But, the X seek time almost always dominates the
Y seek time because extra settle time must be included
for X seeks, but not for Y seeks. The reason for this
is that post-seek oscillations in the X dimension lead to
off-track interference, while the same oscillations in the
Y dimension affect only the bit rate of the data trans-
fer. Since the overall seek time is the maximum of the
two individual seek times, and the X seek time is al-
most always greater than the Y seek time, the overall

0
0.5
1.0
1.5
2.0

Seek time (ms)

X displacement
500

0
-500

-1000

Y
displacement

-500
0

500
1000

Figure 2: MEMStore seek curve. The seek time of a MEMStore
is largely uncorrelated with the displacement in the Y dimension due
to a large settling time required for the X dimension seek that is not
required for the Y dimension seek [7, 10]. The overall seek time is the
maximum of the two independent seek times.

seek distance is (almost) uncorrelated with the Y posi-
tion, as seen in Figure 2. In the end, despite the fact
that a MEMStore has multiple dimensions over which to
position, the overall access time is (almost) only corre-
lated with just a single dimension, which makes a linear
abstraction sufficient.

The last term of the unwritten contract states that the
LBN space is uniform, and that access time does not vary
across the range of the LBNs. The springs that attach
the media sled to the chip do affect seek times by ap-
plying a greater restoring force when they are displaced
further. However, the effect is minimal, with seek times
varying by at most 10–15%, meaning that overall ac-
cess times at the application level would vary by far less.
Also, MEMStores do not need zoned recording. It is
safe to say that the last point of the unwritten contract
still holds: ranges of the LBN space of a MEMStore are
interchangeable.

4.3 Possible exceptions
This section has explained how MEMStores fit the same
assumptions that make storage abstractions work for
disks. There are a few aspects of MEMStores, dis-
cussed in Section 6, that set them apart from disks for
specific access patterns. These exceptions can be ex-
ploited with little or no change to the existing storage
interface. Of course, the discussion above is based on
current MEMStore designs. Section 7 discusses the most
significant design assumptions and what removing them
would change.

5 Experiments
There are two objective tests that one should consider
when evaluating whether a potential role or policy for
MEMStores requires a new abstraction. The specificity
test asks whether the role or policy is truly MEMStore-
specific. The test here is to evaluate the role or policy



Capacity 3.46 GB
Average access time 0.88 ms
Streaming bandwidth 76 MB/s

Table 1: G2 MEMStore parameters. These parameters are for the
G2 MEMStore design from [28].

Capacity 41.6 GB
Rotation speed 55,000 RPM
One-cylinder seek time 0.1 ms
Full-stroke seek time 2.0 ms
Head switch time 0.01 ms
Number of cylinders 39511
Number of surfaces 2
Average access time 0.88 ms
Streaming bandwidth 100 MB/s

Table 2: Überdisk parameters. The Überdisk is a hypothetical
future disk drive. Its parameters are scaled from current disks, and
are meant to represent those of a disk that matches the performance
of a MEMStore. The average response time is for a random workload
which exercised only the first 3.46 GB of the disk in order to match the
capacity of the G2 MEMStore.

for both a MEMStore and a (hypothetical) disk drive
of equivalent performance. If the benefit is the same,
then the role or policy (however effective) is not truly
MEMStore-specific. Given that the role or policy passes
the specificity test, the merit test determines whether the
difference makes a significant-enough impact in perfor-
mance (or whatever metric) to justify customizing the
system. This section examines a potential role and a po-
tential MEMStore-specific policy, under the scrutiny of
these two tests.

5.1 G2 MEMStore
The MEMStore that we use for evaluation is the G2
model from [28]. Its basic parameters are given in Ta-
ble 1. We use DiskSim, a freely-available storage system
simulator, to simulate the MEMStore [6].

5.2 Überdisk: A hypothetical fast disk
For comparison, we use a hypothetical disk design,
which we call the Überdisk, that approximates the per-
formance of a G2 MEMStore. Its parameters are based
on extrapolating from today’s disk characteristics, and
are given in Table 2. The Überdisk is also modeled us-
ing DiskSim. In order to do a capacity-to-capacity com-
parison, we use only the first 3.46 GB of the Überdisk
to match the capacity of the G2 MEMStore. The two
devices have equivalent performance under a random
workload of 4 KB requests that are uniformly distributed
across the capacity (3.46 GB) and arrive one at a time.
Since our model of MEMStores does not include a
cache, we disabled the cache of the Überdisk.

