
1

NCCloud : Applying Network Coding for
the Storage Repair in a Cloud -of-Clouds

Yuchong Hu1, Henry C. H. Chen1,
Patrick P. C. Lee1, Yang Tang2

1The Chinese University of Hong Kong
2Columbia University

FAST’12

Cloud Storage
� Cloud storage is an emerging service model for remote

backup and data synchronization

� Single-cloud storage raises concerns:
• Cloud outage

• Vendor lock-ins [Abu-Libdeh et al., SOCC’10]

• Costly to switch cloud providers
2

Multiple -Cloud Storage

�Solution: multiple-cloud storage
• Deploy a proxy between users and multiple clouds
• Stripe data across multiple clouds

3

(n,k) MDS code: Any k out of n storage nodes
(clouds) can rebuild original file.

e.g., RAID-5: k = n – 1; RAID-6: k = n – 2

Proxy

Cloud 1

Cloud 2

Cloud 3

Cloud 4

Users

file
upload

downloadfile

Repairing a Failed Cloud

�How to repair:

4

Proxy

Cloud 1

Cloud 2

Cloud 3

Cloud 4

Cloud 5 Repair traffic = ＋ ＋

�Goal: minimize repair traffic
• Repair traffic: amount of data read from surviving clouds
• Hence minimize monetary cost due to data migration

Reed Solomon Codes

� Conventional repair:
• Repair whole file and reconstruct data in new node

5

A

B

A+B

A+2B

B

A+B
A A

A

B

File of
size MNode 1

Node 2

Node 3

Node 4

Proxy

Reed Solomon codes
Repair traffic = M

n = 4, k = 2

Regenerating Codes

� Repair in regenerating codes:
• Downloads one chunk from each node (instead of whole file)
• Repair traffic: save 25% for (n=4,k=2), while same storage size
• Using network coding: encode chunks in storage nodes

6

A
B

C
D

A+C
B+D

A+D
B+C+D

C

A+C

A+B+C

A
B

A
B
C
D

A
B

Node 1

Node 2

Node 3

Node 4

File of
size M

Proxy

Regenerating codes
Repair traffic = 0.75M

n = 4, k = 2

[Dimakis et al.’10]

Related Work

�Theoretical analysis
• Regenerating codes [Dimakis et al. ’10] exploit the optimal

trade-off between storage and repair traffic.

�Empirical studies
• e.g., [Gkantsidis & Rodriguez ’05], [Dunimuco & Biersack ’09], [Martalo et al. ’11]

• Evaluate random linear codes
• Based on simulations

� Multiple cloud storage
• e.g., HAIL [Bowers et al. ’09], RACS [Abu-Libdeh et al. ’10], DEPSKY

[Bessani et al. ’11]

• Based on erasure codes

7

Challenges

� Implementation of regenerating codes in multiple
cloud storage:
• Can we eliminate encoding/decoding operations in

storage nodes (clouds)?
• Only standard read/write interfaces would suffice

• Can we support basic upload/download operations
with regenerating codes?

• Can we support the repair function with regenerating
codes?

8

Our Work

� Build NCCloud , a proxy-based storage system that
applies regenerating codes in multiple-cloud storage

� Design goals:
• Propose an implementable design of functional minimum-

storage regenerating (F-MSR) code
• Support basic read/write operations and the repair function
• Preserve storage overhead as in MDS codes, while reducing

repair traffic

� Implement and evaluate NCCloud in real storage setting
• focus on double-fault tolerance (k = n-2)
• focus on single-fault recovery
• built on FUSE

9

F-MSR: Key Idea

� Code chunk Pi = linear combination of original data chunks

� Repair in F-MSR:
• Download one code chunk from each surviving node
• Reconstruct new code chunks (via random linear combination) in

new node 10

P1
P2

P3
P4

P5
P6

P7
P8

P3

P5

P7

P1’
P2’

A
B
C
D

P1’
P2’

Node 1

Node 2

Node 3

Node 4

File of
size M

Proxy

n = 4, k = 2

F-MSR codes
Repair traffic = 0.75M

F-MSR: Key Idea

�F-MSR: non -systematic
• Doesn’t keep original data as in systematic codes
• Stores only linearly combined code chunks

• while maintaining MDS property

• Suitable for rarely-read long-term archival

�With (non-systematic) F-MSR,
• Eliminate need of encoding/decoding in clouds
• Keep the benefits of network codes in storage repair
• For k = n-2 (double-fault tolerance)

• n = 4: repair traffic saved by 25%
• For very large n: repair traffic saved by almost 50%

11

NCCloud : Upload

�Encoding process:
• Pi = ECVi × [A,B,C,D]T

• ECVi : encoding coefficient vector of Pi

• Arithmetic operations in GF(28)

