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Abstract

Flash-based solid-state drives (SSDs) have the poten-

tial to eliminate the I/O bottlenecks in data-intensive ap-

plications. However, the large performance discrepancy

between Flash reads and writes introduces challenges

for fair resource usage. Further, existing fair queueing

and quanta-based I/O schedulers poorly manage the I/O

anticipation for Flash I/O fairness and efficiency. Some

also suppress the I/O parallelism which causes substan-

tial performance degradation on Flash. This paper de-

velops FIOS, a new Flash I/O scheduler that attains fair-

ness and high efficiency at the same time. FIOS em-

ploys a fair I/O timeslice management with mechanisms

for read preference, parallelism, and fairness-oriented

I/O anticipation. Evaluation demonstrates that FIOS

achieves substantially better fairness and efficiency com-

pared to the Linux CFQ scheduler, the SFQ(D) fair

queueing scheduler, and the Argon quanta-based sched-

uler on several Flash-based storage devices (including

a CompactFlash card in a low-power wimpy node). In

particular, FIOS reduces the worst-case slowdown by a

factor of 2.3 or more when the read-only SPECweb work-

load runs together with the write-intensive TPC-C.

1 Introduction

NAND Flash devices [1, 20, 24] are widely used as

solid-state storage on conventional machines and low-

power wimpy nodes [2, 6]. Compared to mechanical

disks, they deliver much higher I/O performance which

can alleviate the I/O bottlenecks in critical data-intensive

applications. Emerging non-volatile memory (NVRAM)

technologies such as phase-change memory [10, 12],

memristor, and STT-MRAM promise even better perfor-

mance. However, these NVMs under today’s manufac-

turing technologies still suffer from low space density

(or high $/GB) and stability/durability problems. Until

these issues are resolved sometime in the future, NAND

Flash devices will likely remain the dominant solid-state

storage in computer systems.
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While Flash-based storage devices may offer substan-

tially improved I/O performance over mechanical disks,

there are critical limitations with respect to writes. First,

Flash suffers from an erase-before-write limitation. That

is, in order to overwrite a previously written location, the

said location must first be erased before writing the new

data. Further aggravating the problem is that the era-

sure granularity is typically much larger (64–256×) than

the basic I/O granularity (2–8KB). This leads to a large

read/write speed discrepancy—Flash reads can be one or

two orders of magnitude faster than writes. This is very

different frommechanical disks on which read/write per-

formance are both dominated by seek/rotation delays and

exhibit similar characteristics.

For a concurrent workload with a mixture of readers

and synchronous writers running on Flash, readers may

be blocked by writes with substantial slowdown. This

means unfair resource utilization between readers and

writers. In extreme cases, it may present vulnerability

to denial-of-service attacks—a malicious user may in-

voke a workload with a continuous stream of writes to

block readers. At the opposite end, strictly prioritiz-

ing reads over writes might lead to unfair (and some-

times extreme) slowdown for applications performing

synchronouswrites. Synchronouswrites are essential for

applications that demand high data consistency and dura-

bility, including databases, data-intensive network ser-

vices [28], persistent key-value store [2], and periodic

state checkpointing [19].

With important implications on performance and re-

liability, Flash I/O fairness warrants first-class atten-

tion in operating system I/O scheduling. Conventional

scheduling methods to achieve fairness (like fair queue-

ing [5, 18] and quanta-based scheduling [3, 36]) fail

to recognize unique Flash characteristics like substan-

tial read-blocked-by-write. In addition, I/O anticipa-

tion (temporarily idling the device in anticipation of a

soon-arriving desirable request) is sometimes necessary

to maintain fair resource utilization. While I/O antici-

pation was proposed as a performance-enhancing seek-

reduction technique for mechanical disks [17], its role

for maintaining fairness has been largely ignored. Fi-

nally, quanta-based scheduling schemes [3, 36] typically

suppress the I/O parallelism between concurrent tasks,

1



which substantially degrades the I/O efficiency on Flash

devices with internal parallelism.

This paper presents a new operating system I/O sched-

uler (called FIOS) that achieves fair Flash I/O while at-

taining high efficiency at the same time. Our scheduler

uses timeslice management to achieve fair resource uti-

lization under high I/O load. We employ read preference

to minimize read-blocked-by-write in concurrent work-

loads. We exploit device-level parallelism by issuing

multiple I/O requests simultaneously when fairness is not

violated. Finally, we manage I/O anticipation judiciously

such that we achieve fairness with limited cost of device

idling.

We implemented our scheduler in Linux and demon-

strated our results on multiple Flash devices including

three solid-state disks and a CompactFlash card in a low-

power wimpy node. Our evaluation employs several ap-

plication workloads including the SPECweb workload

on an Apache web server, TPC-C workload on a MySQL

database, and the FAWN Data Store developed specif-

ically for low-power wimpy nodes [2]. Our empirical

work also uncovered a flaw in the current Linux’s in-

consistent management of synchronous writes across file

system and I/O scheduler layers.

The rest of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 characterizes

key challenges for supporting Flash I/O fairness and ef-

ficiency that motivate our work. Section 4 presents the

design of our FIOS scheduler for Flash storage devices.

Section 5 describes some implementation notes and Sec-

tion 6 illustrates our experimental evaluation. Section 7

concludes this paper with a summary of our findings.

2 Related Work

There are significant recent research interests in I/O

performance characterization of Flash-based storage de-

vices. Agrawal et al. [1] discussed the impact of block

erasure (before writes) and parallelism to the perfor-

mance of Flash-based SSDs. Polte et al. [31] found

that Flash reads are substantially faster than writes. Past

studies identified abnormal performance issues due to

read/write interference and storage fragmentation [7],

as well as erasure-induced variance of Flash write la-

tency [9]. There is also a recognition on the im-

portance of internal parallelism to the Flash I/O effi-

ciency [8, 30] while our past work identified that the

effects of parallelism depend on specific firmware im-

plementations [30]. Previous Flash I/O characterization

results provide motivation and foundation for Flash I/O

scheduling work in this paper.