We based the seek curve on the formula from [24],

choosing specific values for the one-cylinder and full-
stroke seeks. Head switch and one-cylinder seek times
are expected to decrease in the future due to microactu-
ators integrated into disk heads, leading to shorter set-
tle times. With increasing track densities, the number
of platters in disk drives is decreasing steadily, so the
Überdisk has only two surfaces. The zoning geometry is
based on simple extrapolation of current linear densities.

An Überdisk does not necessarily represent a realistic
disk; for example, a rotation rate of 55,000 RPM (ap-
proximately twice the speed of a dental drill) may never
be attainable in a reasonably-priced disk drive. However,
this rate was necessary to achieve an average rotational
latency that is small enough to match the average access
time of the MEMStore. The Überdisk is meant to rep-
resent the parameters that would be required of a disk
in order to match the performance of a MEMStore. If
the performance of a workload running on a MEMStore
is the same as it running on an Überdisk, then we can
say that any performance increase is due only to the in-
trinsic speed of the device, and not due to the fact that
it is a MEMStore or an Überdisk. If the performance
of the workload differs on the two devices, then it must
be especially well-matched to the characteristics of one
device or the other.

5.3 Role: MEMStores in disk arrays
One of the roles that has been suggested for MEMStores
in systems is that of augmenting or replacing some
or all of the disks in a disk array to increase perfor-
mance [28, 32]. However, the lower capacity and poten-
tially higher cost of MEMStores suggest that it would be
impractical to simply replace all of the disks. Therefore,
they represent a new tier in the traditional storage hierar-
chy, and it will be important to choose which data in the
array to place on the MEMStores and which to store on
the disks. Uysal et al. evaluate several methods for par-
titioning data between the disks and the MEMStores in
a disk array [32]. We describe a similar experiment be-
low, in which a subset of the data stored on the back-end
disks in a disk array is moved to a MEMStore.

We can expect some increase in performance from
doing this, as Uysal et al. report. However, our ques-
tion here is whether the benefits are from a MEMStore-
specific attribute, or just from the fact that MEMStores
are faster than the disks used in the disk array. To answer
this question, we apply the specificity test by compar-
ing the performance of a disk array back-end workload
on three storage configurations. The first configuration
uses just the disks that were originally in the disk ar-
ray. The second configuration augments the overloaded
disks with a MEMStore. The third does the same with
an Überdisk.

The workload is a disk trace gathered from the disks
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Figure 3: Using MEMStores in a disk array. These graphs show the result of augmenting overloaded disks in a disk array with faster storage
components: a MEMStore (a) or an Überdisk (b). In both cases, the busiest logical volume on the original disk (a 73 GB Seagate Cheetah) is
moved to the faster device. Requests to the busiest logical volume are serviced by the faster device, and the traffic to the Cheetah is reduced. The
results for both experiments are nearly identical, leading to the conclusion that the MEMStore and theÜberdisk are interchangeable in this role
(e.g., it is not MEMStore-specific.)

in the back-end of an EMC Symmetrix disk array dur-
ing the summer of 2001. The disk array contained
282 Seagate Cheetah 73 GB disk drives, model num-
ber ST173404. From those, we have chosen the eight
busiest (disks 1, 37, 71, 72, 107, 124, 150, and 168),
which have an average request arrival rate of over 69 re-
quests per second for the duration of the trace, which
was 12.5 minutes. Each disk is divided into 7 logical
volumes, each of which is approximately 10 GB in size.
For each “augmented” disk, we move the busiest logi-
cal volume to a faster device, either a MEMStore or an
Überdisk. The benefit should be twofold: first, response
times for the busiest logical volume will be improved,
and second, traffic to the original disk will be reduced.
Requests to the busiest logical volume are serviced by
the faster device (either a MEMStore or an Überdisk),
and all other requests are serviced by the original Chee-
tah disk.

