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Abstract Unfortunately,the indirection such as found in many

We presenfNameless Writesa new device interface that=TLs comes at a high price, which manifests as perfor-
removes the need for indirection in modern solid-staf@ance costs, space overheads, or both. If the FTL can
storage devices (SSDs). Nameless writes allow the diéxibly map each virtuapagein its address space (as-
vice to choose the location of a write; only then is th&Uming a typical page size of 2 KB), an incredibly large
clientinformed of thevame(i.e., address) where the blockndirection table is required. For example, a 1-TB SSD
now resides. Doing so allows the device to control blockould need 2 GB of table space simply to keep one 32-bit
allocation decisions, thus enabling it to execute criticBpinter per 2-KB page of the device. Clearly, a completely
tasks such as garbage collection and wear leveling, wHiRxible mapping is too costly; putting vast quantities of
removing the need for large and costly indirection tablegemory (usually SRAM) into an SSD is prohibitive.

We demonstrate the effectiveness of nameless writes bypecause of this high cost, most SSDs do not offer a
porting the Linux ext3 file system to use an emulatdtlly flexible per-page mapping. A simple approach pro-
nameless-writing device and show that doing so both Mdes only a pointer peblock of the SSD (a block typ-
duces space and time overheads, thus making for simplelly contains 64 or 128 2-KB pages), which reduces

less costly, and higher-performance SSD-based storaggverheads by the ratio of block size to page size. The
1-TB drive would now only need 32 MB of table space,

1 Introduction which is more reasonable. However, as clearly articulated
Indirection is a core technique in computer systems [28ly Gupta et al. [16], block-level mappings have high per-
Whether in the mapping of file names to blocks, or a vifermance costs due to excessive garbage collection.
tual address space to an underlying physical one, systems a result, the majority of FTLs today are built us-
designers have applied indirection to improve system parg a hybrid approach, mapping most data at block level
formance, reliability, and capacity for many years. and keeping a small page-mapped area for updates [11,
For example, modern hard disk drives use a modé&dt, 22]. Hybrid approaches keep space overheads low
amount of indirection to improve reliability by hiding un-while avoiding the high overheads of garbage collection,
derlying write failures. When a write to a particular physiat the cost of additional device complexity. Unfortunately
cal block fails, a hard disk willemapthe block to another garbage collection can still be costly, reducing the per-
location on the drive and record the mapping such that fiermance of the SSD, sometimes quite noticeably [16].
ture reads will receive the correct data. In this mannerRegardless of the approach, FTL indirection incurs a sig-
drive transparently improves reliability without requig nificant cost; as SSDs scale, even hybrid schemes mostly
any changes to the client above. based on block pointers will become infeasible.
Indirection is particularly important in the new class of In this paper, we introduce nameless writes, an ap-
flash-based storage commonly referred to as Solid Stpteach that removes most of the costs of indirection in
Devices (SSDs). In modern SSDs, an indirection mapflash-based SSDs while still retaining its benefits. Our ap-
the Flash Translation Layer (FTL) enables the device pooach is a specific instanceaé-indirection in which an
map writes in its virtual address space to any underlyiegtra layer of indirection is removed. Unlike most writes,
physical location [11, 14, 16, 19, 21, 22]. which specify both thelatato write as well as aname
FTLs use indirection for two reasons: first, to trangusually in the form of a logical address), a nameless write
form the erase/program cycle mandated by flash into thienply passes the data to the device. The device is free to
more typical write-based interface via copy-on-write teclchoose any underlying physical block for the data; after
niques, and second, to implemavear leveling[18, 20], the devicenamesthe block (i.e., decides where to write
which is critical to increasing SSD lifetime. Because i8), it informs the client of its choice. The client then can
flash block becomes unusable after a certain numberre€ord the name for future reads.
erase-program cycles (10,000 or 100,000 cycles accordOne potential problem with nameless writes is the re-
ing to manufacturers [8, 15]), such indirection is neededrsive update problem: if all writes are hameless, then
to spread the write load across flash blocks evenly aay update to the file system requires a recursive set of up-
thus ensure that no particularly popular block causes tii@es up the file-system tree. To circumvent this problem,
device to fail prematurely. we introduce ssegmented address spa@ehich consists



of a (large) physical address space for nameless writés, Indirection

and a (small) virtual address space for traditional namgds sajd that “all problems in computer science can be
writes. A file system running atop a nameless SSD C&jved by another level of indirection,” a quote that is
keep pointer-based structures in the virtual space; upd@gen attributed to Butler Lampson. Lampson, however,
to those structures do not necessitate further updatesgms credit for this wisdom to David Wheeler, who not
the tree, thus breaking the recursion. only uttered these famous words, but also usually added

Nameless writes offer great advantage over traditionatPut that usually will create another problem [28].”
writes, as they largely remove the need for indirection. Indiréctionis a fundamental technique in computer sys-
Instead of pretending that the device can receive writesifins. Before delving into the details of nameless writes,
any frequency to any block, a device that supports nanfé first presenta d|§cussmn of some of _the_ gen_eral DFOb'
less writes is free to assign any physical page to a Wr‘géns_and solutions in systems tha@ use |nd|_rect|on. First,
when it is written; by returning the true name (i.e., th&e discuss why many systems utilize multiple levels of
physical address) of the page to the client above (e.g., m@rectlon,. a problem we termexcess |nd!rectlon We
file system), indirection is largely avoided, reducing tHE€n describe the general solution to said problete,

simplifying its internal structure. to improve performance or reduce space overheads.

Namel tes (largel h Find 2.1 Excess Indirection
| Nameless V\_/rl_tes (largely) remove the costs Of INCIFEES, cass indirection exists in many systems that are widely
tion without giving away the primary responsibility an

o . sed today, as well as in research prototypes. We now dis-
SSD manufacturer maintains: wear leveling. If an SSE) Y, b yp

simply exports the physical address space to clientscu@f%SS four prominent examples: OS virtual memory run-
oo o hing atop a hypervisor, a file system running atop a single
simplistic file system or workload could cause the d g atop a hyp Y g atop 9

ice to fail rath idlv. simplv b itina th E(\j'isk, a file system atop a RAID array, and the focus of our
vice fo Tail rather rapidly, Simply by over-writing esam(\eNork, file systems atop flash-based SSDs.

block repeatedly (whether by design or simply through 8 An excellent example of excess indirection arises in

file-system bug). With nameless writes, no such failure : .
. ) . memory management of operating systems running atop
mode exists. Because the device retains control of nah =

ing, it retains control of block placement, and thus cap PETVIsors [0 The OS manages virtual-to-physical

) . mappings for each process that is running; the hypervi-
properly implement wear leveling to ensure a lengthy de-""" . : .
N . . spr, in turn, manages physical-to-machine mappings for

vice lifetime. We believe that any solution that does ng : .
ch OS. In this manner, the hypervisor has full control

have this proper?y is not viable, as no manufacturerwougver the memory of the system, whereas the OS above
like to be so easily exposed to failure.

remains unchanged, blissfully unaware that it is not man-

aging a real physical memory. Excess indirection leads

_ We demonstrate the benefits of nameless writes by pPqoth space and time overheads in virtualized systems.
ing the Linux ext3 file system to use a nameless SShe space overhead comes from maintaining OS physical
Through extt_enswe.anaI.yS|s on an emulated nameless Sgfdresses to machine addresses mapping for each page
and comparison with different FTLs, we show the bengnq from possible additional space overhead [1]. Time

fits of the new interface, in both reducing the space cogigerheads exist as well in cases like the MIPS TLB-miss
of indirection and improving random-write performancggokup in Disco [9].