Recent research has investigated operating system

techniques to manage Flash-based storage. File system

work [11, 23, 25] has attempted to improve the sequen-

tial write patterns through the use of log-structured file

systems. These efforts are orthogonal to our research

on Flash I/O scheduling. New I/O scheduling heuris-

tics were proposed to improve Flash I/O performance.

In particular, write bundling [21], write block preferen-

tial [14], and page-aligned request merging/splitting [22]

help match I/O requests with the underlying Flash de-

vice data layout. The effectiveness of these write align-

ment techniques, however, is limited on modern SSDs

with write-order-based block mapping. Further, previ-

ous Flash I/O schedulers have paid little attention to the

issue of fairness.

Conventional I/O schedulers are largely designed to

mitigate the high seek and rotational costs in mechan-

ical disks, through elevator-style I/O request ordering

and anticipatory I/O [17]. Quality-of-service objectives

(like meeting task deadlines) were also considered in I/O

scheduling techniques, including Facade [27], Reddy et

al. [33], pClock [16], and Fahrrad [32]. Fairness was not

a primary concern in these techniques and they cannot

address the fairness problems in Flash storage devices.

Fairness-oriented resource scheduling has been ex-

tensively studied in the literature. The original fair

queueing approaches including Weighted Fair Queue-

ing (WFQ) [13], Packet-by-Packet Generalized Proces-

sor Sharing (PGPS) [29], and Start-time Fair Queueing

(SFQ) [15] take virtual time-controlled request ordering

over several task queues to maintain fairness. While

they are designed for network packet scheduling, later

fair queueing approaches like YFQ [5] and SFQ(D) [18]

are adapted to support I/O resources. In particular, they

allow the flexibility to re-order and parallelize I/O re-

quests for better efficiency. Alternatively, I/O fair queue-

ing can be achieved using dedicated per-task quanta

(as in Linux CFQ [3] and Argon [36]) and credits (as

in the SARC rate controller [37]). Achieving fairness

and efficiency on Flash storage, however, must address

unique Flash I/O characteristics like read/write perfor-

mance asymmetry and internal parallelism. A proper

management of I/O anticipation for fairness is also nec-

essary.

3 Challenges and Motivation

We characterize key challenges for supporting Flash

I/O fairness and maintaining high efficiency at the same

time. They include effects of inherent device charac-

teristics (read/write asymmetry and internal parallelism)

as well as behavior of operating system I/O schedulers

(role of I/O anticipation). These results and analysis

serve as both background and motivation for our new I/O

scheduling design.

Experiments in this section and the rest of the paper

will utilize the following Flash-based storage devices—
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Figure 1: Distribution of 4KB read response time on four Flash-based storage devices. The first row shows the read

response time when a read runs alone. The second row shows the read performance at the presence of a concurrent

4KB write. The two figures in each column (for one drive) use the same X-Y scale and they can be directly compared.

Figures across different columns (for different drives) necessarily use different X-Y scales due to differing drive

characteristics. We intentionally do not show the quantitative Y values (probability densities) in the figures because

these values have no inherent meaning and they simply depend on the width of each bin in the distribution histogram.

• An Intel X25-M Flash-based SSD released in 2009.

This drive uses multi-level cells (MLC) in which a

particular cell is capable of storing multiple bits of

information.

• An Mtron Pro 7500 Flash-based SSD, released in

2008, using single-level cells (SLC).

• AnOCZVertex 3 Flash-based SSD, released in 2011,

using MLC. This drive employs the SandForce con-

troller which supports new write acceleration tech-

niques such as online compression.

• A SanDisk CompactFlash drive on a 6-Watts

“wimpy” node similar to those employed in the

FAWN array [2].

Read/Write Fairness Our first challenge to Flash I/O

fairness is that Flash writes are often substantially slower

than reads and a reader may experience excessive slow-

down at the presence of current writes. We try to un-

derstand this by measuring the read/write characteris-

tics of the four Flash devices described above. To ac-

quire the native device properties, we bypass the mem-

ory buffer, operating system I/O scheduler, and the de-

vice write cache in the measurements. We also use in-

compressible data in the I/O measurement to assess the

baseline performance for the Vertex drive (whose Sand-

Force controller performs online compression).

Our measurement employs 4KB reads or writes to

random storage locations. Figure 1 illustrates the read

response time distribution in two cases—read alone and

read at the presence of a concurrent write. Comparing

that with the read-alone performance (first row), we find

that a Flash read can experience one or two orders of

magnitude slowdown while being blocked by a concur-

rent write. Further, the Flash read response time be-

comes much less stable (or more unpredictable) when

blocked by a concurrent write. One exception to this

finding is the Vertex drive with the SandForce controller.

Writes on this drive is only modestly slower than reads

and therefore the read-block-by-write effect is much less

pronounced on this drive than on others.

We further examine the fairness between two tasks—

a reader that continuously performs 4KB reads to ran-

dom locations (issues another one immediately after the

previous one completes) and a writer that continuously

performs synchronous 4KB writes to random locations.

Figure 2 shows the slowdown ratios for reads and writes

during a concurrent execution. Results show that the

write slowdown ratios are close to one on all Flash stor-

age devices, indicating that the write performance in the

concurrent execution is similar to the write-alone per-

formance. However, reads experience 7×, 157×, 2×,

and 42× slowdown on the Intel SSD, Mtron SSD, Vertex

SSD, and the low-power CompactFlash respectively.

Existing fairness-oriented I/O schedulers [3, 5, 18, 36,

37] do not recognize the Flash read/write performance

asymmetry. Consequently they provided no support to
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Figure 2: Slowdown of random 4KB reads and writes

in a concurrent execution. The I/O slowdown ratio for

read (or write) is the I/O latency normalized to that when

running alone.

address the problem of excessive read-blocked-by-write

on Flash.

Role of I/O Anticipation I/O anticipation (temporarily

idling the device in anticipation of a soon-arriving desir-

able request) was proposed as a performance-enhancing

seek-reduction technique for mechanical disks [17].