Figure 3(a) shows the result of the experiment with
the MEMStore. For each disk, the first bar shows the
average response time of the trace running just on the
Cheetah, which is 15.1 ms across all of the disks. The
second bar shows the average response time of the same
requests after the busiest logical volume has been moved
to the MEMStore. Across all disks, the average is now
5.24 ms. The third and fourth bars show, respectively,
the average response time of the Cheetah with the re-
duced traffic after augmentation, and the average re-
sponse time of the busiest logical volume, which is now
stored on the MEMStore. We indeed see the benefits an-
ticipated — the average response time of requests to the

busiest logical volume have been reduced to 0.86 ms,
and the reduction of load on the Cheetah disk has re-
sulted in a lower average response time of 7.56 ms.

Figure 3(b) shows the same experiment, but with the
busy logical volume moved to an Überdisk rather than
a MEMStore. The results are almost exactly the same,
with the response time of the busiest logical volume mi-
grated to the Überdisk being around 0.84 ms, and the
overall response time reduced from 15.1 ms to 5.21 ms.

The fact that the MEMStore and the Überdisk pro-
vide the same benefit in this role means that it fails the
specificity test. In this role, a MEMStore really can be
considered to be just a fast disk. The workload is not
specifically matched to the use of a MEMStore or an
Überdisk, but can clearly be improved with the use of
any faster device, regardless of its technology.

Although it is imperceptible in Figure 3, the Überdisk
gives slightly better performance than the MEMStore
because it benefits more from workload locality due to
the profile of its seek curve. The settling time in the
MEMStore model makes any seek expensive, with a
gradual increase up to the full-stroke seek. The settling
time of the Überdisk is somewhat less, leading to less
expensive initial seek and a steeper slope in the seek
curve up to the full-stroke seek. The random workload
we used to compare devices has no locality, but the disk
array trace does.

To explore this further, we re-ran the experiment
with two other disk models, which we call Simpledisk-
constant and Simpledisk-linear. Simpledisk-constant re-
sponds to requests in a fixed amount of time, equal to



that of the response time of the G2 MEMStore under
the random workload: 0.88 ms. The response time of
Simpledisk-linear is a linear function of the distance
from the last request in LBN space. The endpoints of
the function are equal to the single-cylinder and full-
stroke seek times of the Überdisk, which are 0.1 ms and
2.0 ms, respectively. Simpledisk-constant should not
benefit from locality, and Simpledisk-linear should ben-
efit from locality even more than either the MEMStore
or the Überdisk. Augmenting the disk array with these
devices gives response times to the busiest logical vol-
ume of 0.92 ms and 0.52 ms, respectively. As expected,
Simpledisk-constant does not benefit from workload lo-
cality and Simpledisk-linear benefits more than a real
disk.

Uysal proposed several other MEMStore/disk combi-
nations in [32], including replacing all of the disks with
MEMStores, replacing half of the mirrors in a mirrored
configuration, and using the MEMStore as a replace-
ment of the NVRAM cache. In all of these cases, and
in most of the other roles outlined in Section 2.1, the
MEMStore is used simply as a block store, with no tai-
loring of access to MEMStore-specific attributes. We
believe that if the specificity test were applied, and an
Überdisk was used in each of these roles, the same per-
formance improvement would result. Thus, the results
of prior research apply more generally to faster mechan-
ical devices.

5.4 Policy: distance-based scheduler
Mechanical and structural differences between
MEMStores and disks suggest that request scheduling
policies that are tailored to MEMStores may provide
better performance than ones that were designed for
disks. Upon close examination, however, the physical
and mechanical motions that dictate how a scheduler
may perform on a given device continue to apply to
MEMStores as they apply to disks. This may be sur-
prising at first glance, since the devices are so different,
but after examining the fundamental assumptions that
make schedulers work for disks, it is clear that those
assumptions are also true for MEMStores.

To illustrate, we give results for a MEMStore-specific
scheduling algorithm called shortest-distance-first, or
SDF. Given a queue of requests, the algorithm compares
the Euclidean distance between the media sled’s cur-
rent position and the offset of each request and sched-
ules the request that is closest. The goal is to exploit
a clear difference between MEMStores and disks: that
MEMStores position over two dimensions rather than
only one. When considering the specificity test, it is
not surprising that this qualifies as a MEMStore-specific
policy. Disk drives do, in fact, position over multiple di-
mensions, but predicting the positioning time based on

any dimension other than the cylinder distance is very
difficult outside of disk firmware. SDF scheduling for
MEMStores is easier and could be done outside of the
device firmware, since it is only based on the logical-to-
physical mapping of the device’s sectors and any defect
management that is used, assuming that the proper ge-
ometry information is exposed through the MEMStore’s
interface.

