
De-indirection for Flash-based SSDs with Nameless Writes

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin-Madison

Abstract
We presentNameless Writes, a new device interface that
removes the need for indirection in modern solid-state
storage devices (SSDs). Nameless writes allow the de-
vice to choose the location of a write; only then is the
client informed of thename(i.e., address) where the block
now resides. Doing so allows the device to control block-
allocation decisions, thus enabling it to execute critical
tasks such as garbage collection and wear leveling, while
removing the need for large and costly indirection tables.
We demonstrate the effectiveness of nameless writes by
porting the Linux ext3 file system to use an emulated
nameless-writing device and show that doing so both re-
duces space and time overheads, thus making for simpler,
less costly, and higher-performance SSD-based storage.

1 Introduction
Indirection is a core technique in computer systems [28].
Whether in the mapping of file names to blocks, or a vir-
tual address space to an underlying physical one, system
designers have applied indirection to improve system per-
formance, reliability, and capacity for many years.

For example, modern hard disk drives use a modest
amount of indirection to improve reliability by hiding un-
derlying write failures. When a write to a particular physi-
cal block fails, a hard disk willremapthe block to another
location on the drive and record the mapping such that fu-
ture reads will receive the correct data. In this manner, a
drive transparently improves reliability without requiring
any changes to the client above.

Indirection is particularly important in the new class of
flash-based storage commonly referred to as Solid State
Devices (SSDs). In modern SSDs, an indirection map in
the Flash Translation Layer (FTL) enables the device to
map writes in its virtual address space to any underlying
physical location [11, 14, 16, 19, 21, 22].

FTLs use indirection for two reasons: first, to trans-
form the erase/program cycle mandated by flash into the
more typical write-based interface via copy-on-write tech-
niques, and second, to implementwear leveling[18, 20],
which is critical to increasing SSD lifetime. Because a
flash block becomes unusable after a certain number of
erase-program cycles (10,000 or 100,000 cycles accord-
ing to manufacturers [8, 15]), such indirection is needed
to spread the write load across flash blocks evenly and
thus ensure that no particularly popular block causes the
device to fail prematurely.

Unfortunately,the indirection such as found in many
FTLs comes at a high price, which manifests as perfor-
mance costs, space overheads, or both. If the FTL can
flexibly map each virtualpage in its address space (as-
suming a typical page size of 2 KB), an incredibly large
indirection table is required. For example, a 1-TB SSD
would need 2 GB of table space simply to keep one 32-bit
pointer per 2-KB page of the device. Clearly, a completely
flexible mapping is too costly; putting vast quantities of
memory (usually SRAM) into an SSD is prohibitive.

Because of this high cost, most SSDs do not offer a
fully flexible per-page mapping. A simple approach pro-
vides only a pointer perblock of the SSD (a block typ-
ically contains 64 or 128 2-KB pages), which reduces
overheads by the ratio of block size to page size. The
1-TB drive would now only need 32 MB of table space,
which is more reasonable. However, as clearly articulated
by Gupta et al. [16], block-level mappings have high per-
formance costs due to excessive garbage collection.

As a result, the majority of FTLs today are built us-
ing a hybrid approach, mapping most data at block level
and keeping a small page-mapped area for updates [11,
21, 22]. Hybrid approaches keep space overheads low
while avoiding the high overheads of garbage collection,
at the cost of additional device complexity. Unfortunately,
garbage collection can still be costly, reducing the per-
formance of the SSD, sometimes quite noticeably [16].
Regardless of the approach, FTL indirection incurs a sig-
nificant cost; as SSDs scale, even hybrid schemes mostly
based on block pointers will become infeasible.

In this paper, we introduce nameless writes, an ap-
proach that removes most of the costs of indirection in
flash-based SSDs while still retaining its benefits. Our ap-
proach is a specific instance ofde-indirection, in which an
extra layer of indirection is removed. Unlike most writes,
which specify both thedata to write as well as aname
(usually in the form of a logical address), a nameless write
simply passes the data to the device. The device is free to
choose any underlying physical block for the data; after
the devicenamesthe block (i.e., decides where to write
it), it informs the client of its choice. The client then can
record the name for future reads.

One potential problem with nameless writes is the re-
cursive update problem: if all writes are nameless, then
any update to the file system requires a recursive set of up-
dates up the file-system tree. To circumvent this problem,
we introduce asegmented address space, which consists

1



of a (large) physical address space for nameless writes,
and a (small) virtual address space for traditional named
writes. A file system running atop a nameless SSD can
keep pointer-based structures in the virtual space; updates
to those structures do not necessitate further updates up
the tree, thus breaking the recursion.

Nameless writes offer great advantage over traditional
writes, as they largely remove the need for indirection.
Instead of pretending that the device can receive writes in
any frequency to any block, a device that supports name-
less writes is free to assign any physical page to a write
when it is written; by returning the true name (i.e., the
physical address) of the page to the client above (e.g., the
file system), indirection is largely avoided, reducing the
monetary cost of the SSD, improving its performance, and
simplifying its internal structure.

Nameless writes (largely) remove the costs of indirec-
tion without giving away the primary responsibility an
SSD manufacturer maintains: wear leveling. If an SSD
simply exports the physical address space to clients, a
simplistic file system or workload could cause the de-
vice to fail rather rapidly, simply by over-writing the same
block repeatedly (whether by design or simply through a
file-system bug). With nameless writes, no such failure
mode exists. Because the device retains control of nam-
ing, it retains control of block placement, and thus can
properly implement wear leveling to ensure a lengthy de-
vice lifetime. We believe that any solution that does not
have this property is not viable, as no manufacturer would
like to be so easily exposed to failure.

We demonstrate the benefits of nameless writes by port-
ing the Linux ext3 file system to use a nameless SSD.
Through extensive analysis on an emulated nameless SSD
and comparison with different FTLs, we show the bene-
fits of the new interface, in both reducing the space costs
of indirection and improving random-write performance.
Overall, we find that a nameless SSD uses a much smaller
fraction of memory for indirection than a hybrid SSD
while improving performance by an order of magnitude
for some workloads.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the costs and benefits of indirection,
and in Section 3 we present the nameless write interface.
In Section 4, we show how to build a nameless-writing
device. In Section 5, we describe how to port the Linux
ext3 file system to use the nameless-writing interface, and
in Section 6, we evaluate nameless writes through experi-
mentation atop an emulated nameless-writing device. We
discuss several related works in Section 7. Finally, in Sec-
tion 8, we conclude and discuss our future work.

2 Indirection
It is said that “all problems in computer science can be
solved by another level of indirection,” a quote that is
often attributed to Butler Lampson. Lampson, however,
gives credit for this wisdom to David Wheeler, who not
only uttered these famous words, but also usually added
“...but that usually will create another problem [28].”

Indirection is a fundamental technique in computer sys-
tems. Before delving into the details of nameless writes,
we first present a discussion of some of the general prob-
lems and solutions in systems that use indirection. First,
we discuss why many systems utilize multiple levels of
indirection, a problem we termexcess indirection. We
then describe the general solution to said problem,de-
indirection, which removes an extra layer of indirection
to improve performance or reduce space overheads.

2.1 Excess Indirection
Excess indirection exists in many systems that are widely
used today, as well as in research prototypes. We now dis-
cuss four prominent examples: OS virtual memory run-
ning atop a hypervisor, a file system running atop a single
disk, a file system atop a RAID array, and the focus of our
work, file systems atop flash-based SSDs.

An excellent example of excess indirection arises in
memory management of operating systems running atop
hypervisors [9]. The OS manages virtual-to-physical
mappings for each process that is running; the hypervi-
sor, in turn, manages physical-to-machine mappings for
each OS. In this manner, the hypervisor has full control
over the memory of the system, whereas the OS above
remains unchanged, blissfully unaware that it is not man-
aging a real physical memory. Excess indirection leads
to both space and time overheads in virtualized systems.
The space overhead comes from maintaining OS physical
addresses to machine addresses mapping for each page
and from possible additional space overhead [1]. Time
overheads exist as well in cases like the MIPS TLB-miss
lookup in Disco [9].