However, its performance effects on Flash are largely

negative because the cost of device idling far outweighs

limited benefit of I/O spatial proximity. Due to the lack

of performance gain on Flash, the Linux CFQ scheduler

disables I/O anticipation for non-rotating storage devices

like Flash. Fair queueing approaches like YFQ [5] and

SFQ(D) [18] also provide no support for I/O anticipa-

tion.

However, I/O anticipation is sometimes necessary to

maintain fair resource utilization. Without anticipation,

unfairness may arise due to the prematurely switching

task queues before the allotted I/O quantum is fully uti-

lized (in quanta-based scheduling) or the premature ad-

vance of virtual time for “inactive tasks” (in fair queueing

schedulers). Consider the simple example of a concur-

rent run involving a reader and a writer. After servicing

a read, the only queued request at the moment is a write

and therefore a work-conserving I/O scheduler will issue

it. This breaks up the allotted quantum for the reader.

Even if the reader issues another read after a short think-

time, it would be blocked by the outstanding write.

At the opposite end, the quanta-based scheduling in

Argon [36] employs aggressive I/O anticipation such that

it is willing to wait through a task queue’s full quantum

even if few requests are issued. Such excessive I/O antic-

ipation can lead to long idle time and drastically reduce

performance on Flash storage if useful work could other-

wise have been accomplished. Particularly for fast Flash

storage, a few milliseconds are often sufficient for com-

pleting a significant amount of work.
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Figure 3: Fairness of different I/O anticipation ap-

proaches for concurrent reader/writer on the Intel SSD.

We run a simple experiment to demonstrate the fair-

ness and efficiency effects of improper I/O anticipation

on Flash. We run a reader and a writer concurrently on

the Intel SSD. Each task induces some thinktime be-

tween I/O such that the thinktime time is approximately

equal to its I/O device usage time. Figure 3 shows the

reader/writer slowdown under three I/O scheduling ap-

proaches. Implementation details of the schedulers are

provided later in Section 5. The Linux CFQ and SFQ(D)

do not support I/O anticipation which leads to poor fair-

ness between the reader and writer. The full-quantum

anticipation exhibits better fairness (similar reader/writer

slowdown) but this is achieved at excessive slowdown for

both reader and writer. Such fairness is not worthwhile.

While our discussion above uses the example of a

reader running concurrently with a writer, the fairness

implication of I/O anticipation generally applies to con-

current tasks with requests of differing resource usage.

For instance, similar fairness problems with no I/O an-

ticipation or over-aggressive anticipation can arise when

a task making 4KB reads runs concurrently with a task

making 128KB reads.

Parallelism vs. Fairness Flash-based SSDs have some

built-in parallelism through the use of multiple channels.

Within each channel, each Flash package may have mul-

tiple planes which are also parallel. Figure 4 shows the

efficiency of Flash I/O parallelism for 4KB reads and

writes on our Intel, Mtron, and Vertex SSDs. We observe

that the parallel issuance of multiple reads to an SSDmay

lead to throughput enhancement. The speedup is mod-

est (about 30%) for the Mtron SLC drive but substantial

(up to 7-fold and 4-fold) for the Intel and Vertex MLC

drives. On the other hand, writes do not seem to benefit

from I/O parallelism on the Intel and Mtron drives while

write parallelism on the Vertex drive can have up to 3-

fold speedup. We also experimented with parallel I/O at

larger (>4KB) sizes and we found that the speedup of
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Figure 4: Efficiency of I/O parallelism for 4KB reads and writes on three Flash-based SSDs.

parallel request issuance is less substantial for large I/O

requests. A possible explanation is that a single large I/O

request may already benefit from the internal device par-

allelism and therefore parallel request issuance will see

less additional efficiency gain.

The internal parallelism on Flash-based SSDs has sig-

nificant implication on fairness-oriented I/O schedul-

ing. In particular, the quanta-based schedulers (like

Linux CFQ [3] and Argon [36]) only issue I/O requests

from one task queue at a time, which limits parallelism.

The rationale is probably to ease the accounting and allo-

cation of device time usage for each queue. However, the

suppression of I/O parallelism in these schedulers may

lead to substantial performance degradation on Flash.

A desired Flash I/O scheduler must exploit device-level

parallelism by issuing multiple I/O requests simultane-

ously while ensuring fairness at the same time.

4 FIOS Design

In a multiprocessing system, many resource principals

simultaneously compete for the shared I/O resource. The

scheduler should regulate I/O in such a way that accesses

are fair. When the storage device time is the bottleneck

resource in the system, fairness is the case that each re-

source principal acquires an equal amount of device time.

When the storage device is partially loaded, the critical

problem is that a read blocked by a write experiences far

worse slowdown than a write blocked by a read. Such

worst-case slowdown should be minimized.

Practical systems may desire fairness for different

kinds of resource principals. For example, a general-

purpose operating system may desire fairness support

among concurrent processes. A server system may need

fairness across simultaneously running requests [4, 34].

A shared hosting platformmay want fairness across mul-

tiple virtual machines [26]. Our design of fair Flash I/O

scheduling and much of our implementation can be gen-

erally applied to supporting arbitrary resource principals.

When describing the FIOS design, we use the term task

to represent the resource principal that receives the fair-

ness support in a concurrent execution.

Our I/O scheduler, FIOS, tries to achieve fairness

while attaining high efficiency at the same time. Based

on our evaluation and analysis in Section 3, our scheduler

contains four techniques. We first provide a fair times-

lice management that allows timeslice fragmentation and

concurrent request issuance (Section 4.1). We then sup-

port read preference to minimize the read-blocked-by-

write situations (Section 4.2). We further enable concur-

rent issuance of requests to maximize the efficiency of

device-level parallelism (Section 4.3). Finally, we devise

limited I/O anticipation to maintain fairness at minimal

device idling cost (Section 4.4).

4.1 Fair Timeslice Management

FIOS builds around a fairness mechanism of equal

timeslices which govern the amount of time a task has

access to the storage device. As each task is given equal

time-based access to the storage device, the disparity be-

tween read and write access latency of Flash cannot lead

to unequal device usage between tasks. In addition, us-

ing timeslices provides an upper bound on how long a

task may have access to the storage device, ensuring that

no task will be starved indefinitely.