The experiment uses a random workload of 250,000
requests uniformly distributed across the capacity of the
MEMStore. Each request had a size of 8 KB. This work-
load is the same as that used in [34] to compare re-
quest scheduling algorithms. The experiment tests the
effectiveness of the various algorithms by increasing the
arrival rate of requests until saturation — the point at
which response time increases dramatically because the
device can no longer service requests fast enough and
the queue grows without bound.

The algorithms compared were first-come-first-served
(FCFS), cyclic LOOK (CLOOK), shortest-seek-time-
first (SSTF), shortest-positioning-time-first (SPTF), and
shortest-distance-first (SDF). The first three are standard
disk request schedulers for use in host operating sys-
tems. FCFS is the baseline for comparison, and is ex-
pected to have the worst performance. CLOOK and
SSTF base their scheduling decisions purely on the LBN
number of the requests, utilizing the unwritten assump-
tion that LBN numbers roughly correspond to physical
positions [34]. SPTF uses a model of the storage de-
vice to predict service times for each request, and can
be expected to give the best performance. The use of
the model by SPTF breaks the abstraction boundaries
because it provides the application with complete de-
tails of the device parameters and operation. The SDF
scheduler requires the capability to map LBN numbers
to physical locations, which breaks the abstraction, but
does not require detailed modeling, making it practical
to implement in a host OS.

Figure 4 shows the results. As expected, FCFS
and SPTF perform the worst and the best, respec-
tively. CLOOK and SSTF don’t perform as well as
SPTF because they use only the LBN numbers to make
scheduling decisions. The SDF scheduler performs
slightly worse than CLOOK and SSTF. The reason is
that positioning time is not as well correlated with two-
dimensional position, as described in Section 4.2. As
such, considering the two-dimensional seek distance
does not provide any more utility than just consider-
ing the one-dimensional seek distance, as CLOOK and
SSTF effectively do. Thus, the suggested policy fails the
merit test: the same or greater benefit can be had with
existing schedulers that don’t need MEMStore-specific
knowledge. This is based, of course, on the assumption
that settling time is a significant component of position-
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ing time. Section 7 discusses the effect of removing this
assumption.

The fundamental reason that scheduling algorithms
developed for disks work well for MEMStores are that
seek time is strongly dependent on seek distance, but
only the seek distance in a single dimension. The seek
time is only correlated to a single dimension, which is
exposed by the linear abstraction. The same is true for
disks when one cannot predict the rotational latencies, in
which only the distance that the heads must move across
cylinders is relevant. Hence, a linear logical abstraction
is as justified for MEMStores as it is for disks.

Of course, there may be yet-unknown policies that ex-
ploit features that are specific to MEMStores, and we ex-
pect research to continue in this area. When considering
potential policies for MEMStores, it is important to keep
the two objective tests in mind. In particular, these tests
can expose a lack of need for a new policy or, better yet,
the fact that the policy is equally applicable to disks and
other mechanical devices.

6 MEMStore-specific features
This section describes three MEMStore-specific features
that clearly set them apart from disks, offering signifi-
cant performance improvements for well-matched work-
loads. Exploiting such features may require a new ab-
straction or, at least, changes in the unwritten contract
between systems and storage.

6.1 Tip-subset parallelism
MEMStores have an interesting access parallelism fea-
ture that does not exist in modern disk drives. Specifi-
cally, subsets of a MEMStore’s thousands of read/write
tips can be used in parallel, and the particular subset can
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Figure 5: Data layout with a set of equivalentLBNs highlighted.
The LBNs marked with ovals are at the same location within each
square and, thus, are “equivalent”. That is, they can potentially be
accessed in parallel.

be dynamically chosen. This section briefly describes
how such access parallelism can be exposed to system
software, with minimal extensions to the storage inter-
face, and utilized cleanly by applications. Interestingly,
our recent work [27] has shown the value of the same
interface extensions for disk arrays, suggesting that this
is a generally useful storage interface change.