Overall, we find that a nameless SSD uses a much smallef,girection also exists in modern disks. For example,

fraction of memory for indirection than a hybrid SSQyqdern disks maintain a small amount of extra indirec-
while improving performance by an order of magnitudg,, that maps bad sectors to nearby locations, in order to

for some workloads. improve reliability in the face of write failures. Other ex-
amples include ideas for “smart” disks that remap writes

The rest of this paper is organized as follows. In Segrorder to improve performance (for example, by writing
tion 2, we discuss the costs and benefits of indirectian, the nearest free location), which have been explored
and in Section 3 we present the nameless write interfaigeprevious research such as Loge [13] and “intelligent”
In Section 4, we show how to build a nameless-writingisks [30]. These smart disks require large indirection
device. In Section 5, we describe how to port the Linuables inside the drive to map the logical address of the
ext3 file system to use the nameless-writing interface, agte to its current physical location. This requirementin
in Section 6, we evaluate nameless writes through experéduces new reliability challenges, including how to keep
mentation atop an emulated nameless-writing device. M@ indirection table persistent. Finally, fragmentatagn
discuss several related works in Section 7. Finally, in Seendomly-updated files is also an issue.

tion 8, we conclude and discuss our future work. File systems running atop modern RAID storage ar-



rays provide another excellent example of excess indiheir approach essentially collapses multiple page tables
rection. Modern RAIDs often require indirection tablemto a single extra level of indirection, and thus reduces
for fully-flexible control over the on-disk locations ofspace and time overheads, making the costs of recursive
blocks. In AutoRAID, a level of indirection allows thevirtualization more palatable.

system to keep active blocks in mirrored storage for per-

formance reasons, and move inactive blocks to RAIDE\éJ3 Summary

increase effective capacity [32] and overcome the RAIBXCeSS indirection is common across virtual memory and
small-update problem [26]. When a file system runs atSfPrage systems. In some cases, such as with hypervisor-
a RAID, excess indirection exists because the file sy&2sed memory virtualization, it is required for function-
tem maps logical offsets to logical block addresses. TRELY: €ach OS believes it owns the same physical mem-
RAID, in turn, maps logical block addresses to physic@[Y: @nd thus cannot share it without the indirection pro-
(disk, offset) pairs. Such systems add memory space ovdgled by the hypervisor. In _othe_r cases, itimproves perfor-
head to maintain these tables and meet the challenge§'8f'Ce; as we observed with disk systems and SSDs. An-
persisting the tables across power loss. other reason for indirection is modularity and code sim-
The focus of our work is flash-based SSDs, and thuPHcity: Finally, reliability is often the reason for exces
is no surprise that these too exhibit excess indirectiore. THdirection, notably within a single disk to handle write
extra level of indirection is provided via the Flash Trandailures and within an SSD to perform wear leveling.
lation Layer (FTL). The FTL is needed for two primary In all cases, at least part of the reason for excess indi-
reasons. First, it is used to transform reads and writ&€tionis the need to keep a fixed interface between higher
issued by the client into reads and erase/program cyci¥l lower layers of the system. Without such a constraint,
supported by actual flash chips. In particular, because€ could often remove the excess indirection and thus
the high cost of block erases (required before prograffflProve the system. For example, if an OS running on a

ming a page within the block), FTLs map current writ@ara-virtualized system [31] is modified to request a ma-

activity to a small set of active blocks in a log-structure€in€ page from the hypervisor and then install the correct

fashion, thus amortizing the cost of erases. Second, Wygual-to-machine page translation in its page tables, th
FTL enables the SSD to implement wear leveling. rAypervisor is relieved of having to manage this extra level
peatedly erasing and programming a particular block wilf indirection, thus improving performance and reducing
render it unreadable: thus, SSDs use the indirection prR:2ce overheads.

vided by the FTL to spread write load across blocks ar31| Nameless Writes

thus ensure that the device has a longer lifetime. . . . Lo
In this section, we discuss a new device interface that en-

ables flash-based SSDs to remove a great deal of their in-

2.2 De-indirection At .
: fraﬁ;(ructure for indirection. We call a device that support
Because of these costs, system designers have long so o :
S Interface d&ameless-writing Devicdable 1 summa-

methods and techniques to reduce the costs of excess indi- - S
L . rizes the nameless-writing device interface.
rection in various systems. We label the removal of excessy, key feature of a nameless-writing device is its

indirectionde-indirection bility to perform nameless writes; however, to facilitate

The basic idea 'S simple. Let us imagine a sys_tem W@hents (such as file systems) to use a nameless-writing de-
t_WO I_eve_ls OT mapping, a_nd thu_s excess |nd|rect|_on. Tk}?ce, a number of other features are useful as well. In par-
T'rSt indirection ' maps items in thed space tq |tems ticular, the nameless-writing device should provide sup-
in the 3 ;pace:F(Ai) — Bj. The Sec‘?”d indirection port for a segmented address space, migration callbacks,
G maps items in theB space to those in th€' space: and associated metadata. We discuss these features in this

G(Bj) = Ch- _To”I.oolf up .itemz‘, oqe performs the fol- section and how a prototypical file system could use them.
lowing “excessive” indirectionG(F (4)).

De-indirection removes the second level of indire@.1 Nameless Write Interfaces
tion by evaluating the second mappi@g) for all values We first present the basic device interfacesNaimeless
mapped byF'(): Vi : F(i) «— G(F(3)). Thus, the top- Writes nameless (new) write, nameless overwrite, physi-
level mapping simply extracts the needed values from tb&l read, and free.
lower level indirection and installs them directly. The nameless write interface completely replaces the
De-indirection has been successfully applied in existing write operation. A nameless write differs from a
few domains, most notably within hypervisors. Theaditional write in two important ways. First, a nameless
Turtles project [7] provides an excellent example: iwrite does not specify a target address (i.e., a hame); this
a recursively-virtualized environment (with hypervisorallows the device to select the physical location without
running on hypervisors), the Turtles system installs whebntrol from the client above. Second, after the device
the authors refer to amulti-dimensional page tables writes the data, it returnsghysicaladdress (i.e., a name)