Our I/O timeslices are reminiscent of the I/O quanta in

quanta-based fairness schedulers like Linux CFQ [3] and

Argon [36]. However, the previous quanta-based sched-

ulers suffer two important limitations that make them un-

suitable for Flash fairness and efficiency.

• First, their I/O quanta do not allow fragmentation—

a task must use its current quantum continuously

or it will have to wait for its next quantum in the

round-robin order. The rationale (on mechanical disk

storage devices) was that long continuous run by a
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single task tends to require less disk seek and ro-

tation [36]. But for a task that performs I/O with

substantial inter-I/O thinktime, this design leaves two

undesirable choices—either its quantum ends prema-

turely so the remaining allotted resource is forfeited

(as in Linux CFQ) or the device idles through a task’s

full quantum even if few requests are issued (as in

Argon).

• Second, the previous quanta-based schedulers only

allow I/O requests from one task to be serviced at a

time. This was a reasonable design decision for in-

dividual mechanical disks that do not possess inter-

nal parallelism. It also has the advantage of easy re-

source accounting for each task. However, this mech-

anism suppresses Flash I/O parallelism and conse-

quently hurts I/O efficiency.

To address these problems, FIOS allows I/O times-

lice fragmentation and concurrent request issuance from

multiple tasks. Specifically, we manage timeslices in an

epoch-based fashion. An epoch is defined by a collec-

tion of equal timeslices, one per task; the I/O scheduler

should achieve fairness in each epoch. After an I/O com-

pletion, the task’s remaining timeslice is decremented by

an appropriate I/O cost. The cost is the elapsed time from

the I/O issuance to its completion when the storage de-

vice is dedicated to this request in this duration. The cost

accounting is more complicated in the presence of paral-

lel I/O from multiple tasks, which will be elaborated in

Section 4.3. A currently active task does not forfeit its

remaining timeslice should another task be selected for

service by the scheduler. In other words, the timeslice

of a task can be consumed over several non-contiguous

periods within an epoch. Once a task has consumed its

entire timeslice, it must wait until the next epoch at which

point its timeslice is refreshed.

The current epoch ends and a new epoch begins when

either 1) there is no task with non-zero remaining times-

lice in the current epoch; or 2) all tasks with non-zero

remaining timeslices make no I/O request. Fairness must

be maintained in the case of deceptive idleness [17].

Specifically, the I/O scheduler may observe a short idle

period from a task between two consecutive I/O requests

it makes. A fair-timeslice epoch should not end at such

deceptive idleness if the task has non-zero remaining

timeslice. This is addressed through fairness-oriented

I/O anticipation elaborated in Section 4.4.

4.2 Read/Write Interference Management

Our preliminary evaluation in Section 3 shows strong

interference between concurrent reads and writes on

some of the Flash drives, an effect also observed by oth-

ers [7]. Considering that reads are faster than writes,

reads suffer more dramatically from such interference

while the impact on writes appears marginal. A con-

current write not only slows down reads, it also disrupts

device-level read parallelism which leads to further effi-

ciency loss. Part of our fairness goal is to minimize the

worst-case task slowdown. For such fairness, we adopt a

policy of read preference combined with write blocking

to reduce the read-interfered-by-write occurrences. Such

a policy gives preference to shorter jobs, which tends to

produce faster mean response time than a scheduler that

is indiscriminate of job service time. This is a side bene-

fit beyond minimizing the worst-case slowdown.

When both read and write requests are queued in the

I/O scheduler, our policy of read preference will allow

read requests to be issued first. To further avoid inter-

ference from later-issued writes, we block all write re-

quests until outstanding reads are completed. Under this

approach, a read is only blocked by a write when the

read arrives at the I/O scheduler after the write has al-

ready been issued. This is due to the non-preemptibility

of I/O. Both read preference and write blocking lead to

additional queuing time for writes. Fortunately, because

reads are serviced quickly, the additional queueing time

the write request experiences is typically small compared

to the write service time. Note that the read preference

mechanism is still governed by the epoch-based times-

lice enforcement, which serves as an ultimate preventer

of write starvation.

Our preliminary evaluation in Section 3 also shows

that while the read/write interference is very strong on

some drives, it is quite modest on the Vertex SSD. On

such a drive, the benefit of read preference and write

blocking is modest and it may be outweighed by its draw-

backs of possible write starvation and suppressing the

mixed read/write parallelism. Therefore the read/write

interference management is an optional feature in FIOS

that can be disabled for drives that do not exhibit strong

read/write interference.

4.3 I/O Parallelism

Many Flash-based solid-state drives contain internal

parallelism that allows multiple I/O requests to be ser-

viced at the same time. To achieve high efficiency and

exploit the parallel architecture in Flash, multiple I/O

requests should be issued to the Flash device in paral-

lel when fairness is not violated. After issuing an I/O

request to the storage device, FIOS searches for ad-

ditional requests which may be queued, possibly from

other tasks. Any I/O requests that are found are issued

as long as the owner tasks have enough remaining times-

lices and the read/write interference management (if en-

abled) is observed.

I/O parallelism allows multiple tasks to access the stor-

age device concurrently, which complicates the account-
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ing of I/O cost. In particular, a task should not be billed

by the full elapsed time from its request issuance to com-

pletion if requests from other tasks are simultaneously

outstanding on the storage device. The ideal cost ac-

counting for an I/O request should exclude the request

queueing time at the device during which it waits for

other requests and it does not consume the bottleneck re-

source. A precise accounting, however, is difficult with-

out the device-level knowledge of resource sharing be-

tween multiple outstanding requests.

We support two approaches for I/O cost accounting

under parallelism. In the first approach, we calibrate the

elapsed time of standalone read/write requests at differ-

ent data sizes and use the calibration results to assign the

cost of an I/O request online depending on its type (read

or write) and size. Our implementation further assumes a

linear model (typically with a substantial nonzero offset)

between the cost and data size of an I/O request. There-

fore we only need to calibrate four cases (read 4KB, read

128KB, write 4KB, and write 128KB) and use the lin-

ear model to estimate read/write costs at other data sizes.