Figure 5 shows a simple MEMStore with nine
read/write tips and nine sectors per tip. Each read/write
tip addresses its own section of the media, denoted by
the nine squares in the figure. Sectors that are at the same
physical offset within each square, such as those indi-
cated with ovals, are addressed simultaneously by the tip
array. We call these sectors equivalent, because they can
be accessed in parallel. But, in many designs, not all of
the tips can be actively transferring data at the same time
due to power consumption or component sharing con-
straints. Using a simple API, an application or OS mod-
ule could identify sets of sectors that are equivalent, and
then choose subsets to access together. Since the LBNs
which will be accessed together will not fall into a con-
tiguous range, the system will need to be able to request
batches of non-contiguous LBNs, rather than ranges.

6.1.1 Efficient 2D data structure access
The standard interface forces applications to map their
data into a linear address space. For most applica-
tions, this is fine. However, applications that use two-
dimensional data structures, such as non-sparse matri-
ces or relational database tables, are forced to serialize
their storage in this linear address space, making effi-
cient access possible along only one dimension of the
data structure. For example, a database can choose to



store its table in column-major order, making column
accesses sequential and efficient [3]. Once this choice
is made, however, accessing the table in row-major or-
der is very expensive, requiring a full scan of the table
to read a single row. One option for making operations
in both dimensions efficient is to create two copies of
a table; one copy is optimized for column-major access
and the other is optimized for row-major access [21].
This scheme, however, doubles the capacity needed for
the database and requires that updates propagate to both
copies.

With proper allocation of data to a MEMStore LBN
space, parallel read/write tips can be used to access
a table in either row- or column-major order at full
speed [29, 35]. The table is arranged such that the same
attributes of successive records are stored in sequen-
tial LBNs. Then, the other attributes of those records
are stored in LBNs that are equivalent to the origi-
nal LBNs, as in Figure 5. This layout preserves the
two-dimensionality of the original table on the physi-
cal media of the MEMStore. Then, when accessing the
data, the media sled is positioned and the appropriate
read/write tips are activated to read data either in row- or
column-major order.

To quantify the advantages of such a MEMStore-
specific scan operator, we compare the times required
for different table accesses. We contrast their respective
performance under two different layouts on a single G2
MEMStore device. The first layout, called normal, is the
traditional row-major access optimized page layout used
in almost all database systems [20].

The second layout, called MEMStore, uses the
MEMStore-specific layout and access described above.
The sample database table consists of 4 attributes a1, a2,
a3, and a4 sized at 8, 32, 15, and 16 bytes respectively.
The normal layout consists of 8 KB pages that hold 115
records. The table size is 10,000,000 records for a total
of 694 MB of data.

Figure 6 compares the time of a full table scan for
all attributes with four scans of the individual attributes.
The total runtime of four single-attribute scans in the
MEMStore case takes the same amount of time as the
full table scan. In contrast, with the normal layout,
the four successive scans take four times as long as the
full table scan. Most importantly, a scan of a single at-
tribute in the MEMStore case takes only the amount of
time needed for a full-speed scan of the corresponding
amount of data, since all of the available read/write tips
read records of the one attribute. This result represents
a compelling performance improvement over current
database systems. This policy for MEMStores passes
both the specificity test and the merit test.
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Figure 6: Database table scan with different number of at-
tributes. This graph shows the runtime of scanning 10,000,000
records using a G2 MEMStore. For each of the two layouts, the left
bar, labeled “all,” shows the time to scan the entire table with four at-
tributes. The right bar, labeled “single,” is composed of four separate
scans of each successive attribute, simulating the situation where mul-
tiple queries access different attributes. Since the MEMStore layout
takes advantage of MEMStore’s tip-subset parallelism, each attribute
scan runtime is proportional to the amount of data occupied by that
attribute. The normal layout, on the other hand, must read the entire
table to fetch any one attribute.

