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Cloud Storage
� Cloud storage is an emerging service model for remote 

backup and data synchronization

� Single-cloud storage raises concerns:
• Cloud outage

• Vendor lock-ins [Abu-Libdeh et al., SOCC’10]

• Costly to switch cloud providers
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Multiple -Cloud Storage

�Solution: multiple-cloud storage
• Deploy a proxy between users and multiple clouds
• Stripe data across multiple clouds
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(n,k) MDS code: Any k out of n storage nodes 
(clouds) can rebuild original file.

e.g., RAID-5: k = n – 1; RAID-6: k = n – 2
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Repairing a Failed Cloud

�How to repair:
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�Goal: minimize repair traffic
• Repair traffic: amount of data read from surviving clouds
• Hence minimize monetary cost due to data migration



Reed Solomon Codes

� Conventional repair:
• Repair whole file and reconstruct data in new node
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Regenerating Codes

� Repair in regenerating codes:
• Downloads one chunk from each node (instead of whole file)
• Repair traffic: save 25% for (n=4,k=2), while same storage size
• Using network coding: encode chunks in storage nodes
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Related Work

�Theoretical analysis
• Regenerating codes [Dimakis et al. ’10] exploit the optimal 

trade-off between storage and repair traffic.

�Empirical studies 
• e.g., [Gkantsidis & Rodriguez ’05], [Dunimuco & Biersack ’09], [Martalo et al. ’11]

• Evaluate random linear codes
• Based on simulations

� Multiple cloud storage
• e.g., HAIL [Bowers et al. ’09], RACS [Abu-Libdeh et al. ’10], DEPSKY 

[Bessani et al. ’11]

• Based on erasure codes
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Challenges

� Implementation of regenerating codes in multiple 
cloud storage:
• Can we eliminate encoding/decoding operations in 

storage nodes (clouds)? 
• Only standard read/write interfaces would suffice

• Can we support basic upload/download operations 
with regenerating codes?

• Can we support the repair function with regenerating 
codes?
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Our Work

� Build NCCloud , a proxy-based storage system that 
applies regenerating codes in multiple-cloud storage

� Design goals:
• Propose an implementable design of functional minimum-

storage regenerating (F-MSR) code
• Support basic read/write operations and the repair function
• Preserve storage overhead as in MDS codes, while reducing 

repair traffic

� Implement and evaluate NCCloud in real storage setting
• focus on double-fault tolerance (k = n-2)
• focus on single-fault recovery
• built on FUSE
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F-MSR: Key Idea

� Code chunk Pi = linear combination of original data chunks

� Repair in F-MSR:
• Download one code chunk from each surviving node
• Reconstruct new code chunks (via random linear combination) in 

new node 10
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F-MSR: Key Idea

�F-MSR: non -systematic
• Doesn’t keep original data as in systematic codes
• Stores only linearly combined code chunks

• while maintaining MDS property

• Suitable for rarely-read long-term archival

�With (non-systematic) F-MSR, 
• Eliminate need of encoding/decoding in clouds
• Keep the benefits of network codes in storage repair
• For k = n-2 (double-fault tolerance)

• n = 4: repair traffic saved by 25%
• For very large n: repair traffic saved by almost 50%
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NCCloud : Upload

�Encoding process:
• Pi = ECVi × [A,B,C,D ]T

• ECVi : encoding coefficient vector of Pi

• Arithmetic operations in GF(28)

• EM = [ECV1,ECV2,…,ECVn]T

• EM: encoding matrix is replicated to all nodes as metadata
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NCCloud : Download

�Decoding process:
• [A,B,C,D ]T = EM -1× [P1,P2, P3, P4]T 

• Download all the chunks from any k of n clouds
• Multiply inverted encoding matrix with downloaded chunks
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NCCloud : Iterative Repair

� Repair: generate random linear combinations of chunks 

� How to keep iterative single-failure repairs sustainable?
• i.e., how to ensure new code chunks don’t break MDS property?

� Solution: two-phase checking
• MDS property check

• Current repair maintains MDS property

• Repair MDS property check
• Next repair for any possible failure maintains MDS property

� Simulations show the importance of two-phase checking 
over MDS property check only
• See paper for details 
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NCCloud : Iterative Repair
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Cost Analysis

� Repair traffic cost
• F-MSR saves 25% (for n = 4) compared to conventional repair

� Metadata of F-MSR
• Metadata size = 160B; file size = several MBs

� Overhead due to GET requests during repair
• Assuming S3 plan in Sep 2011, n = 4, k = 2, file size = 4MB
• Conventional repair: 0.427%
• F-MSR repair: 0.854% 16
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Experiments

�NCCloud deployment
• Single machine connected to a cloud-of-clouds
• n = 4, k = 2

�Coding schemes
• Reed-Solomon-based RAID-6 vs. F-MSR

�Metric
• Response time

�Cloud environments:
• Local cloud: OpenStack Swift
• Commercial cloud: multiple containers in Azure

17



Response time: Local Cloud

� F-MSR has higher 
response time due to 
encoding/decoding 
overhead

� F-MSR has slightly less 
response time in repair, 
due to less data download
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Response time: Commercial Cloud

� No distinct response 
time difference, as  
network fluctuations 
play a bigger role in 
actual response time
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Conclusions

�Propose an implementable design of F-MSR:
• Preserve storage cost, but use less repair traffic

�Build NCCloud , which realizes F-MSR

�Source code:
• http://ansrlab.cse.cuhk.edu.hk/software/nccloud/
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