In practice, such calibration is performed once for each

device, possibly at the device installation time. Note that

the need of request cost estimation is not unique to our

scheduler. Start-time Fair Queueing schedulers [15, 18]

also require a cost estimation for each request when it

just arrives (for setting its start and finish tags).

When the calibrated I/O costs are not available, our

scheduler employs a backup approach for I/O cost ac-

counting. Here we make the following assumption about

the sharing of cost for parallel I/O. During a time period

when the set of outstanding I/O requests on the storage

device remains unchanged (no issuance of a new request

or completion of an outstanding request), all outstanding

I/O requests equally share the device usage cost in this

time period. This is probabilistically true when the inter-

nal device scheduling and operation is independent of the

task owning the request. Such an assumption allows us

to account for the cost of parallel I/O with only informa-

tion available to the operating system. Since the device

parallelism may change during a request’s execution, an

accurate accounting of a request’s execution parallelism

would require carefully tracking the device parallelism

throughout its execution duration. For simplicity, we use

the device parallelism at the time of request issuance to

represent the request execution parallelism. Specifically,

the I/O cost is calculated as

Cost =
Telapsed

Pissuance

(1)

where Telapsed is the request’s elapsed time from its is-

suance to its completion, and Pissuance is the number of

outstanding requests (including the new request) at the

issuance time.

4.4 I/O Anticipation for Fairness

Between two consecutive I/O requests made by a task,

the I/O scheduler may observe a short idle period. This

idle period is unavoidable because it takes non-zero time

for the task to wake up and issue another request. Such

an idleness is deceptive for tasks that continuously make

synchronous I/O requests. The deceptive idleness can

be addressed by I/O anticipation [17], which idles the

storage device in anticipation of a soon-arriving new I/O

request. On mechanical disks, I/O anticipation can sub-

stantially improve the I/O efficiency by reducing the seek

and rotation overhead. In contrast, I/O spatial proxim-

ity has much less benefit for Flash storage. Therefore

I/O anticipation has a negative performance effect and

it must be used judiciously for the purpose of maintain-

ing fairness. Below we describe two important decisions

about fairness-oriented I/O anticipation on Flash—When

to anticipate? How long to anticipate?

When to anticipate? Anticipation is always consid-

ered when a request is just completed. We call the task

that owns the just completed request the anticipating

task.

Deceptive idleness may break fair timeslice manage-

ment when it prematurely triggers an epoch switch while

the anticipating task will quickly process the just com-

pleted I/O request and issue another one soon. I/O an-

ticipation should be utilized to remedy such a fairness

violation. Specifically, while an epoch would normally

end if there is no outstanding I/O request from a task

with non-zero remaining timeslice, we initiate an antici-

pation before the epoch switch if the anticipating task has

non-zero remaining timeslice. In this case the anticipa-

tion target can be either a read or write, though it is more

commonly write since writers are more likely delayed to

the end of an epoch under read preference.

Deceptive idleness may also break read preference.

When there are few tasks issuing reads, there may be

instances when no read request is queued. In order to

facilitate read preference, I/O anticipation is necessary

after completing a read request. If a read request has just

been completed, we anticipate for another read request to

arrive shortly. We do so rather than immediately issuing

a write to the device that may block later reads.

How long to anticipate? I/O anticipation duration

must be bounded in case the anticipated I/O request

never arrives. For maximum applicability and robust-

ness, the system should not assume any application hints

or predictor of the application inter-I/O thinktime. For

seek-reduction on mechanical disks, the I/O anticipation

bound is set to roughly the time of a disk I/O operation

which leads to competitive performance compared to the
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optimal offline I/O anticipation. In practice, this is often

set to 6 or 8milliseconds. Our I/O anticipation bound

must be different for two reasons. First, the original an-

ticipation bound addresses the device idling’s tradeoff

with performance gain of seek reduction. Anticipation

has a negative performance effect on Flash and we in-

stead target the different tradeoff with maintaining fair-

ness. Second, the Flash I/O service time is much smaller

than that of a disk I/O operation. This exacerbates the

cost of anticipation-induced device idling on Flash.

FIOS sets the I/O anticipation bound according to

a configurable threshold of tolerable performance loss

for maintaining fairness. This threshold, α, indicates

the maximum proportion of time FIOS idles the de-

vice (while there is pending work) to anticipate for fair-

ness. Specifically, when the deceptive idleness is about

to break fairness, we anticipate for an idling time bound

of Tservice ·
α

1−α
, where Tservice is the average service time

of an I/O request for the anticipating task. This ensures

that the maximum device idle time is no more than α

proportion of the total device time in a sequence of

I/O → anticipation → I/O → anticipation → · · ·

In our implementation, FIOS maintains the per-request

I/O service time Tservice for each task using an

exponentially-weighted moving average of past request

statistics. FIOS sets α = 0.5 by default.

Anticipation-induced device idling consumes device

time and its cost must be properly accounted and at-

tributed. We charge the anticipation cost to the timeslice

of the anticipating task.

5 Implementation Notes

We implemented our FIOS scheduler with the tech-

niques of fair timeslice management, read preference,

I/O parallelism, and I/O anticipation for fairness on

Linux 2.6.33.4. As part of a general-purpose operat-

ing system, our prototype provides fairness to concur-

rent processes. This implementation can be easily ex-

tended to support request-level fairness in a server sys-

tem [4,34] or virtual machine fairness in a shared hosting

platform [26].

Our I/O anticipation may sometimes desire a very

short timer (a few hundred microseconds). The de-

fault Linux I/O schedulers use the kernel tick-based

timer. Specifically with 1000Hz kernel ticks, the min-

imum timer is 1millisecond. Further, because the ker-

nel ticks are not synchronized with the timer setup, the

next tick may occur right after the timer is set. This

means that setting the timer to fire at the next tick may

sometimes lead to almost no anticipation. Our recent re-

search [35] showed that this already happened to some

production versions of Linux with coarse-grained tick

timers. Our FIOS implementation instead uses the Linux

high-resolution timer that can be supported by the pro-

cessor hardware counter overflow interrupts. This allows

us to set precise, fine-grained anticipation timers.