Indirection also exists in modern disks. For example,
modern disks maintain a small amount of extra indirec-
tion that maps bad sectors to nearby locations, in order to
improve reliability in the face of write failures. Other ex-
amples include ideas for “smart” disks that remap writes
in order to improve performance (for example, by writing
to the nearest free location), which have been explored
in previous research such as Loge [13] and “intelligent”
disks [30]. These smart disks require large indirection
tables inside the drive to map the logical address of the
write to its current physical location. This requirement in-
troduces new reliability challenges, including how to keep
the indirection table persistent. Finally, fragmentationof
randomly-updated files is also an issue.

File systems running atop modern RAID storage ar-

2



rays provide another excellent example of excess indi-
rection. Modern RAIDs often require indirection tables
for fully-flexible control over the on-disk locations of
blocks. In AutoRAID, a level of indirection allows the
system to keep active blocks in mirrored storage for per-
formance reasons, and move inactive blocks to RAID to
increase effective capacity [32] and overcome the RAID
small-update problem [26]. When a file system runs atop
a RAID, excess indirection exists because the file sys-
tem maps logical offsets to logical block addresses. The
RAID, in turn, maps logical block addresses to physical
(disk, offset) pairs. Such systems add memory space over-
head to maintain these tables and meet the challenges of
persisting the tables across power loss.

The focus of our work is flash-based SSDs, and thus it
is no surprise that these too exhibit excess indirection. The
extra level of indirection is provided via the Flash Trans-
lation Layer (FTL). The FTL is needed for two primary
reasons. First, it is used to transform reads and writes
issued by the client into reads and erase/program cycles
supported by actual flash chips. In particular, because of
the high cost of block erases (required before program-
ming a page within the block), FTLs map current write
activity to a small set of active blocks in a log-structured
fashion, thus amortizing the cost of erases. Second, the
FTL enables the SSD to implement wear leveling. Re-
peatedly erasing and programming a particular block will
render it unreadable; thus, SSDs use the indirection pro-
vided by the FTL to spread write load across blocks and
thus ensure that the device has a longer lifetime.

2.2 De-indirection
Because of these costs, system designers have long sought
methods and techniques to reduce the costs of excess indi-
rection in various systems. We label the removal of excess
indirectionde-indirection.

The basic idea is simple. Let us imagine a system with
two levels of mapping, and thus excess indirection. The
first indirectionF maps items in theA space to items
in the B space:F (Ai) → Bj . The second indirection
G maps items in theB space to those in theC space:
G(Bj) → Ck. To look up itemi, one performs the fol-
lowing “excessive” indirection:G(F (i)).

De-indirection removes the second level of indirec-
tion by evaluating the second mappingG() for all values
mapped byF (): ∀ i : F (i) ← G(F (i)). Thus, the top-
level mapping simply extracts the needed values from the
lower level indirection and installs them directly.

De-indirection has been successfully applied in a
few domains, most notably within hypervisors. The
Turtles project [7] provides an excellent example: in
a recursively-virtualized environment (with hypervisors
running on hypervisors), the Turtles system installs what
the authors refer to asmulti-dimensional page tables.

Their approach essentially collapses multiple page tables
into a single extra level of indirection, and thus reduces
space and time overheads, making the costs of recursive
virtualization more palatable.

2.3 Summary
Excess indirection is common across virtual memory and
storage systems. In some cases, such as with hypervisor-
based memory virtualization, it is required for function-
ality; each OS believes it owns the same physical mem-
ory, and thus cannot share it without the indirection pro-
vided by the hypervisor. In other cases, it improves perfor-
mance, as we observed with disk systems and SSDs. An-
other reason for indirection is modularity and code sim-
plicity. Finally, reliability is often the reason for excess
indirection, notably within a single disk to handle write
failures and within an SSD to perform wear leveling.

In all cases, at least part of the reason for excess indi-
rection is the need to keep a fixed interface between higher
and lower layers of the system. Without such a constraint,
one could often remove the excess indirection and thus
improve the system. For example, if an OS running on a
para-virtualized system [31] is modified to request a ma-
chine page from the hypervisor and then install the correct
virtual-to-machine page translation in its page tables, the
hypervisor is relieved of having to manage this extra level
of indirection, thus improving performance and reducing
space overheads.

3 Nameless Writes
In this section, we discuss a new device interface that en-
ables flash-based SSDs to remove a great deal of their in-
frastructure for indirection. We call a device that supports
this interface aNameless-writing Device. Table 1 summa-
rizes the nameless-writing device interface.

The key feature of a nameless-writing device is its
ability to perform nameless writes; however, to facilitate
clients (such as file systems) to use a nameless-writing de-
vice, a number of other features are useful as well. In par-
ticular, the nameless-writing device should provide sup-
port for a segmented address space, migration callbacks,
and associated metadata. We discuss these features in this
section and how a prototypical file system could use them.

3.1 Nameless Write Interfaces
We first present the basic device interfaces ofNameless
Writes: nameless (new) write, nameless overwrite, physi-
cal read, and free.

The nameless write interface completely replaces the
existing write operation. A nameless write differs from a
traditional write in two important ways. First, a nameless
write does not specify a target address (i.e., a name); this
allows the device to select the physical location without
control from the client above. Second, after the device
writes the data, it returns aphysicaladdress (i.e., a name)

3



Virtual Read
down: virtual address, length
up: status, data

Virtual Write
down: virtual address, data, length
up: status

Nameless Write
down: data, length, metadata
up: status, resulting physical address(es)

Nameless Overwrite
down: old physical address(es), data, length, metadata
up: status, resulting physical address(es)

Physical Read
down: physical address, length, metadata
up: status, data

Free
down: virtual/physical addr, length, metadata, flag
up: status

Migration [Callback]
up: old physical addr, new physical addr, metadata
down: old physical addr, new physical addr, metadata

Table 1: The Nameless-Writing Device InterfacesThe
table presents the nameless-writing device interfaces.

and status to the client, which then keeps the name in its
own structure for future reads.

The nameless overwrites interface is similar to the
nameless (new) write interface, except that it also passes
the old physical address(es) to the device. The device
frees the data at the old physical address(es) and then per-
forms a nameless write.

Read operations are mostly unchanged; as usual, they
take as input the physical address to be read and return
the data at that address and a status indicator. A slight
change of the read interface is the addition of metadata in
the input, for reasons that will be described in Section 3.4.

Because a nameless write is an allocating operation, a
nameless-writing device needs to also be informed of de-
allocation as well. Most SSDs refer to this interface as
the free or trim command. Once a block has been freed
(trimmed), the device is free to re-use it.

Finally, we consider how the nameless write interface
could be utilized by a typical file-system client such as
Linux ext3. For illustration, we examine the operations to
append a new block to an existing file. First, the file sys-
tem issues a nameless write of the newly-appended data
block to a nameless-writing device. When the nameless
write completes, the file system is informed of its address
and can update the corresponding in-memory inode for
this file so that it refers to the physical address of this
block. Since the inode has been changed, the file sys-
tem will eventually flush it to the disk as well; the inode
must be written to the device with another nameless write.

Again, the file system waits for the inode to be written and
then updates any structures containing a reference to the
inode. If nameless writes are the only interface available
for writing to the storage device, then this recursion will
continue until a root structure is reached. For file sys-
tems that do not perform this chain of updates or enforce
such ordering, such as Linux ext2, additional ordering and
writes are needed. This problem of recursive update has
been solved in other systems by adding a level of indirec-
tion (e.g., the inode map in LFS [27]).

3.2 Segmented Address Space
To solve the recursive update problem without requiring
substantial changes to the existing file system, we intro-
duce a segmented address space with two segments (see
Figure 1): thevirtual address space, which uses virtual
read, write and free interfaces, and thephysical address
space, which uses nameless read, write, overwrite, and
free interfaces.