Virtual Read Again, the file system waits for the inode to be written and

down: virtual address, length then updates any structures containing a reference to the
up: status, data inode. If nameless writes are the only interface available
Virtual Write for writing to the storage device, then this recursion will
down: virtual address, data, length continue until a root structure is reached. For file sys-
up: status tems that do not perform this chain of updates or enforce
Nameless Write such ordering, such as Linux ext2, additional ordering and
down: data, length, metadata writes are needed. This problem of recursive update has
up: status, resulting physical address(es) been solved in other systems by adding a level of indirec-
Nameless Overwrite tion (e.g., the inode map in LFS [27]).
down: old physical address(es), data, length, metadata
up: status, resulting physical address(es)
Physical Read 3.2 Segmented Address Space
d : hysical add length tadat . . .
OYV“ physica’ address, length, metadata To solve the recursive update problem without requiring
up: status, data . L . .
Free substantial changes to the existing file system, we intro-
L ) duce a segmented address space with two segments (see
down: virtual/physical addr, length, metadata, flag . ] . . .
. Figure 1): thevirtual address spagewhich uses virtual
up: status ; . .
R read, write and free interfaces, and thieysical address
Migration [Callback] space which uses nameless read, write, overwrite, and
up: old physical addr, new physical addr, metadata pace ’ ’ '

free interfaces.

The virtual segment presents an address space from
blocks 0 throughv — 1, and is a virtual block space of
sizeV blocks. The device virtualizes this address space,
and thus keeps a (small) indirection table to map accesses
and status to the client, which then keeps the name intiesthe virtual space to the correct underlying physical lo-
own structure for future reads. cations. Reads and writes to the virtual space are identical

The nameless overwrites interface is similar to tH@ reads and writes on typical devices. The client sends
nameless (new) write interface, except that it also pasdésaddress and a length (and, if a write, data) down to the
the old physical address(es) to the device. The devi@Vvice; the device replies with a status message (success
frees the data at the old physical address(es) and then péfailure), and if a successful read, the requested data.
forms a nameless write. The nameless segment presents an address space from

Read operations are mostly unchanged; as usual, tRé8cks 0 through” — 1, and is a physical block space of
take as input the physical address to be read and reti#e I’ blocks. The bulk of the blocks in the device are
the data at that address and a status indicator. A slif@#nd in this physical space, which allows typical named
change of the read interface is the addition of metadatd@®ds; however, all writes to physical space are nameless,
the input, for reasons that will be described in Section 3#pus preventing the client from directly writing to physiica

Because a nameless write is an allocating operatio°§2tions of its choice.
nameless-writing device needs to also be informed of de-We use a virtual/physical flag to indicate the segment a
allocation as well. Most SSDs refer to this interface ddock is in and the proper interface it should go through.
the free or trim command. Once a block has been freethe size of the two segments are not fixed. Allocation in
(timmed), the device is free to re-use it. either segment can be performed while there is still space

Finally, we consider how the nameless write interfa@ the device. A device space usage counter can be main-
could be utilized by a typical file-system client such d&ined for this purpose.
Linux ext3. For illustration, we examine the operations to The reason for the segmented address space is to en-
append a new block to an existing file. First, the file syable file systems to largely reduce the levels of recursive
tem issues a nameless write of the newly-appended dapalates that would occur with only nameless writes. File
block to a nameless-writing device. When the namelessstems such as ext2 and ext3 can be designed such that
write completes, the file system is informed of its addressdes and other metadata are placed in the virtual ad-
and can update the corresponding in-memory inode finess space. Such file systems can simply issue a write
this file so that it refers to the physical address of thie an inode and complete the update without needing to
block. Since the inode has been changed, the file sysadify directory structures that reference the inode. Thus
tem will eventually flush it to the disk as well; the inodéhe segmented address space allows updates to complete
must be written to the device with another nameless writgithout propagating throughout the directory hierarchy.

down: old physical addr, new physical addr, metadata

Table 1: The Nameless-Writing Device InterfacesThe
table presents the nameless-writing device interfaces.



Virtual Reads Physical Reads Such metadata structure identification can be used in
Virtual Writes Nameless Writes R . .

several tasks. First, when searching for a data block in the

l T l page cache, we obtain the metadata information and com-

pare it against the associated metadata of the data blocks

Virtual Address Space Physical Address Space in the page cache. Second, the migration callback process
Vo | Vi|v2(vVa| |PO|P1|P2|P3|P4|P5|P6|P7(P8]|PO uses associated metadata to find the metadata that needs to
R : be updated when a data block is migrated. Finally, associ-
P L *_ S R ated metadata enables recovery in various crash scenarios,
g VPN Sy ol o 1 which we will discuss in detail in Section 5.7.
ndirection One last issue worth noticing is the difference between

PO (P11 P2 P3| P4 PS5 P6|P7[P8|P the associated metadata and address mapping tables. Un-
like address mapping tables, the associated metadata is
not used to locate physical data and is only used by the

n : L R K
The smaller virtual space allows normal reads and writescivh GIEVICef du“.?g mlégratlon galldpackst?n(tjhcrgSP reci)r:/eg/.
the device in turn maps to underlying physical locationse TI:II— ereore, it can be stored adjacent {o the data on the de-

larger physical space allows reads to physical addresses, I¥iC€: Only a small amount of the associated metadata is

only nameless writes. In the example, only two blocks ofithe fétched into device cache for a short period of time dur-

tual space are currently mapped, VO and V2, to physical lslodidg migration callbacks or recovery. Therefore, the space

P2 and P3, respectively. cost of associated metadata is much smaller than address
mapping tables.

Figure 1: The Segmented Address SpaceA nameless-

3.3 Migration Callback 3 Implementation Issues
Several kinds of devices such as flash-based SSDs need to P

migrate data for reasons like wear leveling. We propo now discuss various implementation issues that arise
themigration callbackinterface to support such needs. the construction of a nameless-writing device. We fo-

A typical flash-based SSD performs wear leveling vig!S On those issues different from a standard SSD, which

indirection: it simply moves the physical blocks and u'€ covered in detail elsewhere [16]. ,
sA number of issues revolve around the virtual segment.

dates the map. With nameless writes, blocks in the ph}(éI : _ 0
ical segment cannot be moved without informing the fifd0Stimportantly, how big should such a segment be”? Un-
its size depends heavily on how the client uses

system. To allow the nameless-writing device to moygrtunately, :
data for wear leveling, a nameless-writing device uses It @ We will see when we port Linux ext3 to use nameless
gration callbackgo inform the file system of the physicalVites in Section 5. Our results in Section 6 show that a
address change of a block. The file system then updatg!l virtual segmentis usually sufficient.

any metadata pointing to this migrated block. The virtual space, by definition, requires an in-memory
) indirection table. Fortunately, this table is quite small,
3.4 Associated Metadata likely including simple page-level mappings for each page

