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NAND Flash in Reliable Storage

* Two main reliability specifications
— Biterror rate (BER): 103~ 1016

— Data retention: 10 years (cycled to 10% of the max. endurance)
1 year (cycled to 100% of the max. endurance)

 As NAND Flash’s density increases, its raw reliability degrades
— Need to slow down writes to mitigate the worsening BER

— Need stronger ECCs

* When the BER > 103, advanced ECCs such as LDPC (low-density parity-check) are
required”
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Actual Retention Requirements

* Retention requirements in real-world applications
are usually much shorter than a year

Unknown (1%)

1 hr~ 1 day (3%) j\

o <1 min (53%)

1 min~ 1 hr (43%)

Retention breakdown of a TPC-C workload



Our Contribution

e Retention Relaxation

— Exploit the gap between retention specification vs.
actual retention requirements to improve write speed
or ECC cost/performance in Flash-based SSDs

Industrial standards: VS. Actual requirements:
1 to 10 years days or shorter
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NAND Flash Background

« NAND Flash memories ==

— Composed of floating gate (FG)

transistors
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Programming NAND Flash

* Incremental step pulse programming (ISPP)”
— Increase Vy, step-by-step with step increment = AV,
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Starting V,, Target V,,

* Tradeoffs in ISPP
— AV, T+ > fewer steps (faster)
— AV, > more precise control on V,, (fewer write errors)
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V., Distribution of NAND Flash

* Probability density function of cells’ V,

— Modeled using bell-shaped functions in the previous work®
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Bit Error Rate vs. V,, Distribution

* RBERis the integral of the V,,
distributions that fall into !
wrong states
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Retention Relaxation vs. Write Speed

BER

BER of NAND Flash

* Shorter retention guarantee
— Can tolerate more write errors

= Allow larger AV, in the ISPP
— Faster write
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Retention Relaxation vs. ECC

BER NAND Flash’s BER
103
104
10
10°
1016 Required BER
>
1 year Time

e Shorter retention guarantee
- Need to tolerate fewer retention errors
— Allow less capability of the ECC
— Simpler ECC design
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Model Extension

 Base NAND Flash model is not able to capture the
charge-loss effect which causes the low-V, tail to
widen over time’
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Model Extension

* Model the standard deviation of the low-V,, tail
as a time-increasing function, o, (t)

Low-V,, tail
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Modeling Results
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Retention vs. Write Speed

3 ;

Write Speedup

1 01 2weeks 0.01
Required Data Retention (Year)

* Relax retention from 1 year to 2 weeks
— 2.3x write speedup is achievable
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Retention vs. ECCs

1 I

BCH with 24 correction per 1080B

Achievable Retention (Year)

0.1f
2weeks:
ool— A N
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BER of NAND Flash at 1 Year

Relax retention from 1 year to 2 weeks

— We can use the BCH (24 corrections per 1080B) to replace an
LDPC whose strength is 2.2*102

18



Outline

Motivation
NAND Flash background
Main idea

Methodology

— NAND Flash model

— Retention analysis on real-world applications
— Retention-aware system architecture

Evaluation
Conclusions

19



Retention Analysis

* Retention requirement is defined as

— The time period from writing the sector until the sector is
overwritten

* We analyze 3 sets of real-world applications

Category | Name Description Span
prn_0 Print server
proj 0O, proj_2 | Project directories
prxy_0, prxy_1 | Web proxy

MSRC srcl 0,srcl 2 | Source control 1 week
src2_2 Source control
usr 1, usr 2 User home directories
Hadoop Eg% WordCount benchmark | 1 day
TPC-C tpeel OLTP benchmark 1 day

tpcc2




Retention Analysis
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Retention Analysis

e Hadoop and TPC-C
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Two-Level Retention Guarantee

Host writes Background writes

%
Description Writes from the host E.g., cleaning, wear-leveling
Importance of :
P High Low
performance
Retention :
. Low High (cold data)
requirements
Short
Write retention guarantee Normal
operation retention guarantee

Fast write Less-strong ECCs



Retention-Aware FTL Design

e FTL (Flash Translation Layer)

— Software layer emulating a block device over NAND Flash
memories in SSDs

OS

SSD | FTL Logical addr. | R/W
~ cmd.

Address Data | Background | Data
translation cleaning

l Physical addr.

Y

Y Y




Retention-Aware FTL

 Two new components employed in the FTL

— Mode Selector

* Invoke different NAND Flash write commands or different ECC engines for
blocks with different retention guarantees

— Retention Tracker
* Monitor the remaining retention time of blocks
* Reprogramming a block when the block is about to run out of retention

0OS
A
SSD | FTL Logical addr., R/W cmd. Data :
Retention
A 4 ‘1' Tracker
Address Mode lBIk. addr.
Translation Selector
Dataa Background Data
: R/W Cleani
lPhysmaI addr. l Sl |
cmd. v




Retention Relaxation for Write Speedup

Write stream

—a,b,b,a,c,a..
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Flash -
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Retention Relaxation for ECC Optimization

Concatenated BCH-LDPC

Host Writes

[_BCHEncoder |  Background

Writes

LDPC Encoder

|
v v vy

NAND NAND NAND NAND
Flash Flash Flash Flash
Issue:

Since all host writes go through the
LDPC encoder, a high-throughput
LDPC encoder is required,
otherwise it will become the
bottleneck

Retention-Aware Architecture

Reprogramming &

AR Background Writes
Already LDP
2 ncoded?
| BCHEncoder | LDPC g
Encoder
1 i '
NAND NAND NAND NAND
Flash Flash Flash Flash
Advantages:

Time-consuming LDPC is kept out of the
critical performance path

LDPC encodes only data with retention
longer than what the BCH guarantees
LDPC encoding can be scheduled over a
period of time in the background

- Reduce the throughput requirements of

the LDPC
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Experimental Setup

e Simulations using Disksim 4.0 & SSDsim

 Workloads
— 11 traces from MSRC, Hadoop, and TPC-C

 Two configurations are evaluated
— Baseline: SSDs with 1-year retention for all writes

— Proposed retention-relaxation design: RR-2week

* 2-week retention guarantee for host writes

* Blocks not overwritten in one week are reprogrammed with full
retention guarantees

Trace Name Dies per Disk | Exported Capacity (GB)
prn_0, proj_0, prxy 0, srcl 2 16 106
src2_2 32 212
srcl 0 64 423
proj_2, hdl, hd2,
tpccl, tpee2, tpecl n, tpec2 n 128 iall




Improving Write Speed

O Baseline B RR-2week
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Write Response Time Speedup
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Workload

* Typical 2x to 2.5x speedup

e 39xto5.7x for hdl and hd2

— Due to long queuing time
— Retention relaxation reduces queuing time by 5.4 to 6.1x
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Improving Cost & Performance of ECCs
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e SSD performance vs. various LDPC throughput

— Under the same LDPC throughput (HW cost)
* RR-2week outperforms the baseline

— RR-2week approaches the ideal performance with 20MB/s LDPC
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Conclusions

First work to exploit retention relaxation for
optimizing NAND Flash-based SSDs

— Improving write speed

— Improving the cost & performance of ECCs

Quantitative analysis on the retention requirements
of datacenter workloads

— In most cases, 49% to 99% of writes have retention less

than a week.
Retention-aware FTL design
— Enabling retention relaxation without hampering reliability

— Achieving 2x to 5.7x write speedup or 8x less LDPC
throughput requirements for SSDs



Thank You
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