The virtual segment presents an address space from
blocks 0 throughV − 1, and is a virtual block space of
sizeV blocks. The device virtualizes this address space,
and thus keeps a (small) indirection table to map accesses
to the virtual space to the correct underlying physical lo-
cations. Reads and writes to the virtual space are identical
to reads and writes on typical devices. The client sends
an address and a length (and, if a write, data) down to the
device; the device replies with a status message (success
or failure), and if a successful read, the requested data.

The nameless segment presents an address space from
blocks 0 throughP − 1, and is a physical block space of
sizeP blocks. The bulk of the blocks in the device are
found in this physical space, which allows typical named
reads; however, all writes to physical space are nameless,
thus preventing the client from directly writing to physical
locations of its choice.

We use a virtual/physical flag to indicate the segment a
block is in and the proper interface it should go through.
The size of the two segments are not fixed. Allocation in
either segment can be performed while there is still space
on the device. A device space usage counter can be main-
tained for this purpose.

The reason for the segmented address space is to en-
able file systems to largely reduce the levels of recursive
updates that would occur with only nameless writes. File
systems such as ext2 and ext3 can be designed such that
inodes and other metadata are placed in the virtual ad-
dress space. Such file systems can simply issue a write
to an inode and complete the update without needing to
modify directory structures that reference the inode. Thus,
the segmented address space allows updates to complete
without propagating throughout the directory hierarchy.

4



V0 V1 V2 V3 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Virtual Address Space Physical Address Space

Virtual Reads

Virtual Writes

Physical Reads

Nameless Writes

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

V0 → P2

V2 → P3

indirection

table

Figure 1: The Segmented Address Space.A nameless-
writing device provides a segmented address space to clients.
The smaller virtual space allows normal reads and writes, which
the device in turn maps to underlying physical locations. The
larger physical space allows reads to physical addresses, but
only nameless writes. In the example, only two blocks of the vir-
tual space are currently mapped, V0 and V2, to physical blocks
P2 and P3, respectively.

3.3 Migration Callback
Several kinds of devices such as flash-based SSDs need to
migrate data for reasons like wear leveling. We propose
themigration callbackinterface to support such needs.

A typical flash-based SSD performs wear leveling via
indirection: it simply moves the physical blocks and up-
dates the map. With nameless writes, blocks in the phys-
ical segment cannot be moved without informing the file
system. To allow the nameless-writing device to move
data for wear leveling, a nameless-writing device usesmi-
gration callbacksto inform the file system of the physical
address change of a block. The file system then updates
any metadata pointing to this migrated block.

3.4 Associated Metadata
The final interface of a nameless-writing device is used to
enable the client to quickly locate metadata structures that
point to data blocks. The complete specification for as-
sociated metadata supports communicating metadata be-
tween the client and device. Specifically, the nameless
write command is extended to include a third parameter: a
small amount of metadata, which is persistently recorded
adjacent to the data in a per-block header. Reads and mi-
gration callbacks are also extended to include this meta-
data. The associated metadata is kept with each block
buffer in the page cache as well.

This metadata enables the client file system to read-
ily identify the metadata structure(s) that points to a data
block. For example, in ext3 we can locate the metadata
structure that points to a data block by the inode number,
the inode generation number, and the offset of the block in
the inode. For file systems that already explicitly record
back references, such as btrfs and NoFS [10], the back
references can simply be reused for our purposes.

Such metadata structure identification can be used in
several tasks. First, when searching for a data block in the
page cache, we obtain the metadata information and com-
pare it against the associated metadata of the data blocks
in the page cache. Second, the migration callback process
uses associated metadata to find the metadata that needs to
be updated when a data block is migrated. Finally, associ-
ated metadata enables recovery in various crash scenarios,
which we will discuss in detail in Section 5.7.

One last issue worth noticing is the difference between
the associated metadata and address mapping tables. Un-
like address mapping tables, the associated metadata is
not used to locate physical data and is only used by the
device during migration callbacks and crash recovery.
Therefore, it can be stored adjacent to the data on the de-
vice. Only a small amount of the associated metadata is
fetched into device cache for a short period of time dur-
ing migration callbacks or recovery. Therefore, the space
cost of associated metadata is much smaller than address
mapping tables.

3.5 Implementation Issues
We now discuss various implementation issues that arise
in the construction of a nameless-writing device. We fo-
cus on those issues different from a standard SSD, which
are covered in detail elsewhere [16].

A number of issues revolve around the virtual segment.
Most importantly, how big should such a segment be? Un-
fortunately, its size depends heavily on how the client uses
it, as we will see when we port Linux ext3 to use nameless
writes in Section 5. Our results in Section 6 show that a
small virtual segment is usually sufficient.

The virtual space, by definition, requires an in-memory
indirection table. Fortunately, this table is quite small,
likely including simple page-level mappings for each page
in the virtual segment. However, the virtual address space
could be made larger than the size of the table; in this
case, the device would have to swap pieces of the page
table to and from the device, slowing down access to the
virtual segment. Thus, while putting many data structures
into the virtual space is possible, ideally the client should
be miserly with the virtual segment, in order to avoid ex-
ceeding the supporting physical resources.

Another concern is the extra level of information natu-
rally exported by exposing physical names to clients. Al-
though the value of physical names has been extolled by
others [12], a device manufacturer may feel that such in-
formation reveals too much of their “secret sauce” and
thus be wary of adopting such an interface. We believe
that if such a concern exists, the device could hand out
modified forms of the true physical addresses, thus trying
to hide the exact addresses from clients. Doing so may ex-
act additional performance and space overheads, perhaps
the cost of hiding information from clients.

5



4 Nameless-Writing Device
In this section, we describe our implementation of an
emulated nameless-writing SSD. With nameless writes,
a nameless-writing SSD can have a simpler FTL, which
has the freedom to do its own allocation and wear level-
ing. We first discuss how we implement the nameless-
writing interfaces and then propose a new garbage collec-
tion method that avoids file-system interaction. We defer
the discussion of wear leveling to Section 5.6.

4.1 Nameless-Writing Interface Support
We implemented an emulated nameless-writing SSD that
performs data allocation in a log-structured fashion by
maintaining active blocks that are written in sequential or-
der. When a nameless write is received, the device allo-
cates the next free physical address, writes the data, and
returns the physical address to the file system.

To support the virtual block space, the nameless-
writing device maintains a mapping table between logi-
cal and physical addresses in its device cache. When the
cache is full, the mapping table is swapped out to the flash
storage of the SSD. As our results show in Section 6.1, the
mapping table size of typical file system images is small;
thus, such swapping rarely happens in practice.

The nameless-writing device handles trims in a man-
ner similar to traditional SSDs; it invalidates the physical
address sent by a trim command. During garbage collec-
tion, invalidated pages can be recycled. The device also
invalidates the old physical addresses of overwrites.

A nameless-writing device needs to keep certain asso-
ciated metadata for nameless writes. We choose to store
the associated metadata of a data page in its Out-Of-Band
(OOB) area. The associated metadata is moved together
with data pages when the device performs a migration.

4.2 In-place Garbage Collection
In this section, we describe a new garbage collection
method for nameless-writing devices. Traditional FTLs
perform garbage collection on a flash block by reclaim-
ing its invalid data pages and migrating its live data pages
to new locations. Such garbage collection requires a
nameless-writing device to inform the file system of the
new physical addresses of the migrated live data; the file
system then needs to update and write out its metadata. To
avoid the costs of such callbacks and additional metadata
writes, we proposein-place garbage collection, which
writes the live data back to the same location instead of
migrating it. A similar hole-plugging approach was pro-
posed in earlier work [24], where live data is used to plug
the holes of most utilized segments.

To perform in-place garbage collection, the FTL selects
a candidate block using a certain policy. The FTL reads
all live pages from the chosen block together with their
associated metadata, stores them temporarily in a super-

capacitor- or battery-backed cache, and then erases the
block. The FTL next writes the live pages to their orig-
inal addresses and tries to fill the rest of the block with
writes in the waiting queue of the device. Since a flash
block can only be written in one direction, when there are
no waiting writes to fill the block, the FTL marks the free
space in the block as unusable. We call such spacewasted
space. During in-place garbage collection, the physical
addresses of live data are not changed. Thus, no file sys-
tem involvement is needed.