The final interface of a nameless-writing device is useditothe virtual segment. However, the virtual address space
enable the client to quickly locate metadata structures tisauld be made larger than the size of the table; in this
point to data blocks. The complete specification for asase, the device would have to swap pieces of the page
sociated metadata supports communicating metadatatable to and from the device, slowing down access to the
tween the client and device. Specifically, the nameleggtual segment. Thus, while putting many data structures
write command is extended to include a third parameterirdo the virtual space is possible, ideally the client skioul
small amount of metadata, which is persistently recorded miserly with the virtual segment, in order to avoid ex-
adjacent to the data in a per-block header. Reads and egieding the supporting physical resources.
gration callbacks are also extended to include this metaAnother concern is the extra level of information natu-
data. The associated metadata is kept with each bloaky exported by exposing physical names to clients. Al-
buffer in the page cache as well. though the value of physical names has been extolled by
This metadata enables the client file system to reasthers [12], a device manufacturer may feel that such in-
ily identify the metadata structure(s) that points to a dafiarmation reveals too much of their “secret sauce” and
block. For example, in ext3 we can locate the metaddbaus be wary of adopting such an interface. We believe
structure that points to a data block by the inode numbthat if such a concern exists, the device could hand out
the inode generation number, and the offset of the blockrirodified forms of the true physical addresses, thus trying
the inode. For file systems that already explicitly recotd hide the exact addresses from clients. Doing so may ex-
back references, such as btrfs and NoFS [10], the baak additional performance and space overheads, perhaps
references can simply be reused for our purposes. the cost of hiding information from clients.



4 NameIeSS-Writing Device capacitor- or battery-backed cache, and then erases the

In this section, we describe our implementation of g{ock- The FTL next writes the live pages to their orig-
emulated nameless-writing SSD. With nameless writdd@l addresses and tries to fill the rest of the block with
a nameless-writing SSD can have a simpler FTL, whi¢ffites in the waiting queue of the device. Since a flash
has the freedom to do its own allocation and wear lev@lock can only be written in one direction, when there are
ing. We first discuss how we implement the nameled? waiting writes to fill the block, the FTL marks the free
writing interfaces and then propose a new garbage coll§@ace in the block as unusable. We call such spasted

tion method that avoids file-system interaction. We defépace During in-place garbage collection, the physical
the discussion of wear leveling to Section 5.6. addresses of live data are not changed. Thus, no file sys-

tem involvement is needed.
4.1 Nameless-Writing Interface Support
We implemented an emulated nameless-writing SSD tiadlicy to choose candidate block: A natural question
performs data allocation in a log-structured fashion by how to choose blocks for garbage collection. A simple
maintaining active blocks that are written in sequential amethod is to pick blocks with the fewest live pages so that
der. When a nameless write is received, the device altbe cost of reading and writing them back is minimized.
cates the next free physical address, writes the data, &tmvever, choosing such blocks may result in an excess of
returns the physical address to the file system. wasted space. In order to pick a good candidate block for
To support the virtual block space, the nameless-place garbage collection, we aim to minimize the cost
writing device maintains a mapping table between logif rewriting live data and to reduce wasted space during
cal and physical addresses in its device cache. When tiagbage collection. We propose an algorithm that tries to
cache is full, the mapping table is swapped out to the flagtaximize the benefit and minimize the cost of in-place
storage of the SSD. As our results show in Section 6.1, tharbage collection. We define the cost of garbage col-
mapping table size of typical file system images is smdkcting a block to be the total cost of erasing the block
thus, such swapping rarely happens in practice. (Terase), reading Cpageread) and writing Cpage_write)
The nameless-writing device handles trims in a malive data (V,q:q) in the block.
ner similar to traditional SSDs; it invalidates the physica
address sent by a trim command. During garbage colleccost = Terase + (Tpage-read + Tpage_write) * Nvatid

tion, invalidated pages can be recycled. The device aIS({N define benefi h ber of h
invalidates the old physical addresses of overwrites. € define benetit as the number of new pages that can

A nameless-writing device needs to keep certain asgg_tentlally be written in the block. Benefit includes the

ciated metadata for nameless writes. We choose to st IJéo(\;vmg items. the cgrrer\t numhk_Jerz of wallamnfg”w(;lt_ef n
the associated metadata of a data page in its out-of-B3NY tewce qu?uez\(wa’?t-tw’l””e)thw Ic Ean fe : et into
(OOB) area. The associated metadata is moved toget%'glp Yy pages immediately, the number of emply pages

with data pages when the device performs a migration.at thg end of a bloc.kNl‘”t)’ which can be f'”e.d ata
later time, and an estimated number of future writes based

4.2 In-place Garbage Collection on the speed of incoming writesS{;.;+.). While writ-

In this section, we describe a new garbage collectif}p valid pagestyaiia) and waiting writes Nuait.write),
method for nameless-writing devices. Traditional FTLSW writes will be accumulatgd n the device queue. We
perform garbage collection on a flash block by reclai ccount for these new incoming Wiites Bage uwrite *

ing its invalid data pages and migrating its live data pagg vetid = Nuwait.uwrite) * Swrire. Since we can never write

to new locations. Such garbage collection requires"ilfre than the amount of the recycled space _(|.e., n_umber
nameless-writing device to inform the file system of the invalid pagesNinvai:4) Of a block, the benefit function

new physical addresses of the migrated live data; the fifaes the minimum of the number of invalid pages and the

system then needs to update and write out its metadata.r”1"5nber of all potential new writes.
avoid the costs of such callbacks and additional metadgé%
writes, we proposén-place garbage collectignwhich
writes the live data back to the same location instead of + Tpage write * (Nvatia + Nuwaitwrite) * Swrite)
migrating it. A similar hole-plugging approach was pro-
posed in earlier work [24], where live data is used to plug The FTL calculates thé% ratio of all blocks that
the holes of most utilized segments. contain invalid pages and selects the block with the maxi-
To perform in-place garbage collection, the FTL selectsal ratio to be the garbage collection candidate. Compu-
a candidate block using a certain policy. The FTL reattstionally less expensive algorithms could be used to find
all live pages from the chosen block together with theieasonable approximations; such an improvement is left
associated metadata, stores them temporarily in a superfuture work.

eflt = min(Ninvalida Nwait-write + Nlast



5 Nameless Writes on ext3 All the associated metadata is stored in the OOB area

In this section we discuss our implementation of nam@f @ data block. The total amount of additional status
less writes on the Linux ext3 file system. The Linu¥€ Store in the OOB area is less than 48 bytes, smaller
ext3 file system is a classic journaling file system that {3an the typical 128-byte OOB size of 4-KB flash pages.
commonly used in many Linux distributions. It extendE0 reliability reasons, we assume that a data page and its
the Linux ext2 file system and uses the same allocatigfPB area are always written atomically.

method as ext2. It provides three journaling modes: data .
mode, ordered mode, and journal mode. The ordered jo r-3 Write
naling mode of ext3 is a commonly used mode, whickp performanameless write, the file system sends the data
writes metadata to the journal and writes data to disk ba2d the associated metadata of the block to the device.
fore committing metadata of the transaction. It providé¥hen the device finishes a nameless write and sends back
ordering that can be naturally used by nameless writé§, Physical address, the file system updates the inode or
since the nameless-writing interface requires metadatdfg indirect block pointing to it with the new physical ad-
reflect physical address returned by data writes. Wh@Fess. It also updates the block buffer with the new physi-
committing metadata in ordered mode, the physical sl address. In ordered journaling mode, metadata blocks
dresses of data blocks are known to the file system [5¢€ always written after data blocks have been commit-
cause data blocks are written out first. Thus, we impltd; thus on-disk metadata is always consistent with its
mented nameless writes with ext3 ordered mode; otffta. The file system performs overwrites similarly. The

modes are left for future work. only difference is that overwrites have an existing phys-
ical address, which is sent to the device; the device uses
5.1 Segmented Address Space this information to invalidate the old data.