For comparison purposes, we implemented two alter-

native fairness-oriented I/O schedulers in our experimen-

tal platform. The first alternative is SFQ(D) [18], which

is based on the Start-time Fair Queueing approach [15]

but also allows concurrent request issuance for I/O ef-

ficiency. The concurrency is controlled by a depth pa-

rameter D. We set the depth to 32 which allows suffi-

cient I/O parallelism in all our experiments. The SFQ(D)

scheduler requires a cost estimation for each request

when it just arrives (for setting its start and finish tags

in SFQ(D)). In our implementation, we estimate a read’s

cost as the average read service time on the device; simi-

larly, we estimate the cost of a write as the average write

service time on the device.

The second alternative is a quanta-based I/O sched-

uler like the one employed in Argon [36]. This approach

puts a high priority on achieving fair resource use (even

if some tasks only have partial I/O load). All tasks take

round robin turns of I/O quanta. Each task has exclusive

access to the storage device within its quantum. Once an

I/O quantum begins, it will last to its end, regardless of

how few requests are issued by the corresponding task.

However, a quantum will not begin, if no request from

the corresponding task is pending.

The Linux CFQ, our FIOS scheduler, and the quanta

scheduler all use the concept of per-task timeslice or

quantum. In the Linux CFQ, the default timeslice is

100milliseconds, with minor adjustment according to

task priorities. Our FIOS and quanta scheduler imple-

mentations follow the same setting of per-task times-

lice/quantum.

During our empirical work, we discovered a flaw in

Linux that it inconsistently manages synchronous writes

across the file system and I/O scheduler layers. Specif-

ically, a synchronous operation at the file system level

(such as a write on an O SYNC-opened file and I/O as part

of a fsync() call) is not necessarily considered to be

synchronous at the I/O scheduler. Note that this incon-

sistency does not lead to wrong synchronous I/O seman-

tics to the application since the file system will force a

wait on the I/O completion before returning to the ap-

plication. However, being treated as asynchronous I/O

at the I/O scheduler means that they are scheduled with

lowest priority, leading to excessive delay by the applica-

tions who perform synchronous I/O. We fixed this prob-

lem by patching mpage writepage() functions in the

Linux kernel so that file system-level synchronous op-

erations are properly considered synchronous I/O at the

scheduler.
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We perform experiments on the ext4 file system. The

ext4 file system uses very fine-grained file timestamps (in

nanoseconds) so that each file write always leads to a new

modification time and thus triggers an additional meta-

data write. This is unnecessarily burdensome to many

write-intensive applications. We revert back to file times-

tamps in the granularity of seconds (which is the default

in Linux file systems that do not make customized set-

tings). In this case, at most one timestampmetadata write

per second is needed regardless how often the file is mod-

ified.

We also found that the file system journaling writes

made the evaluation results less stable and harder to in-

terpret. Therefore we disabled the journaling in our ex-

periments. We do not believe this setup choice affects

the fundamental results of our evaluation.

6 Experimental Evaluation

We compare FIOS’s fairness and efficiency against

three alternative fairness-oriented I/O schedulers—

Linux CFQ scheduler [3], SFQ(D) start-time fair queue-

ing with a concurrency depth [18], and a quanta-based

I/O scheduler similar to the one employed in Argon [36].

Implementation details for some of these schedulers

were provided in the previous section. We also compare

against the raw device I/O in which requests are issued

to the storage devices as soon as they are passed from the

file system.

We explain our fairness and efficiency metrics in eval-

uation. Fairness is defined as the case that each task gains

equal access to resources. In a concurrent execution with

n tasks, this can be observed if each task experiences a

factor of n slowdown compared to running-alone. We

call this proportional slowdown. Note that better perfor-

mance may be achieved when some tasks only contain

partial I/O load (i.e., they do not make I/O requests for

significant parts of their execution). Some tasks may also

gain better performance if they are able to utilize the al-

lotted resources more efficiently (e.g., through exploiting

device internal parallelism). However, fairness dictates

that none should exhibit substantially worse performance

than the proportional slowdown.

We also devise a metric to represent the overall system

efficiency of a concurrent execution. This metric, we call

concurrent efficiency, measures the relative throughput

of the concurrent execution to the running-alone through-

put of individual tasks. Intuitively, it assigns a base ef-

ficiency of 1.0 to each task’s running-alone performance

(at the absence of resource competition and interference)

and then weighs the throughput of a concurrent execu-

tion against the base efficiency. Consider n concurrent

tasks t1, t2, · · · , tn. Let ti’s running-alone throughput

be Thrputalone
i

. Let ti’s throughput in the concurrent ex-

ecution be Thrputconc
i

. Then formally for the concurrent

execution:

Concurrent efficiency =

n∑

i=1

Thrputconc
i

Thrputalone
i

. (2)

An efficiency of less than 1.0 indicates the overhead of

concurrent execution or the lack of full utilization of re-

sources. An efficiency of greater than 1.0 indicates the

additional benefit of concurrent execution, e.g., due to

exploiting the parallelism in the storage device.

Our experiments utilize the Flash-based storage de-

vices described in the beginning of Section 3. They

include three (Intel/Mtron/Vertex) Flash-based SSDs as

well as a low-power SanDisk CompactFlash drive.

Section 6.1 will first evaluate the fairness and effi-

ciency using a set of synthetic benchmarks with varying

I/O concurrency. Section 6.2 then provides evaluation

with realistic applications of the SPECweb workload on

an Apache web server and the TPC-C workload on a

MySQL database. Finally, Section 6.3 performs evalu-

ation on a CompactFlash drive in a low-power wimpy

node using the FAWN Data Store workload [2].

