Consistency Without Ordering

Vijay Chidambaram, Tushar Sharma,

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

The Advanced Systems Laboratory
University of Wisconsin Madison

WISCONSIN

TTTTTTTTTTTTT
AAAAAA




The problem: crash consistency

* Single operation updates multiple blocks

e System might crash in the middle of operation

— Some blocks updated, some blocks not updated

e After crash, file system needs to be repaired

— In order to restore consistency among blocks



Solution #1: Lazy, optimistic approach

Write blocks to disk in any order
— Fix inconsistencies upon reboot

Advantage: Simple, High performance
Disadvantage: Expensive recovery

Example: ext2 with fsck [carq94)



Solution #2: Eager, pessimistic approach

e Carefully order writes to disk
* Advantage: Quick recovery

* Disadvantage: Perpetual performance penalty

e Examples
— Soft updates (FFS) [Ganger94]
— Journaling (CFS) [Hangmann87]
— Copy-on-write (ZFS) [Bonwicko4]



Ordering points considered harmful

* Reduce performance
— Constrain scheduling of disk writes

* [ncrease complexity

* Require lower-level primitives
— IDE/SATA Cache flush commands



Ordering points require trust

* File system runs on stack of virtual devices

— Consistency fails if any device ighores commands to
flush cache

F_FULLFSYNC “...The operation may take quite a while to complete.
Certain FireWire drives have also been known to ignore
the request to flush their buffered data.”

VirtualBox “If desired, the virtual disk images can be flushed when the
guest issues the IDE FLUSH CACHE command. Normally
these requests are ignored for improved performance”



Is crash-consistency possible
without ordering points?

 Middle ground between lazy and eager approaches
e Simplicity and high performance of lazy approach

e Strong consistency and availability of eager approach



Our solution:
No-Order File System (NoFS)

Order-less file system which uses
mutual agreement between objects

to obtain consistency



Results

* Designed a new crash-consistency technique
— Backpointer-based consistency (BBC)

* Theoretically and experimentally verified that
NoFS provides strong consistency

* Evaluated NoOFS against ext2 and ext3
— NoFS performance comparable to ext2
— NoFS performance equal to or better than ext3



Outline

Crash-consistency and Object identity
The No-Order File System
Results

Conclusion



Crash consistency and object identity

All file system inconsistencies are due to
ambiguity about the logical identity of an object

* Logical identity of an object
— Data block: Owner file, offset
— File: Parent directories
* Common inconsistencies
— Two files claim the same data block
— File points to garbage data



Crash Scenario

* Actions:

— File A'is truncated

— The freed data block is allocated to File B

— The updated data blocks are written to disk
 Problem: Due to a crash, File A is not updated on disk
e Result: On disk, both files claim the data block

Data

MEMORY

DISK




Outline

* The No-Order File System
— Backpointer-based consistency (BBC)
— Non-persistent allocation structures

e Results

* Conclusion



Backpointer-based consistency (BBC)

e Associate object with its logical identity
— Embed backpointer into each object
— Owner(s) of the object found through backpointer

* Consistency obtained through mutual agreement
* Key Assumption

— Object and backpointer written atomically




Using backpointers in a crash scenario

* Actions:
— File A is truncated
— The freed data block is allocated to File B
— The updated data blocks are written to disk
* Problem: Due to a crash, File A is not updated on disk
* Result: Using the backpointer, the true owner is identified




Backpointers of different objects

* Data blocks have a single backpointer to file
* Files can have many backpointers

— One for each parent directory
* Detection of inconsistencies

— Each access of an object involves checking its backpointer

[ Directory

{ Directory




Formal Model of BBC

* Extended a formal model for file systems with
backpointers [sivathanuos]

e Defined the level of consistency provided by BBC
— Data consistency

* Proved that a file system with backpointers
provides data consistency



Outline

— Non-persistent allocation structures
* Results

* Conclusion



Allocation structures

* File systems need to track allocation status
* Crash may leave such structures inconsistent
* True allocation status needs to be found

Data block bitmap

MEMORY




Allocation structures

e After a crash, true allocation status of all
objects must be found

* Traditional file systems do this proactively
— File-system check scans disk to get status
— Journaling file systems write to a log to avoid scan



Non-persistent allocation structures

* NoFS does not persist allocation structures

e Why?
— Cannot be trusted after crash, need to be verified
— Complicate update protocol



Non-persistent allocation structures

e How is allocation information tracked then?
— Need to know which metadata/data blocks are free

 Move the work of finding allocation information
to the background

— Creation of new objects can proceed without
complete allocation information



Non-persistent allocation structures

* Backpointers used to determine allocation
— Object in use if pointers mutually agree
— Check each object individually
— Use validity bitmaps to track checked objects

* Allocation structures built up incrementally



Determining allocation information

ext2 NoFS

Data block Data block
Data block bitmap bitmap validity bitmap

110]1]|0 110]1]|14 aejaj@|0




Background Scan

* Complete allocation information not needed

* Allocation information discovered using two
background threads

— One for metadata
— One for data

e Scheduling of scan can be configured

— Run when idle
— Run periodically



Design

Memory Group descriptor Inode bitmap Data block bitmap

ata block

D

[ Directory




Implementation

Based on ext2 codebase

Three types of backpointers

— Data block backpointers {inode num, offset}

— Inode backlinks {inode num}

— Directory block backpointers {dot directory entry}

Inode size increased to support 32 backlinks

Modified the linux page cache to add checks



Outline

e Results

e Conclusion



Evaluation

* Q:Is NoFS robust against crashes?
— Fault injection testing

* Q: What is the overhead of NoFS?
— Evaluated on micro and macro benchmarks

* Q: How does the background scan affect performance?
— Measured write bandwidth, access latency during scan



Is NOFS robust against crashes?