Policy to choose candidate block: A natural question
is how to choose blocks for garbage collection. A simple
method is to pick blocks with the fewest live pages so that
the cost of reading and writing them back is minimized.
However, choosing such blocks may result in an excess of
wasted space. In order to pick a good candidate block for
in-place garbage collection, we aim to minimize the cost
of rewriting live data and to reduce wasted space during
garbage collection. We propose an algorithm that tries to
maximize the benefit and minimize the cost of in-place
garbage collection. We define the cost of garbage col-
lecting a block to be the total cost of erasing the block
(Terase), reading (Tpage read) and writing (Tpage write)
live data (Nvalid) in the block.

cost = Terase + (Tpage read + Tpage write) ∗Nvalid

We define benefit as the number of new pages that can
potentially be written in the block. Benefit includes the
following items: the current number of waiting writes in
the device queue (Nwait write), which can be filled into
empty pages immediately, the number of empty pages
at the end of a block (Nlast), which can be filled at a
later time, and an estimated number of future writes based
on the speed of incoming writes (Swrite). While writ-
ing valid pages (Nvalid) and waiting writes (Nwait write),
new writes will be accumulated in the device queue. We
account for these new incoming writes byTpage write ∗

(Nvalid +Nwait write)∗Swrite. Since we can never write
more than the amount of the recycled space (i.e., number
of invalid pages,Ninvalid) of a block, the benefit function
uses the minimum of the number of invalid pages and the
number of all potential new writes.

benefit = min(Ninvalid, Nwait write + Nlast

+ Tpage write ∗ (Nvalid + Nwait write) ∗ Swrite)

The FTL calculates thebenefit

cost
ratio of all blocks that

contain invalid pages and selects the block with the maxi-
mal ratio to be the garbage collection candidate. Compu-
tationally less expensive algorithms could be used to find
reasonable approximations; such an improvement is left
to future work.

6



5 Nameless Writes on ext3
In this section we discuss our implementation of name-
less writes on the Linux ext3 file system. The Linux
ext3 file system is a classic journaling file system that is
commonly used in many Linux distributions. It extends
the Linux ext2 file system and uses the same allocation
method as ext2. It provides three journaling modes: data
mode, ordered mode, and journal mode. The ordered jour-
naling mode of ext3 is a commonly used mode, which
writes metadata to the journal and writes data to disk be-
fore committing metadata of the transaction. It provides
ordering that can be naturally used by nameless writes,
since the nameless-writing interface requires metadata to
reflect physical address returned by data writes. When
committing metadata in ordered mode, the physical ad-
dresses of data blocks are known to the file system be-
cause data blocks are written out first. Thus, we imple-
mented nameless writes with ext3 ordered mode; other
modes are left for future work.

5.1 Segmented Address Space
We first discuss physical and virtual address space separa-
tion and modified file-system allocation on ext3. We use
the physical address space to store all data blocks and the
virtual address space to store all metadata structures, in-
cluding superblocks, inodes, data and inode bitmaps, indi-
rect blocks, directory blocks, and journal blocks. We use
the type of a block to determine whether it is in the virtual
or the physical address space and the type of interface it
goes through.

The nameless-writing file system does not perform al-
location of the physical address space and only allocates
metadata in the virtual address space. Therefore, we do
not fetch or update group bitmaps for nameless block al-
location. For these data blocks, the only bookkeeping task
that the file system needs to perform is tracking overall de-
vice space usage. Specifically, the file system checks for
total free space of the device and updates the free space
counter when a data block is allocated or de-allocated.
Metadata blocks in the virtual physical address space are
allocated in the same way as the original ext3 file system,
thus making use of existing bitmaps.

5.2 Associated Metadata
We include the following items as associated metadata of
a data block: 1) the inode number or the logical address
of the indirect block that points to the data block, 2) the
offset within the inode or the indirect block, 3) the inode
generation number, and 4) a timestamp of when the data
block was last updated. Items 1 to 3 are used to identify
the metadata structure that points to a data block. Item
4 is used during the migration callback process to update
the metadata structure with the most up-to-date physical
address of a data block.

All the associated metadata is stored in the OOB area
of a data block. The total amount of additional status
we store in the OOB area is less than 48 bytes, smaller
than the typical 128-byte OOB size of 4-KB flash pages.
For reliability reasons, we assume that a data page and its
OOB area are always written atomically.

5.3 Write
To perform a nameless write, the file system sends the data
and the associated metadata of the block to the device.
When the device finishes a nameless write and sends back
its physical address, the file system updates the inode or
the indirect block pointing to it with the new physical ad-
dress. It also updates the block buffer with the new physi-
cal address. In ordered journaling mode, metadata blocks
are always written after data blocks have been commit-
ted; thus on-disk metadata is always consistent with its
data. The file system performs overwrites similarly. The
only difference is that overwrites have an existing phys-
ical address, which is sent to the device; the device uses
this information to invalidate the old data.

5.4 Read
We change two parts of the read operation of data blocks
in the physical address space: reading from the page cache
and reading from the physical device. To search for a data
block in the page cache, we compare the metadata index
(e.g., inode number, inode generation number, and block
offset) of the block to be read against the metadata associ-
ated with the blocks in the page cache. If the buffer is not
in the page cache, the file system fetches it from the de-
vice using its physical address. The associated metadata
of the data block is also sent with the read operation to
enable the device to search for remapping entries during
device wear leveling (see Section 5.6).

5.5 Free
The current Linux ext3 file system does not support the
SSD trim operation. We implemented the ext3 trim oper-
ation in a manner similar to ext4. Trim entries are created
when the file system deletes a block (named or nameless).
A trim entry contains the logical address of a named block
or the physical address of a nameless block, the length of
the block, its associated metadata, and the address space
flag. The file system then adds the trim entry to the cur-
rent journal transaction. At the end of transaction commit,
all trim entries belonging to the transaction are sent to the
device. The device locates the block to be deleted using
the information contained in the trim operation and inval-
idates the block.

When a metadata block is deleted, the original ext3 de-
allocation process is performed. When a data block is
deleted, no de-allocation is performed (i.e., bitmaps are
not updated); only the free space counter is updated.

7



5.6 Wear Leveling with Callbacks

When a nameless-writing device performs wear leveling,
it migrates live data to achieve even wear of the device.
When such migration happens with data blocks in the
physical address space, the file system needs to be in-
formed about the change of their physical addresses. In
this section, we describe how the nameless-writing device
handles data block migration and how it interacts with the
file system to performmigration callbacks.

When live nameless data blocks (together with their
associated metadata in the OOB area) are migrated dur-
ing wear leveling, the nameless-writing device creates a
mapping from the data block’s old physical address to its
new physical address and stores it together with its asso-
ciated metadata in amigration mapping tablein the de-
vice cache. The migration mapping table is used to locate
the migrated physical address of a data block for reads
and overwrites, which may be sent to the device with the
block’s old physical address. After the mapping has been
added, the old physical address is reclaimed and can be
used by future writes.

At the end of a wear-leveling operation, the device
sends a migration callback to the file system, which con-
tains all migrated physical addresses and their associated
metadata. The file system then uses the associated meta-
data to locate the metadata pointing to the data block and
updates it with the new physical address in a background
process. Next, the file system writes changed metadata to
the device. When a metadata write finishes, the file sys-
tem deletes all the callback entries belonging to this meta-
data block and sends a response to the device, informing
it that the migration callback has been processed. Finally,
the device deletes the remapping entry when receiving the
response of a migration callback.

For migrated metadata blocks, the file system does not
need to be informed of the physical address change since
it is kept in the virtual address space. Thus, the device
does not keep remapping entries or send migration call-
backs for metadata blocks.

During the migration callback process, we allow reads
and overwrites to the migrated data blocks. When receiv-
ing a read or an overwrite during the callback period, the
device first looks in the migration mapping table to locate
the current physical address of the data block and then
performs the request.

Since all remapping entries are stored in the on-device
RAM before the file system finishes processing the mi-
gration callbacks, we may run out of RAM space if the
file system does not respond to callbacks or responds
too slowly. In such a case, we simply prohibit future
wear-leveling migrations and prevent block wear-out only
through garbage collection.