We first discuss physical and virtual address space separa-

tion and modified file-system allocation on ext3. We use4 Read

the physical address space to store all data blocks and\¥gchange two parts of the read operation of data blocks

virtual address space to store all metadata structures,iinthe physical address space: reading from the page cache

cluding superblocks, inodes, data and inode bitmaps, inaid reading from the physical device. To search for a data

rect blocks, directory blocks, and journal blocks. We uggock in the page cache, we compare the metadata index

the type of a block to determine whether it is in the virtu€.9., inode number, inode generation number, and block

or the physical address space and the type of interfaceffset) of the block to be read against the metadata associ-

goes through. ated with the blocks in the page cache. If the buffer is not
The nameless-writing file system does not perform dn the page cache, the file system fetches it from the de-

location of the physical address space and only allocatége using its physical address. The associated metadata

metadata in the virtual address space. Therefore, we@ighe data block is also sent with the read operation to

not fetch or update group bitmaps for nameless block &Rhable the device to search for remapping entries during

location. For these data blocks, the only bookkeeping tedvice wear leveling (see Section 5.6).

that the file system needs to performis tracking overall de-

vice space usage. Specifically, the file system checks P Free

total free space of the device and updates the free sp@be current Linux ext3 file system does not support the

counter when a data block is allocated or de-allocate®iSD trim operation. We implemented the ext3 trim oper-

Metadata blocks in the virtual physical address space at®n in a manner similar to ext4. Trim entries are created

allocated in the same way as the original ext3 file systewhen the file system deletes a block (named or nameless).

thus making use of existing bitmaps. A trim entry contains the logical address of a named block
) or the physical address of a nameless block, the length of
5.2 Associated Metadata the block, its associated metadata, and the address space

We include the following items as associated metadatafléig. The file system then adds the trim entry to the cur-
a data block: 1) the inode number or the logical addrest journal transaction. At the end of transaction commit,
of the indirect block that points to the data block, 2) thall trim entries belonging to the transaction are sent to the
offset within the inode or the indirect block, 3) the inoddevice. The device locates the block to be deleted using
generation number, and 4) a timestamp of when the dtha information contained in the trim operation and inval-
block was last updated. Items 1 to 3 are used to identifiates the block.

the metadata structure that points to a data block. ItemWhen a metadata block is deleted, the original ext3 de-
4 is used during the migration callback process to updatéocation process is performed. When a data block is
the metadata structure with the most up-to-date physidaleted, no de-allocation is performed (i.e., bitmaps are
address of a data block. not updated); only the free space counter is updated.



5.6 Wear Leveling with Callbacks 5.7 Reliability Discussion

The changes of the ext3 file system discussed above may

When a nameless-writing device performs wear Ievelinga e . . :
I . . . cause new reliability issues. In this section, we discuss
it migrates live data to achieve even wear of the devicg,

L : .~ several reliability issues and our solutions to them.
When such migration happens with data blocks in the : T
. . . There are three main reliability issues related to name-
physical address space, the file system needs to beI in- =~ . . o . .
i . Ss writes. First, we maintain a mapping table in the
formed about the change of their physical addresses. N : . i
) . . . on-device RAM for the virtual address space. This table
this section, we describe how the nameless-writing device : .
S o . .needs to be reconstructed each time the device powers on
handles data block migration and how it interacts with the.
' L €ither after a normal power-off or a crash). Second, the
file system to perfornmigration callbacks . . ; : )
. . in-memory metadata can be inconsistent with the physical
When live nameless data blocks (together with theitidresses of nameless blocks because of a crash after writ-
associated metadata in the OOB area) are migrated dhigr a data block and before updating its metadata block,
ing wear leveling, the nameless-writing device createfbecause of a crash during wear-leveling callbacks. Fi-
mapping from the data block’s old physical address to iglly, crashes can happen during in-place garbage collec-
new physical address and stores it together with its asgen, specifically, after reading the live data and before
c!ated metadata in nigration mapping taplen the de- writing them back, which may cause data loss.
vice cgche. The migration mapping table is used to locatewe solve the first two problems by using the meta-
the migrated physical address of a data block for reagista information maintained in the device OOB area. We
and overwrites, which may be sent to the device with thiore logical addresses with data pages in the virtual ad-
block’s old physical address. After the mapping has begifess space for reconstructing the logical-to-physical ad
added, the old physical address is reclaimed and candpgss mapping table. We store associated metadata, as

used by future writes. discussed in Section 3.4, with all nameless data. We also

At the end of a wear-leveling operation, the devicdore the validity of all flash pages in their OOB area. We
sends a migration callback to the file system, which comaintain an invariant that metadata in the OOB area is al-
tains all migrated physical addresses and their associalétys consistent with the data in the flash page by writing
metadata. The file system then uses the associated mé@OOB area and the flash page atomically.
data to locate the metadata pointing to the data block andVe solve the in-place garbage collection reliability
updates it with the new physical address in a backgroupi@blem by requiring the use of a small memory backed
process. Next, the file system writes changed metadat&®Yobattery or super-capacitor. Notice that the amount of
the device. When a metadata write finishes, the file sy§€ data we need to hold during a garbage collection op-
tem deletes all the callback entries belonging to this megfation is no more than the size of an SSD block, typically
data block and sends a response to the device, inform&®$ KB, thus only adding a small monetary cost to the
it that the migration callback has been processed. Finaifjole device.

the device deletes the remapping entry when receiving thel Ne recovery process works as follows. When the de-
response of a migration callback. vice is started, we perform a whole-device scan and read

E iarated metadata blocks. the fil tem d the OOB area of all valid flash pages to reconstruct the
or migrated metadata blocks, the Hie system Oes.rﬁ%ppingtable ofthe virtual address space. If acrashis de-

pe_ed to b? inform_ed of the physical address change Si &ed, we perform the following steps. The device sends
it is kept in the virtual ?‘ddress_ space. Thus_, the_ dev'aﬁge associated metadata in the OOB area and the physical
does not keep remapping entries or send migration ¢ dresses of flash pages in the physical address space to
backs for metadata blocks. the file system. The file system then locates the proper

During the migration callback process, we allow readsetadata structures. If the physical address in a metadata
and overwrites to the migrated data blocks. When recestructure is inconsistent, the file system updates it with
ing a read or an overwrite during the callback period, thie new physical address and adds the metadata write to a
device first looks in the migration mapping table to locatéedicated transaction. After all metadata is processed, th
the current physical address of the data block and thiiie system commits the transaction, at which point the re-
performs the request. covery process is finished.