6.1 Evaluation with Synthetic I/O Benchmarks

Synthetic I/O benchmarks allow us to flexibly vary

parameters in the resource competition. Each synthetic

benchmark contains a number of tasks issuing I/O re-

quests of different types and sizes. Evaluation here con-

siders four benchmark cases:

• 1-reader 1-writer that concurrently runs a reader

continuously issuing 4KB reads and a writer contin-

uously issuing 4KB writes;

• 4-reader 4-writer that concurrently runs four 4KB

readers and four 4KB writers;

• 4-reader 4-writer (with thinktime) that is like the

above case but each task also induces some exponen-

tially distributed thinktime between I/O such that the

total thinktime time is approximately equal to its I/O

device usage time;

• 4KB-reader and 128KB-reader that concurrently

runs a reader continuously issuing 4KB reads and

another reader continuously issuing 128KB reads.

The last case helps evaluate the value of FIOS for read-

only workloads or workloads in which writes are asyn-

chronous and delayed to the background.

Fairness Figure 5 illustrates the fairness and perfor-

mance of the three read/write benchmark cases under

different I/O schedulers. On the two drives (Intel/Mtron

SSDs) with strong read/write interference, the raw device

I/O, Linux CFQ, and SFQ(D) fail to achieve fairness.
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Figure 5: Fairness and performance of synthetic read/write benchmarks under different I/O schedulers. The I/O

slowdown ratio for read (or write) is the I/O latency normalized to that when running alone. Results cover three Flash-

based SSDs (corresponding to the three columns) and three workload scenarios with varying reader/writer concurrency

(corresponding to the three rows). For each case, we mark the slowdown ratio that is proportional to the total number

of tasks in the system, which is a measure of fairness.

Specifically, readers experience many times the propor-

tional slowdown while writers are virtually unaffected.

Because raw device I/O makes no attempt to schedule

I/O, reads and writes are interleaved as they are issued

by applications, severely affecting the response of read

requests. The Linux CFQ does not perform much better

because it disables I/O anticipation for non-rotating stor-

age devices like Flash and it suppresses I/O parallelism

between concurrent tasks. SFQ(D) also suffers from

poor fairness due to its lack of I/O anticipation. For in-

stance, without anticipation, two-task executions degen-

erate to one-read/one-write interleaved I/O issuance and

poor fairness. The quanta scheduler achieves better fair-

ness than other alternatives due to its aggressive main-

tenance of per-task quantum. However, it suffers from

the cost of excessive I/O anticipation and suppression of

I/O parallelism. In contrast, FIOS maintains fairness (ap-

proximately at or below proportional slowdown) in all

the evaluation cases due to our proposed techniques.

On the Vertex SSD, most schedulers achieve good fair-
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Figure 6: Fairness and performance of two-reader (at different read sizes) benchmark under different I/O schedulers.
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Figure 7: Overall system efficiency of synthetic I/O benchmarks under different I/O schedulers. We use the metric of

concurrent efficiency defined in Equation 2. Results cover four benchmark cases and three SSDs.

ness for the read/write benchmark cases due to its modest

read/write interference. However, the quanta scheduler

still exhibits high cost of excessive I/O anticipation.

Figure 6 shows the fairness and performance of the

4KB-reader and 128KB-reader benchmark under differ-

ent I/O schedulers. Results show that only FIOS and

quanta schedulers can maintain fairness in this case. The

benefit manifests on all three drives including the Vertex

SSD.

Efficiency We next evaluate the overall system effi-

ciency. Figure 7 illustrates the concurrent efficiency (de-

fined in Equation 2) under different I/O schedulers. Re-

sults show FIOS achieves higher efficiency when devices

allow substantial internal parallelism. These particularly

include the two cases with four readers on the Intel and

Vertex SSDs. The quanta scheduler exhibits the worst ef-

ficiency. This is because its aggressive fairness measures

lead to substantial efficiency loss.
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Figure 8: Evaluation on the effect of fairness-oriented

I/O anticipation in FIOS on the Intel SSD.

I/O Anticipation for Fairness Figure 8 individually

evaluates the effect of fairness-oriented I/O anticipation

in FIOS. We compare with two alternatives—no antic-

ipation and anticipation for I/O proximity (as designed

in [17] and implemented in Linux). We use the 4-reader

4-writer with thinktime to demonstrate the effect of I/O

anticipation. When there is no anticipation, reads suf-

fer substantial additional latency because the deceptive

idleness sometimes breaks read preference. While some

degree of I/O anticipation is necessary, the conventional

I/O anticipation for I/O proximity leads to high perfor-

mance cost due to excessive idling. The I/O anticipation

in FIOS achieves fairness at modest performance cost.

Summary of Results FIOS exhibits better fairness

than all alternative schedulers. In terms of efficiency, it

is competitive with the best of alternative schedulers in

all cases. It is particularly efficient on the Intel SSD be-

cause it can exploit its parallelism while managing the

read-blocked-by-write problem at the same time.

Among the alternative schedulers, the quanta sched-

uler is most fair but very inefficient in many cases due

to the high cost of its aggressive I/O anticipation. The

raw device I/O is most efficient but it is unfair in many

situations, particularly in penalizing the reads.

FIOS is not only effective for maintaining fairness be-

tween reads and synchronous writes, it is also benefi-

cial for regulating read tasks with different I/O costs.

This demonstrates the value of FIOS to support read-

only workloads and workloads in which writes are asyn-

chronous and delayed to the background. Further, this

makes FIOS valuable for the Vertex drive even though

its read/write performance discrepancy is small.
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Figure 9: Fairness and performance of SPECweb run-

ning with TPC-C under different I/O schedulers. The

slowdown ratio for an application is the average request

response time normalized to that when the application

runs alone. Results cover two Flash-based SSDs.

6.2 Evaluation with SPECweb and TPC-C

Beyond the synthetic benchmarks, we also perform

evaluation with realistic workloads. We run the read-

only SPECweb99 workload (running on an Apache 2.2.3

web server) along with the write-intensive TPC-C (run-

ning on a MySQL 5.5.13 database). Each application

is driven by a closed-loop load generator that contains

four concurrent clients, each of which issues requests

continuously (issuing a new request right after the out-

standing one receives a response). The load generators

run on a different machine and send requests through

the network. This evaluation employs the two drives (In-

tel/Mtron SSDs) that exhibit large read/write interference

effects.

Figure 9 illustrates the fairness and performance re-

sults under different I/O schedulers. Unsurprisingly, the

read-only SPECweb tends to experience more slowdown

than the write-intensive TPC-C does on Flash storage.

