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Background

Flash is widely available as mass storage, e.g. SSD
$/GB still dropping, affordable high-performance 1/0

Deployed in data centers as well low-power platforms

Adoption continues to grow but very little work in robust I/O
scheduling for Flash /0

Synchronous writes are still a major factor in |/O bottlenecks



Flash: Characteristics & Challenges

No seek latency, low latency variance
[/O granularity: Flash page, 2-8KB
Large erase granularity: Flash block, 64-256 pages

Architecture parallelism

m Erase-before-write limitation
m /O asymmetry
m Wide variation in performance across vendors!



Motivation

m Disk is slow — scheduling has largely been
performance-oriented

m Flash scheduling for high performance ALONE is easy (just
use noop)

m Now fairness can be a first-class concern

m Fairness must account for unique Flash characteristics



Motivation: Prior Schedulers

Fairness-oriented Schedulers: Linux CFQ, SFQ(D), Argon
m Lack Flash-awareness and appropriate anticipation support

m Linux CFQ, SFQ(D): fail to recognize the need for anticipation
m Argon: overly aggressive anticipation support

Flash I/O Scheduling: write bundling, write block preferential, and
page-aligned request merging/splitting

m Limited applicability to modern SSDs, performance-oriented



Motivation: Read-Write Int

Intel SSD read (alone) Vertex SSD read (alone) CompactFlash read (alone)

~ all respond quickly
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Motivation: Read-Write Interference

Intel SSD read (alone) Vertex SSD read (alone) CompactFlash read (alone)
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Fast read response is disrupted by interfering writes.



Motivation: Parallelism

Read I/0 parallelism Write I/O parallelism
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SSDs can support varying levels of read and write parallelism.



Motivation: 1/O Anticipation Support

Reduces potential seek cost for mechanical disks
...but largely negative performance effect on Flash
Flash has no seek latency: no need for anticipation?

No anticipation can result in unfairness: premature service
change, read-write interference



Motivation: 1/O Anticipation Support
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Lack of anticipation can lead to unfairness; aggressive anticipation
makes fairness costly.



FIOS: Policy

Fair timeslice management: Basis of fairness

Read-write interference management: Account for Flash 1/0
asymmetry

I/O parallelism: Recognize and exploit SSD internal
parallelism while maintaining fairness

I/O anticipation: Prevent disruption to fairness mechanisms
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FIOS: Timeslice Management

m Equal timeslices: amount of time to access device

m Non-contiguous usage
m Multiple tasks can be serviced simultaneously

m Collection of timeslices = epoch; Epoch ends when:

m No task with a remaining timeslice issues a request, or
m No task has a remaining timeslice
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. Interference Management

Intel SSD read (with write) Vertex SSD read (with write) CompactFlash read (with write)
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m Reads are faster than writes — interference penalizes reads
more

m Preference for servicing reads

m Delay writes until reads complete
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FIOS: 1/0O Parallelism

m SSDs utilize multiple independent channels

m Exploit internal parallelism when possible, minding timeslice
and interference management
m Parallel cost accounting: New problem in Flash scheduling

m Linear cost model, using time to service a given request size
m Probabilistic fair sharing: Share perceived device time usage
among concurrent users/tasks

COSt — Te/apsed

issuance . . . .
Telapsed IS the requests elapsed time from its issuance to its
completion, and Pissyance is the number of outstanding requests

(including the new request) at the issuance time
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FIOS: I/O Anticipation - When to anticipate?

Anticipatory 1/0 originally used for improving performance on disk
to handle deceptive idleness: wait for a desirable request.
Anticipatory 1/O on Flash used to preserve fairness.

Deceptive idleness may break:
m timeslice management

m interference management
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FIOS: I/O Anticipation - How long to anticipate?

m Must be much shorter than the typical idle period for disks

m Relative anticipation cost is bounded by «, where idle period is
Tservice * 7o where Teepice is per-task exponentially-weighted
moving average of per-request service time
(Default oo = 0.5)

ex. 1/O — anticipation — 1/O — anticipation — |/O — ---
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Implementation Issues

m Linux coarse tick timer — High resolution timer for 1/O
anticipation

m Inconsistent synchronous write handling across file system and
[/O layers

m ext4 nanosecond timestamps lead to excessive metadata
updates for write-intensive applications
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Results: Read-Write Fairness

l I /verage read latency [ ] Average write latency

4-reader 4-writer on Intel SSD 4-reader 4-writer (with thinktime) on Intel SSD
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Only FIOS provides fairness with good efficiency under differing
I/O load conditions.
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Results: Beyond Read-Write Fairness
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FIOS achieves fairness not only with read-write asymmetry but
also requests of varying cost.
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Results: SPECweb co-run TPC-C

SPECweb and TPC-C on Intel SSD
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FIOS exhibits the best fairness compared to the alternatives.
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Results: FAWNDS (CMU, SOSP'09) on CompactFlash

- FAWNDS hash gets :I FAWNDS hash puts

Task slowdown ratio

Ray, Lin, Ko, Cus Mo
v bg*ckoo@ gy S

@//O

FIOS also applies to low-power Flash and

- {~ proportional slowdown

provides efficient fairness.
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Conclusion

Fairness and efficiency in Flash 1/O scheduling

m Fairness is a primary concern
m New challenge for fairness AND high efficiency (parallelism)

I/O anticipation is ALSO important for fairness

[/O scheduler support must be robust in the face of varied
performance and evolving hardware

m Read/write fairness and BEYOND

May support other resource principals (VMs in cloud).
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