Since all remapping entries are stored in the on-devi6e Evaluation
RAM before the file system finishes processing the mi- ) .
gration callbacks, we may run out of RAM space if thi! _th|s section, we present our evqll_Janon (.)f namelegs
file system does not respond to callbacks or resporfd tes on an emulated n.ameless-wrlt.lng dewcg. Specif-
too slowly. In such a case, we simply prohibit futuréca"y' we focus on studying the following questions:

wear-leveling migrations and prevent block wear-out only e What are the space costs of nameless-writing devices
through garbage collection. compared to other FTLs?



Configuration Value Image Size| Page | Hybrid | Nameless

SSD Size 4GB 328 MB 328 KB | 38 KB 2.7KB

Page Size 4 KB 2GB 2MB 235 KB 12 KB

Block Size 256 KB 10GB 10MB | 1.1MB 31KB

Number of Planes 10 100 GB 100 MB | 11 MB 251 KB

Hybrid Log Block Area 5% 400 GB 400 MB | 46 MB 1MB

Page Read Latency 25 us 1TB 1GB 118 MB 2.2MB

Page Write Latency 200 s . .

Block Erase Latency | 1500.s Table 3:FTL M_appmg Table S|ze._ _Mappin_g tablg sizz_e of

page-level, hybrid, and nameless-writing devices witfed#ht

Table 2:SSD Emulator Configuration. file system images. The configuration in Table 2 is used.

e What is the overall performance benefit of namelesstapping and the hybrid mapping SSD emulators are
writing devices? built on an unmodified 64-bit Linux 2.6.33 kernel. All

« What is the write performance of nameless-writin xperiments are performed on a 2.5 GHz Intel Quad Core
PU with 8 GB memory.

devices? How and why is it different from page-leve

mapping and hybrid mapping FTLs? 6.1 SSD Memory Consumption
e What is the cost of in-place garbage collection arM¥e first study the space cost of mapping tables used by
the overhead of wear-leveling callbacks? different SSD FTLs: nameless-writing, page-level map-

. ing, and hybrid mapping. The mapping table size of
e Is crash recovery correct and what are its overhea(rg)s{?(‘:]e_leveI and hybrid FTLs is calculated based on the to-

tal size of the device, its block size, and its log block area
SSD Emulator:  We built an SSD emulator which mod-size (for hybrid mapping). A nameless-writing device
els a multi-plane SSD with garbage collection and wekeeps a mapping table for the entire file system’s virtual
leveling as a pseudo block device based on David [4]. \@ddress space. Since we map all metadata to the virtual
implemented three types of FTLs: page-level mappingpock space in our nameless-writing implementation, the
hybrid mapping and nameless-writing on top of the PStdapping table size of the nameless-writing device is de-
objected-oriented SSD simulator codebase [6]. Datapendent on the metadata size of the file system image. We
stored in memory to enable quick and accurate emulatioise Impressions [3] to create typical file system images of
Table 2 describes the configuration we used. sizes up to 1 TB and calculate their metadata sizes.

The page-level mapping FTL writes data in a log- Figure 3 shows the mapping table sizes of the three
structured fashion and schedules in round-robin ordefLs with different file system images produced by Im-
across parallel planes. It keeps a mapping for each datassions. Unsurprisingly, the page-level mapping has the
page between its logical and physical address. We assumghest mapping table space cost. The hybrid mapping
(unrealistically) that this SSD has enough memory to stdnas a moderate space cost; however, its mapping table size
all page-level mappings. The page-level SSD serves assstill quite large: over 100 MB for a 1-TB device. The
upper-bound on performance. nameless mapping table has the lowest space cost; even

We implemented a hybrid mapping FTL similar tdor a 1-TB device, its mapping table uses less than 3 MB
FAST [22], which uses &g block areafor random data of space for typical file systems, reducing both cost and
and one sequential log block dedicated for sequentmwer usage.
streams. The rest of the device idaa block areaised to .
store whole data blocks. The hybrid mapping FTL mailﬁs-'2 Application Performanqe )
tains the page-level mapping of the log block area and th& Now present the overall application performance of
block-level mapping of the data block area. nameless-writing, page-level mapping and hybrid map-

We implemented a simple garbage collection algorithRind FTLs with macro-benchmarks. We use varmail, file-
that recycles blocks with the least live data in page-leR§"ver, and webserver from the filebench suite [29].
mapping and hybrid mapping FTLs, and a wear-levelin Figure 2 shows the throughput of Fhese benchmarks.
algorithm on all three FTLs that considers a block’s rég/?_ see that both page-level mapping and nameless-
maining erase cycles and its data temperature during w&¥4iing FTLs perform better than the hybrid mapping FTL
leveling similar to a previous wear-leveling aIgorithm.[Z]W'th varmail and fileserver. These benchmarks contain

90.8% and 70.6% random writes, respectively. As we
System Setup: We implemented the emulatedwill see later in this section, the hybrid mapping FTL per-
nameless-write device and the hameless-writing ext3 fitems well with sequential writes and poorly with random
system on a 64-bit Linux 2.6.33 kernel. The page-lewstites. Thus, its throughput for these two benchmarks
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Figure 2: Throughput of Filebench. Throughput of var- Figure 3:Sequential and Random Write Throughput.
mail, fileserver, and webmail macro-benchmarks with pagé-hroughput of sequential writes and sustained 4-KB random
level, nameless-writing, and hybrid FTLs. writes. Random writes are performed over a 2-GB range.

is worse than the other two FTLs. For webserver, allrites with these two FTLs comes from their garbage col-
three FTLs deliver similar performance, since it contairsction process. Since whole blocks can be erased when
only 3.8% random writes. We see a small overhead thiey are overwritten in sequential order, garbage collec-
the nameless-writing FTL as compared to the page-letien has the lowest cost with sequential writes. By con-
mapping FTL with all benchmarks, which we will discustrast, garbage collection of random data may incur the cost
in detail in Sections 6.5 and 6.6. of live data migration.