Among all scheduling approaches, the quanta scheduler

exhibits the worst performance and fairness. This is due

to its excessive I/O anticipation. Realistic application

workloads (like SPECweb and TPC-C) perform signif-

icant computation and networking between storage I/O
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Figure 10: Overall system efficiency of SPECweb run-

ning with TPC-C under different I/O schedulers. We use

the metric of concurrent efficiency defined in Equation 2.

Results cover two Flash-based SSDs.

that appears as inter-I/O thinktime. Idling the storage de-

vice through such thinktime (as in the quanta scheduler)

leads to excessive waste. On the other hand, the poor

fairness of the raw device I/O, Linux CFQ, and SFQ(D)

is due to a lack of I/O anticipation and poor management

of read/write interference on Flash.

FIOS exhibits better fairness and performance than all

the alternative approaches, and its performance is more

stable across the two SSDs. We measure the fairness as

the worst-case application slowdown in a concurrent ex-

ecution (SPECweb slowdown in all cases). Compared to

the quanta scheduler, FIOS reduces the worst-case slow-

down by a factor of nine or more on both SSDs. Com-

pared to the raw device I/O, FIOS reduces the worst-case

slowdown by a factor of 2.3× on the Mtron SSD. Com-

pared to the Linux CFQ, FIOS reduces the worst-case

slowdown by a factor of five on the Mtron SSD. Com-

pared to SFQ(D), FIOS reduces the worst-case slowdown

by about 3.1× on the Intel SSD.

Figure 10 shows the overall system efficiency of

SPECweb running with TPC-C under different I/O

schedulers. Results show that FIOS improves the effi-

ciency above the best alternative scheduler by 14% and

18% on the Intel and Mtron SSDs respectively. FIOS

achieves high efficiency due to its proper management of

read/write interference, I/O parallelism, and controlled

I/O anticipation.

6.3 Evaluation on Low-Power CompactFlash

We also test FIOS on a low-power wimpy node like

the ones used in the FAWN work [2]. Specifically, the

node contains an Alix board with a single-core 500MHz

AMD Geode CPU, 256MB SDRAM memory, and a

16GB SanDisk CompactFlash drive. The full node con-

sumes about 5.9Watts of power at peak load. The Com-

pactFlash, while also NAND Flash-based, is significantly

less sophisticated than solid state drives. CompactFlash
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Figure 11: Performance of concurrent FAWN Data Store

hash gets (data reads) and hash puts (data writes) on a

low-power CompactFlash. The slowdown ratio for a task

is defined as its running-alone throughput divided by its

throughput at the concurrent run. Higher slowdown ratio

means worst performance.

cards lack the sophisticated firmware and degree of par-

allelism available in solid-state drives. Despite these dif-

ferences, CompactFlash still exhibits some of the intrin-

sic Flash characteristics that FIOS is designed to consider

and exploit.

We requested and acquired the FAWN Data Store ap-

plication from the authors [2]. In our experiments, we

concurrently run two FAWN Data Store tasks, one per-

forming hash gets (data reads) and the other performing

hash puts (data writes). We run hash puts synchronously

to ensure that the data is made persistent before its re-

sult is externalized to client. These tasks run against data

stores of 1million records.

Figure 11 presents the resulting get/put slowdown ra-

tios under different I/O schedulers. Only FIOS keeps

both hash gets and puts below the proportional slow-

down. The quanta scheduler also exhibits good fair-

ness because its suppression of parallelism has no harm-

ful effect on the CompactFlash which does not allow

any I/O parallelism. Further, the quanta scheduler’s ex-

cessive I/O anticipation causes little efficiency loss for

FAWN Data Store that performs batched I/O with almost

no inter-I/O thinktime. Under all other approaches (raw

device I/O, Linux CFQ, and SFQ(D)), hash gets expe-

rience worse performance degradation than the propor-

tional slowdown, which indicates poor fairness.

7 Conclusion

Flash-based storage devices are capable of alleviating

I/O bottlenecks in data-intensive applications. However,

the unique performance characteristics of Flash storage
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must be taken into account in order to fully exploit their

superior I/O capabilities while offering fair access to ap-

plications. In this paper, we have characterized the per-

formance of several Flash-based storage devices. We

observed that during concurrent access, writes can dra-

matically affect the response time of read requests. We

also observed that Flash-based storage exhibits support

for some degree of parallel I/O, though the benefit of

parallel I/O varies across devices. Further, the lack of

seek/rotation overhead eliminates the performance bene-

fit of anticipatory I/O, but proper I/O anticipation is still

needed for the purpose of fairness.

Based on these motivations, we designed a new Flash

I/O scheduling approach that contains four essential

techniques to ensure fairness with high efficiency—fair

timeslice management that allows timeslice fragmenta-

tion and concurrent request issuance, read/write interfer-

ence management, I/O parallelism, and I/O anticipation

for fairness. We implemented these design principles in

a new I/O scheduler for Linux.

We evaluated our I/O scheduler alongside three alter-

native fairness-oriented I/O schedulers (Linux CFQ [3],

SFQ(D) [18], and a quanta-based I/O scheduler similar

to that in Argon [36]). Our evaluation uses a variety

of synthetic benchmarks and realistic application work-

loads on several Flash-based storage devices (including a

CompactFlash card in a low-powerwimpy node). The re-

sults expose the shortcomings of existing I/O schedulers

while validating our design principles for Flash resource

management. In conclusion, this paper makes the case

that fairness warrants the first-class concern in Flash I/O

scheduling and it is possible to achieve fairness while at-

taining high efficiency.

While FIOS is primarily motivated by the Flash

read/write interference, we also demonstrate that FIOS is

beneficial for regulating the resource usage fairness be-

tween read tasks with different I/O costs (a task perform-

ing small reads runs concurrently with a task performing

large reads). This illustrates the value of FIOS to support

read-only workloads and workloads in which writes are

asynchronous and delayed to the background. Further,

FIOS is also valuable for Flash drives that have modest

read/write performance discrepancy.
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