5.7 Reliability Discussion
The changes of the ext3 file system discussed above may
cause new reliability issues. In this section, we discuss
several reliability issues and our solutions to them.

There are three main reliability issues related to name-
less writes. First, we maintain a mapping table in the
on-device RAM for the virtual address space. This table
needs to be reconstructed each time the device powers on
(either after a normal power-off or a crash). Second, the
in-memory metadata can be inconsistent with the physical
addresses of nameless blocks because of a crash after writ-
ing a data block and before updating its metadata block,
or because of a crash during wear-leveling callbacks. Fi-
nally, crashes can happen during in-place garbage collec-
tion, specifically, after reading the live data and before
writing them back, which may cause data loss.

We solve the first two problems by using the meta-
data information maintained in the device OOB area. We
store logical addresses with data pages in the virtual ad-
dress space for reconstructing the logical-to-physical ad-
dress mapping table. We store associated metadata, as
discussed in Section 3.4, with all nameless data. We also
store the validity of all flash pages in their OOB area. We
maintain an invariant that metadata in the OOB area is al-
ways consistent with the data in the flash page by writing
the OOB area and the flash page atomically.

We solve the in-place garbage collection reliability
problem by requiring the use of a small memory backed
by battery or super-capacitor. Notice that the amount of
live data we need to hold during a garbage collection op-
eration is no more than the size of an SSD block, typically
256 KB, thus only adding a small monetary cost to the
whole device.

The recovery process works as follows. When the de-
vice is started, we perform a whole-device scan and read
the OOB area of all valid flash pages to reconstruct the
mapping table of the virtual address space. If a crash is de-
tected, we perform the following steps. The device sends
the associated metadata in the OOB area and the physical
addresses of flash pages in the physical address space to
the file system. The file system then locates the proper
metadata structures. If the physical address in a metadata
structure is inconsistent, the file system updates it with
the new physical address and adds the metadata write to a
dedicated transaction. After all metadata is processed, the
file system commits the transaction, at which point the re-
covery process is finished.

6 Evaluation
In this section, we present our evaluation of nameless
writes on an emulated nameless-writing device. Specif-
ically, we focus on studying the following questions:

• What are the space costs of nameless-writing devices
compared to other FTLs?

8



Configuration Value
SSD Size 4 GB
Page Size 4 KB
Block Size 256 KB
Number of Planes 10
Hybrid Log Block Area 5%
Page Read Latency 25µs

Page Write Latency 200µs

Block Erase Latency 1500µs

Table 2:SSD Emulator Configuration.

• What is the overall performance benefit of nameless-
writing devices?

• What is the write performance of nameless-writing
devices? How and why is it different from page-level
mapping and hybrid mapping FTLs?

• What is the cost of in-place garbage collection and
the overhead of wear-leveling callbacks?

• Is crash recovery correct and what are its overheads?

SSD Emulator: We built an SSD emulator which mod-
els a multi-plane SSD with garbage collection and wear
leveling as a pseudo block device based on David [4]. We
implemented three types of FTLs: page-level mapping,
hybrid mapping and nameless-writing on top of the PSU
objected-oriented SSD simulator codebase [6]. Data is
stored in memory to enable quick and accurate emulation.
Table 2 describes the configuration we used.

The page-level mapping FTL writes data in a log-
structured fashion and schedules in round-robin order
across parallel planes. It keeps a mapping for each data
page between its logical and physical address. We assume
(unrealistically) that this SSD has enough memory to store
all page-level mappings. The page-level SSD serves as an
upper-bound on performance.

We implemented a hybrid mapping FTL similar to
FAST [22], which uses alog block areafor random data
and one sequential log block dedicated for sequential
streams. The rest of the device is adata block areaused to
store whole data blocks. The hybrid mapping FTL main-
tains the page-level mapping of the log block area and the
block-level mapping of the data block area.

We implemented a simple garbage collection algorithm
that recycles blocks with the least live data in page-level
mapping and hybrid mapping FTLs, and a wear-leveling
algorithm on all three FTLs that considers a block’s re-
maining erase cycles and its data temperature during wear
leveling similar to a previous wear-leveling algorithm [2].

System Setup: We implemented the emulated
nameless-write device and the nameless-writing ext3 file
system on a 64-bit Linux 2.6.33 kernel. The page-level

Image Size Page Hybrid Nameless
328 MB 328 KB 38 KB 2.7 KB

2 GB 2 MB 235 KB 12 KB
10 GB 10 MB 1.1 MB 31 KB
100 GB 100 MB 11 MB 251 KB
400 GB 400 MB 46 MB 1 MB

1 TB 1 GB 118 MB 2.2 MB

Table 3:FTL Mapping Table Size. Mapping table size of
page-level, hybrid, and nameless-writing devices with different
file system images. The configuration in Table 2 is used.

mapping and the hybrid mapping SSD emulators are
built on an unmodified 64-bit Linux 2.6.33 kernel. All
experiments are performed on a 2.5 GHz Intel Quad Core
CPU with 8 GB memory.

6.1 SSD Memory Consumption
We first study the space cost of mapping tables used by
different SSD FTLs: nameless-writing, page-level map-
ping, and hybrid mapping. The mapping table size of
page-level and hybrid FTLs is calculated based on the to-
tal size of the device, its block size, and its log block area
size (for hybrid mapping). A nameless-writing device
keeps a mapping table for the entire file system’s virtual
address space. Since we map all metadata to the virtual
block space in our nameless-writing implementation, the
mapping table size of the nameless-writing device is de-
pendent on the metadata size of the file system image. We
use Impressions [3] to create typical file system images of
sizes up to 1 TB and calculate their metadata sizes.

Figure 3 shows the mapping table sizes of the three
FTLs with different file system images produced by Im-
pressions. Unsurprisingly, the page-level mapping has the
highest mapping table space cost. The hybrid mapping
has a moderate space cost; however, its mapping table size
is still quite large: over 100 MB for a 1-TB device. The
nameless mapping table has the lowest space cost; even
for a 1-TB device, its mapping table uses less than 3 MB
of space for typical file systems, reducing both cost and
power usage.

6.2 Application Performance
We now present the overall application performance of
nameless-writing, page-level mapping and hybrid map-
ping FTLs with macro-benchmarks. We use varmail, file-
server, and webserver from the filebench suite [29].

Figure 2 shows the throughput of these benchmarks.
We see that both page-level mapping and nameless-
writing FTLs perform better than the hybrid mapping FTL
with varmail and fileserver. These benchmarks contain
90.8% and 70.6% random writes, respectively. As we
will see later in this section, the hybrid mapping FTL per-
forms well with sequential writes and poorly with random
writes. Thus, its throughput for these two benchmarks

9



Varmail FileServer WebServer

T
hr

ou
gh

pu
t (

M
B

/s
)

0

100

200

300

400

500

600

Page Nameless Hybrid

Figure 2:Throughput of Filebench. Throughput of var-
mail, fileserver, and webmail macro-benchmarks with page-
level, nameless-writing, and hybrid FTLs.

Sequential Random

T
hr

ou
gh

pu
t (

K
IO

P
S

)

0

10

20

30

40

50

Page Nameless Hybrid5% Hybrid10% Hybrid20%

Figure 3:Sequential and Random Write Throughput.
Throughput of sequential writes and sustained 4-KB random
writes. Random writes are performed over a 2-GB range.

is worse than the other two FTLs. For webserver, all
three FTLs deliver similar performance, since it contains
only 3.8% random writes. We see a small overhead of
the nameless-writing FTL as compared to the page-level
mapping FTL with all benchmarks, which we will discuss
in detail in Sections 6.5 and 6.6.

In summary, we demonstrate that the nameless-writing
device achieves excellent performance, roughly on par
with the costly page-level approach, which serves as an
upper-bound on performance.