In summary, we demonstrate that the nameless-writingThird, we notice that the random write throughput of
device achieves excellent performance, roughly on gae hybrid mapping FTL is significantly lower than that of
with the costly page-level approach, which serves as e other FTLs and its own sequential write throughput.
upper-bound on performance. The poor random write performance of the hybrid map-

. . ping FTL results from the costly full-merge operation and
6'3 Basic Write Performance ) its corresponding garbage collection process [16]. Full
Write performance of flash-based SSDs is known t0 Rgarges are required each time a log block is filled with

much worse than read performance, with random writgg,dom writes, thus a dominating cost for random writes.
being the performance bottleneck. Nameless writes aim tqy e way to improve the random write performance of

improve write performance of such devices by giving ”Wybrid-mapped SSDs is to over-provision more log block

device more data-placement freedom. We evaluate the Qﬁéce. To explore that, we vary the size of the log block

sic \_Nritg per.forman.ce of our emulated nameless-writingas with the hybrid mapping FTL from 5% to 20% of
device in this section. Figure 3 shows the throughpgfe \whole device and found that random write through-
of sequential writes and sustained 4-KB random writgg;; gets higher as the size of the log block area increases.
with page-level mapping, hybrid mapping, and namelesggwever, only the data block area reflects the effective
writing FTLs. _ _ size of the device, while the log block area is part of de-
_First, we find that the emulated hybrid-mapping dgjice over-provisioning. Therefore, hybrid-mapped SSDs
vice has a sequential throughput of 169 MB/s and a sigen sacrifice device space cost for better random write
tained 4-KB random write throughput of 2,830 IOPS. Aerformance. Moreover, the hybrid mapping table size in-
widely used real middle-end SSD has sequential throughsases with higher log block space, requiring larger on-
put of up to 70 MB/s and random throughput of up tgeyice RAM. Nameless writes achieve significantly bet-
3,300 IOPS [17]. Although the write performance of 0y random write performance with no additional over-
emulator does not match this real SSD exactly, it is still ovisioning or RAM space.
the ballpark of actual SSD performance, and thus usefuling|ly, Figure 3 shows that the nameless-writing FTL
in our study. The goal of our hybrid-mapping emulator igas |ow overhead as compared to the page-level mapping

not to model one particular SSD perfectly but to provider| with sequential and random writes. We explain this
insight into the fundamental problems of hybrid-mapp&gds,it in more detail in Section 6.5 and 6.6.
SSDs as compared to page-mapped and nameless SSDs.

Second, the random write throughput of page-level4 A Closer Look at Random Writes
mapping and nameless-writing FTLs is close to their s&-previous study [16] and our study in the last section
guential write throughput, because both FTLs allocasbow that random writes are the major performance bot-
data in a log-structured fashion, making random writéleneck of flash-based devices. We now study two subtle
behave like sequential writes. The overhead of randgrat fundamental questions: do nameless-writing devices
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Figure 4: Random Write Figure 5: Migrated Live Data. Figure 6: Average Response Time
Throughput. Throughput of Amount of migrated live data during of Synchronous Random Writes.
sustained 4-KB random writes over dif-garbage collection of random writes 4-KB random writes in a 2-GB file.
ferent working set sizes with page-levelwith different working set sizes with Sync frequency represents the number of
nameless, and hybrid FTLs. page-level, nameless, and hybrid FTLs.writes we issue before calling an fsync.
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Figure 7: Page-Level FTL Utiliza- Figure 8: Nameless FTL Utiliza- Figure 9:Hybrid FTL Utilization.
tion. Break down of device utilization tion. Break down of device utilization Break down of device utilization with the
with the page-level FTL under randomwith the nameless FTL under randomhybrid FTL under random writes of dif-
writes of different ranges. writes of different ranges. ferent ranges.

perform well with different kinds of random-write work-amount of live data migrated during garbage collection
loads, and why do they outperform hybrid devices. (Figure 5) of random writes over different working set
To answer the first question, we Study the effect §fzes with all three FTLs. This gl‘aph shows that as the
working set size on random writes. We create files of diftorking set size of random writes increases, more live
ferent sizes and perform sustained 4-KB random writesdata is migrated during garbage collection for these FTLs,
each file to model different working set sizes. Figure &sulting in a higher garbage collection cost and worse
shows the throughput of random writes over different fil@ndom write performance.
sizes with all three FTLs. We find that the working set Comparing the page-level mapping FTL and the
size has a large effect on random write performance mémeless-writing FTL, we find that nameless-writing has
nameless-writing and page-level mapping FTLs. The raslightly higher overhead when the working set size is high.
dom write throughput of these FTLs drops as the workirighis overhead is due to the cost of in-place garbage col-
set size increases. When random writes are perforniection when there is wasted space in the recycled block.
over a small working set, they will be overwritten in fulMe will study this overhead in details in the next section.

when the device fills and garbage collection is triggered.\e now study the second question to further understand
In such cases, there is a higher chance of finding blogk® cost of random writes with different FTLs. We break
that are filled with invalid data and can be erased with %Wn the device utilization into regu'ar WriteS’ block
need to rewrite live data, thus |0W6ring the cost of garbagﬁseS, writes during merging’ reads during merging, and
collection. In contrast, when random writes are performegyvice idle time. Figures 7, 8, and 9 show the stack plot of
over a large working set, garbage collection has a highgese costs over all three FTLs. For page-level mapping
cost since blocks contain more live data, which must Bag nameless-writing FTLs, we see that the major cost
rewritten before erasing a block. comes from regular writes when random writes are per-
To further understand the increasing cost of randdimrmed over a small working set. When the working set
writes as the working set increases, we plot the toiatreases, the cost of merge writes and erases increases
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Figure 10:Write Throughput with ~ Figure 11: Migrated Live Data
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sequential writes with wear leveling un- Migrated live data during wear leveling
der page-level and nameless FTLs. ~ under page-level and nameless FTLs.

and becomes the major cost. For the hybrid mappititat the average response time of the nameless-writing
FTL, the major cost of random writes comes from migrakTL is still lower than that of the hybrid mapping FTL,
ing live data and idle time during merging for all worksince response time is worse when the hybrid FTL per-
ing set sizes. When the hybrid mapping FTL performsfarms full-merge with synchronous random writes.

full merge, it reads and writes pages from different planes,

thus creating idle time on each plane. 6.6 Wear-leveling Callback Overhead

In summary, we demonstrate that random wrifeinally, we study the overhead of wear leveling in a
throughput of the nameless-writing FTL is close to thatameless-writing device. To perform wear-leveling exper-
of the page-level mapping FTL and is significantly betments, we reduce the lifetime of SSD blocks to 50 erase
ter than the hybrid mapping FTL, mainly because of thigcles. We set the threshold of triggering wear leveling to
costly merges the hybrid mapping FTL performs for rame 75% of the maximal block lifetime, and set blocks that
dom writes. We also found that both nameless-writirgye under 90% of the average block remaining time to be
and page-level mapping FTLs achieve better random writgndidates for wear leveling.
throughput when the working set is relatively small be- We create two workloads to model different data tem-
cause of a lower garbage collection cost. perature and SSD wear: a workload that first writes 3.5-

GB data in sequential order and then overwrites the first
6.5 In-place Garbage Collection Overhead 500-MB area 40 times (Workload 1), and a workload that
The performance overhead of a nameless-writing deverwrites the first 1-GB area 40 times (Workload 2).
vice may come from two different device responsibiliWorkload 2 has more hot data and triggers more wear
ties: garbage collection and wear leveling. We study thaveling. We compare the throughput of these workloads
overhead of in-place garbage collection in this section awith page-level mapping and nameless-writing FTLs in
wear-leveling overhead in the next section. Figure 10. The throughput of Workload 2 is worse than