6.2 Quick turnarounds

Another aspect of MEMStores that differs from disk
drives is their ability to quickly access an LBN re-
peatedly. In a disk, repeated reads to an LBN may
be serviced from the disk’s buffer, but repeated syn-
chronous writes or read/modify/write sequences will in-
cur a full rotation, 4-8 ms on most disks, for each ac-
cess. A MEMStore, however, can simply change the
direction that the media sled is moving, which is pre-
dicted to take less than a tenth of a millisecond [11].
Read/modify/write sequences are prevalent in parity-
based redundancy schemes, such as RAID-5, in which
the old data and parity must each be read and then up-
dated for each single block write. Repeated synchronous
writes are common in database log files, where each
commit entry must propagate to disk. Such operations
are much more expensive in a disk drive.

6.3 Device scan time

Although the volumetric density of MEMStores is on-
par with that of disk drives, the per-device capacity is
much less. For example, imagine two 100 GB “stor-
age bricks,” one using disk storage and the other us-
ing MEMStores. Given that the volumetric densities are
equal, the two bricks would consume about the same
amount of physical volume. But, the MEMStore brick



would require at least ten devices, while the disk-based
brick could consist of just one device. This means that
the MEMStore-based brick would have more indepen-
dent actuators for accessing the data, leading to several
interesting facts. First, the MEMStore-based brick could
handle more concurrency, just as in a disk array. Second,
MEMStores in the brick that are idle could be turned off
while others in the brick are still servicing requests, re-
ducing energy consumption. Third, the overall time to
scan the entire brick could be reduced, since some (or
all) of the devices could access data in parallel. This as-
sumes that the bus connecting the brick to the system is
not a bottleneck, or that the data being scanned is con-
sumed within the brick itself. The lower device scan
time is particularly interesting because disk storage is
becoming less accessible as device capacities grow more
quickly than access speeds [9].

Simply comparing the time to scan a device in its en-
tirety, a MEMStore could scan its entire capacity in less
time than a single disk drive. At 100 MB/s, a 10 GB
MEMStore is scanned in only 100 s, while a 72 GB disk
drive takes 720 s. As a result, strategies that require
entire-device scans, such as scrubbing or virus scanning,
become much more feasible.

7 Major assumptions
Unfortunately, MEMStores do not exist yet, so there are
no prototypes that we can experiment with, and they are
not expected to exist for several more years. As such, we
must base all experiments on simulation and modeling.
We have based our models on detailed discussions with
researchers who are designing and building MEMStores,
and on an extensive study of the literature. The work
and the conclusions in this paper are based on this mod-
eling effort, and is subject to its assumptions about the
devices. This section outlines two of the major assump-
tions of the designers and how our conclusions would
change given different assumptions.

Some of our conclusions are based on the assumption
that post-seek settling time will affect one seek dimen-
sion more than the other. This effectively uncorrelates
seek time with one of the two dimensions, as described
in Section 4.2. The assumption is based on the obser-
vation that different mechanisms determine the settling
time in each of the two axes, X and Y. Settling time is
needed to damp oscillations enough for the read/write
tips to reliably access data. In all published MEMStore
designs, data is laid out linearly along the Y-axis, mean-
ing that oscillations in Y will appear to the channel as
minor variations in the data rate. Contrast this with os-
cillations in the X-axis, which pull the read/write tips
off-track. Because one axis is more sensitive to oscil-
lation than the other, its positioning delays will domi-
nate the other’s, unless the oscillations can be damped in
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Figure 7: MEMStore seek curve without settling time. Without
the settling time, the seek curve of a MEMStore is strongly correlated
with displacement in both dimensions [10].
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Figure 8: Performance of shortest-distance-first scheduler with-
out settle time. If post-seek settle time is eliminated, then the seek
time of a MEMStore becomes strongly correlated with both the X and
Y positions. In this case, a scheduler that takes into account both di-
mensions provides much better performance than those that only con-
sider a single dimension (CLOOK and SSTF).

near-zero time.
If this assumption no longer held, and oscillations

affected each axis equally, then MEMStore-specific
policies that take into account the resulting two-
dimensionality of the seek profile, as illustrated in Fig-
ure 7, would become more valuable. Now, for exam-
ple, two-dimensional distance would be a much better
predictor of overall positioning time. Figure 8 shows
the result of repeating the experiment from Section 5.4,
but with the post-seek settle time set to zero. In this
case, the performance of the SDF scheduler very closely
tracks shortest-positioning-time-first, SPTF, the sched-
uler based on full knowledge of positioning time. Fur-
ther, the difference between SDF and the two algorithms
based on single-dimension position (CLOOK and SSTF)
is now very large. CLOOK and SSTF have worse per-
formance because they ignore the second dimension that
is now correlated strongly with positioning time.