6.3 Basic Write Performance
Write performance of flash-based SSDs is known to be
much worse than read performance, with random writes
being the performance bottleneck. Nameless writes aim to
improve write performance of such devices by giving the
device more data-placement freedom. We evaluate the ba-
sic write performance of our emulated nameless-writing
device in this section. Figure 3 shows the throughput
of sequential writes and sustained 4-KB random writes
with page-level mapping, hybrid mapping, and nameless-
writing FTLs.

First, we find that the emulated hybrid-mapping de-
vice has a sequential throughput of 169 MB/s and a sus-
tained 4-KB random write throughput of 2,830 IOPS. A
widely used real middle-end SSD has sequential through-
put of up to 70 MB/s and random throughput of up to
3,300 IOPS [17]. Although the write performance of our
emulator does not match this real SSD exactly, it is still in
the ballpark of actual SSD performance, and thus useful
in our study. The goal of our hybrid-mapping emulator is
not to model one particular SSD perfectly but to provide
insight into the fundamental problems of hybrid-mapped
SSDs as compared to page-mapped and nameless SSDs.

Second, the random write throughput of page-level
mapping and nameless-writing FTLs is close to their se-
quential write throughput, because both FTLs allocate
data in a log-structured fashion, making random writes
behave like sequential writes. The overhead of random

writes with these two FTLs comes from their garbage col-
lection process. Since whole blocks can be erased when
they are overwritten in sequential order, garbage collec-
tion has the lowest cost with sequential writes. By con-
trast, garbage collection of random data may incur the cost
of live data migration.

Third, we notice that the random write throughput of
the hybrid mapping FTL is significantly lower than that of
the other FTLs and its own sequential write throughput.
The poor random write performance of the hybrid map-
ping FTL results from the costly full-merge operation and
its corresponding garbage collection process [16]. Full
merges are required each time a log block is filled with
random writes, thus a dominating cost for random writes.

One way to improve the random write performance of
hybrid-mapped SSDs is to over-provision more log block
space. To explore that, we vary the size of the log block
area with the hybrid mapping FTL from 5% to 20% of
the whole device and found that random write through-
put gets higher as the size of the log block area increases.
However, only the data block area reflects the effective
size of the device, while the log block area is part of de-
vice over-provisioning. Therefore, hybrid-mapped SSDs
often sacrifice device space cost for better random write
performance. Moreover, the hybrid mapping table size in-
creases with higher log block space, requiring larger on-
device RAM. Nameless writes achieve significantly bet-
ter random write performance with no additional over-
provisioning or RAM space.

Finally, Figure 3 shows that the nameless-writing FTL
has low overhead as compared to the page-level mapping
FTL with sequential and random writes. We explain this
result in more detail in Section 6.5 and 6.6.

6.4 A Closer Look at Random Writes
A previous study [16] and our study in the last section
show that random writes are the major performance bot-
tleneck of flash-based devices. We now study two subtle
yet fundamental questions: do nameless-writing devices

10



Random Write Working Set (GB)
1 2 3 4

T
hr

ou
gh

pu
t (

K
IO

P
S

)

0

10

20

30

40

50

Page−level
Nameless
Hybrid

Figure 4: Random Write
Throughput. Throughput of
sustained 4-KB random writes over dif-
ferent working set sizes with page-level,
nameless, and hybrid FTLs.

Random Write Working Set (GB)
1 2 3 4

M
ov

ed
 D

at
a 

(G
B

)

0

20

40

60

80

100

Figure 5: Migrated Live Data.
Amount of migrated live data during
garbage collection of random writes
with different working set sizes with
page-level, nameless, and hybrid FTLs.

Sync Frequency
0 20 40 60 80 100A

vg
 R

es
po

ns
e 

T
im

e 
(lo

g(
us

ec
))

0

1

2

3

4

Figure 6: Average Response Time
of Synchronous Random Writes.
4-KB random writes in a 2-GB file.
Sync frequency represents the number of
writes we issue before calling an fsync.

C
os

t o
f O

pe
ra

tio
n 

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

Idle
Merge Read
Merge Write
Erase
Normal Write

Figure 7:Page-Level FTL Utiliza-
tion. Break down of device utilization
with the page-level FTL under random
writes of different ranges.

C
os

t o
f O

pe
ra

tio
n 

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

Figure 8: Nameless FTL Utiliza-
tion. Break down of device utilization
with the nameless FTL under random
writes of different ranges.

C
os

t o
f O

pe
ra

tio
n 

(%
)

0

20

40

60

80

100

Random Write Working Set (GB)
1 2 3 4

Figure 9:Hybrid FTL Utilization.
Break down of device utilization with the
hybrid FTL under random writes of dif-
ferent ranges.

perform well with different kinds of random-write work-
loads, and why do they outperform hybrid devices.

To answer the first question, we study the effect of
working set size on random writes. We create files of dif-
ferent sizes and perform sustained 4-KB random writes in
each file to model different working set sizes. Figure 4
shows the throughput of random writes over different file
sizes with all three FTLs. We find that the working set
size has a large effect on random write performance of
nameless-writing and page-level mapping FTLs. The ran-
dom write throughput of these FTLs drops as the working
set size increases. When random writes are performed
over a small working set, they will be overwritten in full
when the device fills and garbage collection is triggered.
In such cases, there is a higher chance of finding blocks
that are filled with invalid data and can be erased with no
need to rewrite live data, thus lowering the cost of garbage
collection. In contrast, when random writes are performed
over a large working set, garbage collection has a higher
cost since blocks contain more live data, which must be
rewritten before erasing a block.

To further understand the increasing cost of random
writes as the working set increases, we plot the total

amount of live data migrated during garbage collection
(Figure 5) of random writes over different working set
sizes with all three FTLs. This graph shows that as the
working set size of random writes increases, more live
data is migrated during garbage collection for these FTLs,
resulting in a higher garbage collection cost and worse
random write performance.

Comparing the page-level mapping FTL and the
nameless-writing FTL, we find that nameless-writing has
slightly higher overhead when the working set size is high.
This overhead is due to the cost of in-place garbage col-
lection when there is wasted space in the recycled block.
We will study this overhead in details in the next section.

We now study the second question to further understand
the cost of random writes with different FTLs. We break
down the device utilization into regular writes, block
erases, writes during merging, reads during merging, and
device idle time. Figures 7, 8, and 9 show the stack plot of
these costs over all three FTLs. For page-level mapping
and nameless-writing FTLs, we see that the major cost
comes from regular writes when random writes are per-
formed over a small working set. When the working set
increases, the cost of merge writes and erases increases

11



Workload1 Workload2

T
hr

ou
gh

pu
t (

K
IO

P
S

)

0

10

20

30

40

Page Nameless

Figure 10:Write Throughput with
Wear leveling. Throughput of biased
sequential writes with wear leveling un-
der page-level and nameless FTLs.

Workload1 Workload2A
m

ou
nt

 o
f D

at
a 

M
ov

ed
 (

G
B

)

0

0.5

1

1.5

2

Page Nameless

Figure 11: Migrated Live Data
during Wear Leveling. Amount of
migrated live data during wear leveling
under page-level and nameless FTLs.

Metadata RemapTbl
Workload1 2.02 MB 321 KB
Workload2 5.09 MB 322 KB

Figure 12: Wear leveling Call-
back Overhead. Amount of addi-
tional metadata writes because of mi-
gration callbacks and maximal remap-
ping table size during wear leveling with
the nameless-writing FTL.

and becomes the major cost. For the hybrid mapping
FTL, the major cost of random writes comes from migrat-
ing live data and idle time during merging for all work-
ing set sizes. When the hybrid mapping FTL performs a
full merge, it reads and writes pages from different planes,
thus creating idle time on each plane.

In summary, we demonstrate that random write
throughput of the nameless-writing FTL is close to that
of the page-level mapping FTL and is significantly bet-
ter than the hybrid mapping FTL, mainly because of the
costly merges the hybrid mapping FTL performs for ran-
dom writes. We also found that both nameless-writing
and page-level mapping FTLs achieve better random write
throughput when the working set is relatively small be-
cause of a lower garbage collection cost.

6.5 In-place Garbage Collection Overhead
The performance overhead of a nameless-writing de-
vice may come from two different device responsibili-
ties: garbage collection and wear leveling. We study the
overhead of in-place garbage collection in this section and
wear-leveling overhead in the next section.