Fault injection testing

Interpose pseudo-device driver Writes from file system
bet
Dis NoFS detected all inconsistencies %

| 2r

* Errors returned on invalid access
* Orphan inodes/blocks reclaimed

SucC
20 different crash scenarios a

Em



What is the overhead of NoFS?

Performance in micro and macro benchmarks
ext2 M NoFS ext3

\
0.8 NoFS performance comparable to ext2

94 " NoFS performance is better than ext3 for
sync heavy workloads
0 " J
SeqWrite RandWrite File Create Varmail
Wri B file 4088 bytes 100K files over 100 Filebench
per write to directories with
1 GB file fsync

ormalized throughput




How does the background scan
affect performance?

e Scan reads are interleaved with file system 1/0O

e Access to objects not verified by scan incurs a
performance penalty



Scan reads are interleaved with file system 1/0

* Scan reads interfere with application reads
and writes

* Experiment

— Write a 200 MB file every 30 seconds
— Measure bandwidth



Scan reads are interleaved with file system I/O

Write bandwidth obtained

)

»

(MB/s
B U
o o o

andwidth

<

= N W
o

0 200 400 6000 1200 1400 1600

2/15/12 FAST 12 34



Scan reads are interleaved with file system I/O

Write bandwidth obtained

70 1

a

N

|/0 bandwidth is reduced during scan, but peak
performance achieved on scan completion

hn [ g

0
O 30 60 90 120 150 180 210 240 270 300 330 360

Time (s)



Access to objects not verified by scan costs more

* The stat problem
— stat returns number of blocks allocated
— This information might be stale for un-verified inode
— NOFS verifies the inode upon stat
* Involves checking each inode data block



Access to objects not verified by scan costs more

* Experiment
— Create a number of directories with 128 files (each 1 MB)

— At each 50 second interval, starting from file-system mount
* Run Is —| on directory
* This causes a stat call on every inode
e stat on un-verified inodes requires reading all its data

— Measure time taken



Access to objects not verified by scan costs more

yanN e

N

There is a performance cost to accessing
un-verified objects during the scan

One time cost, only until scan completion

- /

Time taken for Is I (s)

X X X
500 550 600

0 50 100 00 250 300 350
Time after file-system mount (s)




Outline

e Conclusion



Summary

* Problem: Providing crash-consistency and high
availability without ordering points

* Solution: NoFS with Backpointer-based consistency
— Use mutual agreement to drive consistency

* Advantages:
— Strong consistency guarantees
— Performance similar to order-less file system



Conclusion

* Trustis implicit in many layers of storage systems

 Removing such trust is key to building robust,
reliable storage systems



Thank you!

Questions?

@ Advanced Systems Lab (ADSL)
,,,,,,,,,,, University of Wisconsin-Madison

WISCONSIN http://www.cs.wisc.edu/adsl

AAAAAA



Backup Slides



Running time of scan

O I I I I I I I I I |
1 2 4 8 16 32 64 128 256 512 1024

Total data in the file system (MB)

2/15/12 FAST 12 44



Time for Is system call (s)

2/15/12

60

50

40

30

20

10

Performance cost of stat on unverified inodes

=t=Total data: 128 MB

==Total data: 256 MB
Total data: 512 MB

c
o
=
w
a
S
O
o
c
3
N
I I I - | - 1
70 140 210 250 280 350 420 490

Time (s)

FAST 12

45



Effect of background scan on write bandwidth

80 |
70 I . F .

& 60

= /\NI/\N /\ /\ /

< 50

=/ N/ N/ \/ \/

2 40

s T/ | \ Y \

©

2 30

b

s 20 Background scan every ~ ~ vvritesstarting at 20s
10 SUSeconas <i=Writes starting at Os
O [ [ [ [ [ [ [ [ [ [ |

0 30 60 90 120 150 180 210 240 270 300 330
Time (s)

2/15/12 FAST 12 46



Performance of data block scan

100

[EEY
o

Time taken (s)
[

o
(Y

0.01 I I T |
1 10 100 1000
Total data scanned (MB)

2/15/12 FAST 12 47



Lines of code: 6765

Kernel: 2869
File system: 3869



Use cases

NoFS provides crash-consistency without
ordering

* BBC can be used in conventional file systems to ensure
runtime integrity

 NoFs can be used as local file system in GFS, HDFS
NoFS allows virtual machines to maintain
consistency without trusting lower-layer
primitives