• EM = [ECV1,ECV2,…,ECVn]T

• EM: encoding matrix is replicated to all nodes as metadata
12

P1
P2

P3
P4

P5
P6

P7
P8

A
B
C
D

k(n-k) chunks

Proxy

divide encode

P1
P2
P3
P4
P5
P6
P7
P8

n(n-k) chunks

distributeFile

n=4, k=2

Storage nodes

NCCloud : Download

�Decoding process:
• [A,B,C,D]T = EM -1× [P1,P2, P3, P4]T

• Download all the chunks from any k of n clouds
• Multiply inverted encoding matrix with downloaded chunks

13

P1
P2

P3
P4

P5
P6

P7
P8

A
B
C
D

k(n-k) chunks

Proxy

mergedecode
P1
P2
P3
P4

k(n-k) chunksdownload

File

n=4, k=2

Storage nodes

NCCloud : Iterative Repair

� Repair: generate random linear combinations of chunks

� How to keep iterative single-failure repairs sustainable?
• i.e., how to ensure new code chunks don’t break MDS property?

� Solution: two-phase checking
• MDS property check

• Current repair maintains MDS property

• Repair MDS property check
• Next repair for any possible failure maintains MDS property

� Simulations show the importance of two-phase checking
over MDS property check only
• See paper for details

14

NCCloud : Iterative Repair

15

P1
P2

P3
P4

P5
P6

P7
P8

Proxy

×

Get all the existing ECVs:
ECV3, ECV4, ECV5, ECV6, ECV7, ECV8

Randomly select one ECV from each existing nodes:
ECV3, ECV5, ECV7

Randomly generate a repair matrix: RM

Obtain ECVs in new node:
[ECV’1, ECV’2]= RM × (ECV3, ECV5, ECV7)T

Construct a new EM’ and test it:
EM’ = [ECV’1, ECV’2, ECV3, ECV4, ECV5, ECV6, ECV7, ECV8]

Check both MDS and repair MDS property in EM’. fail

Download P3,P5,P7; regenerate (P1’,P2’)= RM × (P3, P5, P7)TP1’
P2’

Storage nodes

n=4, k=2

Cost Analysis

� Repair traffic cost
• F-MSR saves 25% (for n = 4) compared to conventional repair

� Metadata of F-MSR
• Metadata size = 160B; file size = several MBs

� Overhead due to GET requests during repair
• Assuming S3 plan in Sep 2011, n = 4, k = 2, file size = 4MB
• Conventional repair: 0.427%
• F-MSR repair: 0.854% 16

Monthly price
plan as of Sep
2011

Experiments

�NCCloud deployment
• Single machine connected to a cloud-of-clouds
• n = 4, k = 2

�Coding schemes
• Reed-Solomon-based RAID-6 vs. F-MSR

�Metric
• Response time

�Cloud environments:
• Local cloud: OpenStack Swift
• Commercial cloud: multiple containers in Azure

17

Response time: Local Cloud

� F-MSR has higher
response time due to
encoding/decoding
overhead

� F-MSR has slightly less
response time in repair,
due to less data download

18

0
10
20
30
40
50

1 10 50 100 200 300 400 500

RAID-6

F-MSR

File size (MB)

R
es

po
ns

e
tim

e
(s

)
U

P
LO

A
D

File size (MB)

R
es

po
ns

e
tim

e
(s

)

D
O

W
N

LO
A

D

File size (MB)

R
es

po
ns

e
tim

e
(s

)
R

E
PA

IR

0
2
4
6
8

10
12

1 10 50 100 200 300 400 500

RAID-6
F-MSR

0
5

10
15
20
25
30
35

1 10 50 100 200 300 400 500

RAID-6(native)

RAID-6(parity)

F-MSR

Response time: Commercial Cloud

� No distinct response
time difference, as
network fluctuations
play a bigger role in
actual response time

19

File size (MB)

R
es

po
ns

e
tim

e
(s

)
U

P
LO

A
D

File size (MB)

R
es

po
ns

e
tim

e
(s

)
D

O
W

N
LO

A
D

R
es

po
ns

e
tim

e
(s

)
R

E
PA

IR

File size (MB)

0

2

4

6

1 2 5 10

RAID-6

F-MSR

0

0.5

1

1.5

2

2.5

1 2 5 10

RAID-6
F-MSR

0

1

2

3

4

5

6

1 2 5 10

RAID-6(native)

RAID-6(parity)

F-MSR

Conclusions

�Propose an implementable design of F-MSR:
• Preserve storage cost, but use less repair traffic

�Build NCCloud , which realizes F-MSR

�Source code:
• http://ansrlab.cse.cuhk.edu.hk/software/nccloud/

20