Our implementation of the nameless-writing device
uses an in-place merge to perform garbage collection. As
explained in Section 4.2, when there are no waiting writes
on the device, we may waste the space that has been re-
cently garbage collected. We use synchronous random
writes to study this overhead. We vary the frequency
of calling fsyncto control the amount of waiting writes
on the device; when the sync frequency is high, there
are fewer waiting writes on the device queue. Figure 6
shows the average response time of 4-KB random writes
with different sync frequencies under page-level mapping,
nameless-writing, and hybrid mapping FTLs. We find that
when sync frequency is high, the nameless-writing device
has a larger overhead compared to page-level mapping.
This overhead is due to the lack of waiting writes on the
device to fill garbage-collected space. However, we see

that the average response time of the nameless-writing
FTL is still lower than that of the hybrid mapping FTL,
since response time is worse when the hybrid FTL per-
forms full-merge with synchronous random writes.

6.6 Wear-leveling Callback Overhead
Finally, we study the overhead of wear leveling in a
nameless-writing device. To perform wear-leveling exper-
iments, we reduce the lifetime of SSD blocks to 50 erase
cycles. We set the threshold of triggering wear leveling to
be 75% of the maximal block lifetime, and set blocks that
are under 90% of the average block remaining time to be
candidates for wear leveling.

We create two workloads to model different data tem-
perature and SSD wear: a workload that first writes 3.5-
GB data in sequential order and then overwrites the first
500-MB area 40 times (Workload 1), and a workload that
overwrites the first 1-GB area 40 times (Workload 2).
Workload 2 has more hot data and triggers more wear
leveling. We compare the throughput of these workloads
with page-level mapping and nameless-writing FTLs in
Figure 10. The throughput of Workload 2 is worse than
that of Workload 1 because of its more frequent wear-
leveling operation. Nonetheless, the performance of the
nameless-writing FTL with both workloads has less than
9% overhead.

We then plot the amount of migrated live data during
wear leveling with both FTLs in Figure 11. As expected,
Workload 2 produces more wear-leveling migration traf-
fic. Comparing page-level mapping to nameless-writing
FTLs, we find that the nameless-writing FTL migrates
more live data. When the nameless-writing FTL performs
in-place garbage collection, it generates more migrated
live data, as shown in Figure 5. Therefore, more erases are
caused by garbage collection with the nameless-writing
FTL, resulting in more wear-leveling invocation and more
wear-leveling migration traffic.

Migrating live nameless data in a nameless-writing

12



device creates callback traffic and additional metadata
writes. Wear leveling in a nameless-writing device also
adds a space overhead when it stores the remapping ta-
ble for migrated data. We show the amount of additional
metadata writes and the maximal size of the remapping
table of a nameless-writing device in Figure 12. We find
both overheads to be low with the nameless-writing de-
vice: an addition of less than 6 MB metadata writes and a
space cost of less than 350 KB.

In summary, we find that both the garbage-collection
and wear-leveling overheads caused by nameless writes
are low. Since wear leveling is not a frequent operation
and is often scheduled in system idle periods, we expect
both performance and space overheads of a nameless-
writing device to be even lower in real systems.

6.7 Reliability
To determine the correctness of our reliability solution,
we inject crashes in the following points: 1) after writ-
ing a data block and its metadata block, 2) after writing
a data block and before updating its metadata block, 3)
after writing a data block and updating its metadata block
but before committing the metadata block, and 4) after the
device migrates a data block because of wear leveling and
before the file system processes the migration callback. In
all cases, we successfully recover the system to a consis-
tent state that correctly reflects all written data blocks and
their metadata.

Our results also show that the overhead of our crash re-
covery process is relatively small: from 0.4 to 6 seconds,
depending on the amount of inconsistent metadata after
crash. With more inconsistent metadata, the overhead of
recovery is higher.

7 Related Work
A large body of work on flash-based SSD FTLs and file
systems that manage them has been proposed in recent
years [11, 14, 16, 19, 21, 22, 25, 33]. In this section, we
discuss the two research projects that are most related to
nameless writes.

Range writes [5] use an approach similar to nameless
writes. Range writes were proposed to improve hard disk
performance by letting the file system specify a range of
addresses and letting the device pick the final physical ad-
dress of a write. Instead of a range of addresses, nameless
writes are not specified with any addresses, thus obviating
file system allocation and moving allocation responsibil-
ity to the device. Problems such as updating metadata af-
ter writes in range writes also arise in nameless writes. We
propose a segmented address space to lessen the overhead
and the complexity of such an update process. Another
difference is that nameless writes target devices that need
to maintain control of data placement, such as wear level-
ing in flash-based devices. Range writes target traditional

hard disks that do not have such responsibilities. Data
placement with flash-based devices is also less restricted
than traditional hard disks, since flash-based memory has
uniform access latency regardless of its location.

The poor random write performance of hybrid FTLs
has drawn attention from researchers in recent years. The
demand-based Flash Translation Layer (DFTL) was pro-
posed to address this problem by maintaining a page-level
mapping table and writing data in a log-structured fashion
[16]. DFTL stores its page-level mapping table on the de-
vice and keeps a small portion of the mapping table in the
device cache based on workload temporal locality. How-
ever, for workloads that have a bigger working set than the
device cache, swapping the cached mapping table with the
on-device mapping table structure can be costly. There is
also a space overhead to store the entire page-level map-
ping table on device. We use a log-structured write order
similar to DFTL to maximize the device’s sequential writ-
ing capability. However, the need for a device-level map-
ping table is obviated with nameless writes. Indirection
is maintained only for the virtual address space, which as
we show, requires a small space cost and can fit in the de-
vice cache with typical file system images. Thus, we do
not pay the space cost of storing the large page-level map-
ping table in the device or the performance overhead of
swapping mapping table entries.

8 Conclusions and Future Work
In this paper, we introduced nameless writes, a new write
interface built to reduce the inherent costs of indirection.
Through the implementation of nameless writes on the
Linux ext3 file system and an emulated nameless-writing
device, we demonstrate how to port a file system to use
nameless writes. Through extensive evaluations, we show
the great advantage of nameless writes: greatly reduced
space costs and improved random-write performance.

Porting other types of file systems to use nameless
writes would be interesting and is a part of our future
work. Here, we give a brief discussion about these file
systems and the challenges we foresee in changing them
to use nameless writes.

Linux ext2: The Linux ext2 file system is similar to the
ext3 file system except that it has no journaling. While we
rely on the ordered journal mode to provide a natural or-
dering for the metadata update process of nameless writes
in ext3, we need to introduce an ordering on the ext2 file
system. Our initial implementation of nameless-writing
ext2 shows that one possible method to enforce such an
ordering is to defer metadata writes until all the ongoing
data writes belonging to them have finished.

Copy-On-Write File Systems and Snapshots: As an
alternative to journaling,copy-on-write(COW) file sys-
tems always write out updates to new free space; when all

13



of those updates have reached the disk, a root structure is
updated to point at the new structures, and thus include
them in the state of the file system. COW file systems
thus map naturally to nameless writes. All writes to free
space are mapped into the physical segment and issued
namelessly; the root structure is mapped into the virtual
segment. The write ordering is not affected, as COW file
systems all must wait for the COW writes to complete be-
fore issuing a write to the root structure anyway.

One problem with COW file systems or other file sys-
tems that support snapshots or versions is that multiple
metadata structures can point to the same data block,
which may result in a large amount of associated meta-
data. We can use file system intrinsic back references,
such as those in btrfs, or structures likeBacklog[23] to
represent associated metadata. Another problem is that
multiple metadata blocks need to be updated after a name-
less write. One possible way to control the number of
metadata updates is to reduce the amount of metadata in-
cluded in the virtual address space.