Another closely-related assumption is that data in a
MEMStore is accessed sequentially in a single dimen-
sion. One could imagine a MEMStore in which data
is accessed one point at a time. As a simple example,
imagine that the media sled would move to a single po-
sition and then engage 8� 512 read/write probes (plus
ECC tips) in parallel to read one 512 byte sector from
the media at once. From that point, the media sled could
then re-position in either the X or Y dimension and read
another 512 byte sector. In fact, the device could stream
sequentially along either dimension. Current designs en-
vision using embedded servo to keep the read/write tips
on track, just as in disks [31]. Both servo and code-
words would have to be encoded along both dimensions
somehow to allow streaming along either. The ability
to read sequentially along either dimension at an equal
rate could improve the performance of applications us-
ing two-dimensional data structures, as described in Sec-
tion 6.1.1. Rather than using tip subset parallelism, data
tables could be stored directly in their original format on
the MEMStore, and then accessed in either direction ef-
ficiently. Note, however, that the added complexity of
the coding and access mechanisms would be substantial,
making this unlikely to occur.

8 Summary
One question that should be asked when considering
how to use MEMStores in computer systems is whether
they have unique characteristics that should be exploited
by systems, or if they can be viewed as small, low-
power, fast disk drives. This paper examines this ques-
tion by establishing two objective tests that can be used
to identify the existence and importance of relevant
MEMStore-specific features. If an application utilizes
a MEMStore-specific feature, then there may be reason
to use something other than existing disk-based abstrac-
tions. After studying the fundamental reasons that the
existing abstraction works for disks, we conclude that
the same reasons hold true for MEMStores, and that a
disk-like view is justified. Several case studies of po-
tential roles that MEMStores may take in systems and
policies for their use support this conclusion.
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Rothuizen, R. Stutz, and G. K. Binnig. The “millipede”:
nanotechnology entering data storage. IEEE Transac-
tions on Nanotechnology, 1(1):39–55. IEEE, March
2002.

[34] B. L. Worthington, G. R. Ganger, and Y. N. Patt.
Scheduling algorithms for modern disk drives. ACM SIG-
METRICS Conference on Measurement and Modeling of
Computer Systems (Nashville, TN, 16–20 May 1994),
pages 241–251. ACM Press, 1994.

[35] H. Yu, D. Agrawal, and A. E. Abbadi. Tabular placement
of relational data on MEMS-based storage devices. Inter-
national Conference on Very Large Databases (Berlin,
Germany, 09–12 September 2003), pages 680–693,
2003.

[36] H. Yu, D. Agrawal, and A. E. Abbadi. Towards optimal
I/O scheduling for MEMS-based storage. IEEE Sympo-
sium on Mass Storage Systems (San Diego, CA, 07–10
April 2003), 2003.

[37] H. Yu, D. Agrawal, and A. E. Abbadi. Decluster-
ing two-dimensional datasets over MEMS-based storage.
UCSB Department of Computer Science Technical Re-
port 2003-27. September 2003.

[38] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krish-
namurthy, and T. E. Anderson. Trading capacity for per-
formance in a disk array. Symposium on Operating Sys-
tems Design and Implementation (San Diego, CA, 23–25
October 2000), pages 243–258. USENIX Association,
2000.

[39] C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang.
Configuring and scheduling an eager-writing disk array
for a transaction processing workload. Conference on
File and Storage Technologies (Monterey, CA, 28–30
January 2002), pages 289–304. USENIX Association,
2002.


	Introduction
	Background
	Related work

	Standard storage abstractions
	Disks and standard abstractions
	Holes in the abstraction boundary

	MEMStores and standard abstractions
	Access method
	Unwritten contract
	Possible exceptions

	Experiments
	G2 MEMStore
	Überdisk: A hypothetical fast disk
	Role: MEMStores in disk arrays
	Policy: distance-based scheduler

	MEMStore-specific features
	Tip-subset parallelism
	Efficient 2D data structure access

	Quick turnarounds
	Device scan time

	Major assumptions
	Summary