Our implementation of the nameless-writing devicé@at of Workload 1 because of its more frequent wear-
uses an in-place merge to perform garbage collection. l&geling operation. Nonetheless, the performance of the
explained in Section 4.2, when there are no waiting writé@meless-writing FTL with both workloads has less than
on the device, we may waste the space that has beerPfé-overhead.
cently garbage collected. We use synchronous randone then plot the amount of migrated live data during
writes to study this overhead. We vary the frequenavear leveling with both FTLs in Figure 11. As expected,
of calling fsyncto control the amount of waiting writesWorkload 2 produces more wear-leveling migration traf-
on the device; when the sync frequency is high, thefie. Comparing page-level mapping to nameless-writing
are fewer waiting writes on the device queue. FigureFlLs, we find that the nameless-writing FTL migrates
shows the average response time of 4-KB random writeore live data. When the nameless-writing FTL performs
with different sync frequencies under page-level mappirig;place garbage collection, it generates more migrated
nameless-writing, and hybrid mapping FTLs. We find théive data, as shown in Figure 5. Therefore, more erases are
when sync frequency is high, the nameless-writing devicaused by garbage collection with the nameless-writing
has a larger overhead compared to page-level mappikRgL, resulting in more wear-leveling invocation and more
This overhead is due to the lack of waiting writes on theear-leveling migration traffic.
device to fill garbage-collected space. However, we seeMigrating live nameless data in a nameless-writing
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device creates callback traffic and additional metaddtard disks that do not have such responsibilities. Data
writes. Wear leveling in a nameless-writing device alggacement with flash-based devices is also less restricted
adds a space overhead when it stores the remappinghan traditional hard disks, since flash-based memory has
ble for migrated data. We show the amount of additionahiform access latency regardless of its location.
metadata writes and the maximal size of the remappingThe poor random write performance of hybrid FTLs
table of a nameless-writing device in Figure 12. We firttbs drawn attention from researchers in recent years. The
both overheads to be low with the nameless-writing ddemand-based Flash Translation Layer (DFTL) was pro-
vice: an addition of less than 6 MB metadata writes angased to address this problem by maintaining a page-level
space cost of less than 350 KB. mapping table and writing data in a log-structured fashion
In summary, we find that both the garbage-collectidh6]. DFTL stores its page-level mapping table on the de-
and wear-leveling overheads caused by nameless write= and keeps a small portion of the mapping table in the
are low. Since wear leveling is not a frequent operatigtevice cache based on workload temporal locality. How-
and is often scheduled in system idle periods, we expewer, for workloads that have a bigger working set than the
both performance and space overheads of a namelekstice cache, swapping the cached mapping table with the

writing device to be even lower in real systems. on-device mapping table structure can be costly. There is
o also a space overhead to store the entire page-level map-
6.7 Reliability ping table on device. We use a log-structured write order

To determine the correctness of our reliability solutiosjmilar to DFTL to maximize the device’s sequential writ-
we inject crashes in the following points: 1) after writing capability. However, the need for a device-level map-
ing a data block and its metadata block, 2) after writinging table is obviated with nameless writes. Indirection
a data block and before updating its metadata block, i8)maintained only for the virtual address space, which as
after writing a data block and updating its metadata blowke show, requires a small space cost and can fit in the de-
but before committing the metadata block, and 4) after tiiiee cache with typical file system images. Thus, we do
device migrates a data block because of wear leveling arat pay the space cost of storing the large page-level map-
before the file system processes the migration callback ping table in the device or the performance overhead of
all cases, we successfully recover the system to a consigapping mapping table entries.
:ﬁzitrs;?;?a?:t:orrectly reflects all written data blockd a% Conclusions and Future Work

Our results also show that the overhead of our crash 8-this paper, we introduced nameless writes, a new write
covery process is relatively small: from 0.4 to 6 second8terface built to reduce the inherent costs of indirection
depending on the amount of inconsistent metadata aftéough the implementation of nameless writes on the
crash. With more inconsistent metadata, the overhead-#ux ext3 file system and an emulated nameless-writing

recovery is higher. device, we demonstrate how to port a file system to use
nameless writes. Through extensive evaluations, we show
7 Related Work the great advantage of nameless writes: greatly reduced

A large body of work on flash-based SSD FTLs and figpace costs and improved random-write performance.

systems that manage them has been proposed in receﬁprt'ng other t_ypes Of file sys_tems to use nameless
rites would be interesting and is a part of our future

years [11, 14, 16, 19, 21, 22, 25, 33]. In this section, W K H , brief di . bout th il
discuss the two research projects that are most relate g« Tiere, we give a briet discussion about Inese fie
systems and the challenges we foresee in changing them

nameless writes. .
) - to use nameless writes.
Range writes [5] use an approach similar to nameless

writes. Range writes were proposed to improve hard diglqx ext2:  The Linux ext2 file system is similar to the
performance by letting the file system specify a range g3 file system except that it has no journaling. While we
addresses and letting the device pick the final physical ag,y on the ordered journal mode to provide a natural or-
dress of a write. Instead of a range of addresses, name{p&%g for the metadata update process of nameless writes
writes are not specified with any addresses, thus obviatmgaxt& we need to introduce an ordering on the ext2 file
file system allocation and moving allocation responsibgystem_ Our initial implementation of nameless-writing
ity to the device. Problems such as updating metadatagfr> shows that one possible method to enforce such an
ter writes in range writes also arise in nameless writes. WPdering is to defer metadata writes until all the ongoing

propose a segmented address space to lessen the overligadurites belonging to them have finished.
and the complexity of such an update process. Another

difference is that nameless writes target devices that n€&ampy-On-Write File Systems and Snapshots: As an
to maintain control of data placement, such as wear levalternative to journalingcopy-on-write(COW) file sys-
ing in flash-based devices. Range writes target traditiomains always write out updates to new free space; when all
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of those updates have reached the disk, a root structurlReferences

updated to point at the new structures, and thus inclui?[]
them in the state of the file system. COW file system
thus map naturally to nameless writes. All writes to free
space are mapped into the physical segment and issue
namelessly; the root structure is mapped into the virtual
segment. The write ordering is not affected, as COW file
systems all must wait for the COW writes to complete be-
fore issuing a write to the root structure anyway.

One problem with COW file systems or other file sys-[z]
tems that support snapshots or versions is that multiple
metadata structures can point to the same data block,
which may result in a large amount of associated meta-
data. We can use file system intrinsic back references,
such as those in btrfs, or structures liBacklog[23] to
represent associated metadata. Another problem is t
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Extent-Based File Systems: One final type of file sys-
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such as Linux btrfs and ext4, where contiguous regions
of a file are pointed to via (pointer, length) pairs instead
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ously in physical space, and thus affords a highly compact
extent-based representation. We plan to look into such en-
hancements in the future.
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