Extent-Based File Systems: One final type of file sys-
tems worth considering areextent-basedfile systems,
such as Linux btrfs and ext4, where contiguous regions
of a file are pointed to via (pointer, length) pairs instead
of a single pointer per fixed-sized block. Modifying an
extent-based file system to use nameless writes would re-
quire a bit of work; as nameless writes of data are issued,
the file system would not (yet) know if the data blocks will
form one extent or many. Thus, only when the writes com-
plete will the file system be able to determine the outcome.
Later writes would not likely be located nearby, and thus
to minimize the number of extents, updates should be is-
sued at a single time. Extents also hint at the possibility of
a new interface for nameless writes. Specifically it might
be useful to provide an interface toreservea larger con-
tiguous region on the device; doing so would enable the
file system to ensure that a large file was placed contigu-
ously in physical space, and thus affords a highly compact
extent-based representation. We plan to look into such en-
hancements in the future.

Acknowledgment
We thank the anonymous reviewers and Jason Flinn (our shep-
herd) for their tremendous feedback and comments, which have
substantially improved the content and presentation of this pa-
per. We also thank the members of the ADSL research group for
their insightful comments.

This material is based upon work supported by the Na-
tional Science Foundation under the following grant: NSF CCF-
0937959, as well as by generous donations from Google, Ne-
tApp, and Samsung.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

References
[1] K. Adams and O. Agesen. A Comparison of Soft-

ware and Hardware Techniques for x86 Virtualiza-
tion. In Proceedings of the 13th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XIII),
Seattle, Washington, March 2008.

[2] N. Agarwal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design Trade-
offs for SSD Performance. InProceedings of the
USENIX Annual Technical Conference (USENIX
’08), Boston, Massachusetts, June 2008.

[3] N. Agrawal, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Generating Realistic Impressions
for File-System Benchmarking. InProceedings of
the 7th USENIX Symposium on File and Storage
Technologies (FAST ’09), San Francisco, California,
February 2009.

[4] N. Agrawal, L. Arulraj, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Emulating Goliath Stor-
age Systems with David. InProceedings of the
9th USENIX Symposium on File and Storage Tech-
nologies (FAST ’11), San Jose, California, February
2011.

[5] A. Anand, S. Sen, A. Krioukov, F. Popovici,
A. Akella, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and S. Banerjee. Avoiding File System Mi-
cromanagement with Range Writes. InProceedings
of the 8th Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, Cali-
fornia, December 2008.

[6] B. Tauras, Y. Kim, and A. Gupta. PSU
Objected-Oriented Flash based SSD simulator.
http://csl.cse.psu.edu/?q=node/321.

[7] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman,
and B.-A. Yassour. The Turtles Project: Design and
Implementation of Nested Virtualization. InPro-
ceedings of the 9th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’10), Van-
couver, Canada, December 2010.

[8] S. Boboila and P. Desnoyers. Write Endurance in
Flash Drives: Measurements and Analysis. InPro-
ceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST ’10), San Jose, Califor-
nia, February 2010.

14



[9] E. Bugnion, S. Devine, and M. Rosenblum. Disco:
Running Commodity Operating Systems on Scal-
able Multiprocessors. InProceedings of the 16th
ACM Symposium on Operating Systems Principles
(SOSP ’97), pages 143–156, Saint-Malo, France,
October 1997.

[10] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Consistency Without Or-
dering. InProceedings of the 10th USENIX Sympo-
sium on File and Storage Technologies (FAST ’12),
San Jose, California, February 2012.

[11] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W.
Lee, and H.-J. Song. System Software for Flash
Memory: A Survey. InProceedings of thei 5th In-
ternational Conference on Embedded and Ubiqui-
tous Computing (EUC ’06), pages 394–404, August
2006.

[12] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole.
Exokernel: An Operating System Architecture for
Application-Level Resource Management. InPro-
ceedings of the 15th ACM Symposium on Oper-
ating Systems Principles (SOSP ’95), pages 251–
266, Copper Mountain Resort, Colorado, December
1995.

[13] R. M. English and A. A. Stepanov. Loge: A
Self-Organizing Disk Controller. InProceedings of
the USENIX Winter Technical Conference (USENIX
Winter ’92), pages 237–252, San Francisco, Califor-
nia, January 1992.

[14] E. Gal and S. Toledo. Algorithms and Data Struc-
tures for Flash Memories.ACM Computing Surveys,
37:138–163, June 2005.

[15] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf. Char-
acterizing Flash Memory: Anomalies, Observations,
and Applications. InProceedings of MICRO-42,
New York, New York, December 2009.

[16] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a Flash
Translation Layer Employing Demand-Based Selec-
tive Caching of Page-Level Address Mappings. In
Proceedings of the 43th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS XIV), pages 229–
240, Washington, DC, March 2009.

[17] Intel Corporation. Intel X25-M Mainstream SATA
Solid-State Drives.ftp://download.intel.

com/design/flash/NAND/mainstream/
mainstream-sata-s%sd-datasheet.pdf.

[18] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee.
A Group-based Wear-Leveling Algorithm for Large-
Capacity Flash Memory Storage Systems. InPro-
ceedings of the 2007 international conference on
Compilers, architecture, and synthesis for embedded
systems (CASES ’07), October 2007.

[19] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee.
A Superblock-Based Flash Translation Layer for
NAND Flash Memory. InProceedings of the 6th
ACM & IEEE International conference on Embed-
ded software (EMSOFT ’08), Seoul, Korea, August
2006.

[20] A. Kawaguchi, S. Nishioka, and H. Motoda. A
Flash-Memory Based File System. InProceedings
of the USENIX 1995 Winter Technical Conference,
New Orleans, Louisiana, January 1995.

[21] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST:
Locality-Aware Sector Translation for NAND Flash
Memory-Based Storage Systems.In Proceedings of
the International Workshop on Storage and I/O Vir-
tualization, Performance, Energy, Evaluation and
Dependability (SPEED2008), February 2008.

[22] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A Log Buffer-Based Flash
Translation Layer Using Fully-Associative Sector
Translation.IEEE Transactions on Embedded Com-
puting Systems, 6, 2007.

[23] P. Macko, M. Seltzer, and K. A. Smith. Tracking
Back References in a Write-Anywhere File System.
In Proceedings of the 8th USENIX Symposium on
File and Storage Technologies (FAST ’10), San Jose,
California, February 2010.

[24] J. N. Matthews, D. Roselli, A. M. Costello, R. Y.
Wang, and T. E. Anderson. Improving the Perfor-
mance of Log-Structured File Systems with Adap-
tive Methods. InProceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP
’97), pages 238–251, Saint-Malo, France, October
1997.

[25] A. One. YAFFS: Yet Another Flash File System,
2002.http://www.yaffs.net/.

[26] D. Patterson, G. Gibson, and R. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of the 1988 ACM SIGMOD Conference

15



on the Management of Data (SIGMOD ’88), pages
109–116, Chicago, Illinois, June 1988.

[27] M. Rosenblum and J. Ousterhout. The Design and
Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems, 10(1):26–
52, February 1992.

[28] D. Spinellis. Another Level of Indirection. In
A. Oram and G. Wilson, editors,Beautiful Code:
Leading Programmers Explain How They Think,
chapter 17, pages 279–291. O’Reilly and Asso-
ciates, 2007.

[29] Sun Microsystems. Solaris Internals: FileBench.
http://www.solarisinternals.com/
wiki/index.php/FileBench.

[30] R. Wang, T. E. Anderson, and D. A. Patterson. Vir-
tual Log-Based File Systems for a Programmable
Disk. In Proceedings of the 3rd Symposium on Op-
erating Systems Design and Implementation (OSDI
’99), New Orleans, Louisiana, February 1999.

[31] A. Whitaker, M. Shaw, and S. D. Gribble. Scale
and Performance in the Denali Isolation Kernel. In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI ’02),
Boston, Massachusetts, December 2002.

[32] J. Wilkes, R. Golding, C. Staelin, and T. Sulli-
van. The HP AutoRAID Hierarchical Storage Sys-
tem. ACM Transactions on Computer Systems,
14(1):108–136, February 1996.

[33] D. Woodhouse. JFFS2: The Journalling Flash File
System, Version 2, 2001.http://sources.
redhat.com/jffs2/jffs2.

16


