
Understanding Performance Implications of Nested File Systems
in a Virtualized Environment

Duy Le1, Hai Huang2, and Haining Wang1

1The College of William and Mary, Williamsburg, VA 23185, USA
2IBM T. J. Watson Research Center, Hawthorne, NY 10532 USA

Abstract

Virtualization allows computing resources to be utilized
much more efficiently than those in traditional systems,
and it is a strong driving force behind commoditizing
computing infrastructure for providing cloud services.
Unfortunately, the multiple layers of abstraction that vir-
tualization introduces also complicate the proper under-
standing, accurate measurement, and effective manage-
ment of such an environment. In this paper, we focus
on one particular layer: storage virtualization, which en-
ables a host system to map a guest VM’s file system to
almost any storage media. A flat file in the host file sys-
tem is commonly used for this purpose. However, as we
will show, when one file system (guest) runs on top of
another file system (host), their nested interactions can
have unexpected and significant performance implica-
tions (as much as 67% degradation). From performing
experiments on 42 different combinations of guest and
host file systems, we give advice on how to and how not
to nest file systems.

1 Introduction

Virtualization has significantly improved hardware uti-
lization, thus, allowing IT services providers to offer a
wide range of application, platform and infrastructure so-
lutions through low-cost, commoditized hardware (e.g.,
Cloud [1, 5, 11]). However, virtualization is a double-
edged sword. Along with many benefits it brings, vir-
tualized systems are also more complex, and thus, more
difficult to understand, measure, and manage. This is
often caused by layers of abstraction that virtualization
introduces. One particular type of abstraction, which
we use often in our virtualized environment but have not
yet fully understood, is the nesting of file systems in the
guest and host systems.

In a typical virtualized environment, a host maps reg-
ular files as virtual block devices to virtual machines

Figure 1: Scenario of nesting of file systems.

(VMs). Completely unaware of this, a VM would for-
mat the block device with a file system that it thinks is
the most suitable for its particular workload. Now, we
have two file systems – a host file system and a guest
file system – both of which are completely unaware of
the existence of the other layer. Figure 1 illustrates such
a scenario. The fact that there is one file system be-
low another complicates an already delicate situation,
where file systems make certain assumptions, based on
which, optimizations are made. When some of these as-
sumptions are no longer true, these optimizations will no
longer improve performance, and sometimes, will even
hurt performance. For example, in the guest file sys-
tem, optimizations such as placing frequently used files
on outer disk cylinders for higher I/O throughput (e.g.,
NTFS), de-fragmenting files (e.g., QCoW [7]), and en-
suring meta-data and data locality, can cause some unex-
pected effects when the real block allocation and place-
ment decisions are done at a lower level (i.e., in the host).

An alternative to using files as virtual block devices
is to give VMs direct access to physical disks or logi-
cal volumes. However, there are several benefits in map-
ping virtual block devices as files in host systems. First,
using files allows storage space overcommit when they
are thinly provisioned. Second, snapshotting a VM im-
age using copy-on-write (e.g., using QCoW) is simpler
at the file level than at the block level. Third, manag-
ing and maintaining VM images and snapshots as files is

1

also easier and more intuitive as we can leverage many
existing file-based storage management tools. Moreover,
the use of nested virtualization [6, 15], where VMs can
act as hypervisors to create their own VMs, has recently
been demonstrated to be practical in multiple types of hy-
pervisors. As this technique encourages more layers of
file systems stacking on top of one another, it would be
even more important to better understand the interactions
across layers and their performance implications.

In most cases, a file system is chosen over other
file systems primarily based on the expected workload.
However, we believe, in a virtualized environment, the
guest file system should be chosen based on not only
the workload but also the underlying host file system.
To validate this, we conduct an extensive set of experi-
ments using various combinations of guest and host file
systems including Ext2, Ext3, Ext4, ReiserFS, XFS, and
JFS. It is well understood that file systems have different
performance characteristics under different workloads.
Therefore, instead of comparing different file systems,
we compare the same guest file system among different
host file systems, and vice versa. From our experiments,
we observe significant I/O performance differences. An
improper combination of guest and host file systems can
be disastrous to performance; but with an appropriate
combination, the overhead can be negligible.

The main contributions of this paper are summarized
as follows.

• A quantitative study of the interactions between
guest and host file systems. We demonstrate that the
virtualization abstraction at the file system level can
be more detrimental to the I/O performance than it
is generally believed.

• A detailed block-level analysis of different combi-
nations of guest/host file systems. We uncover the
reasons behind I/O performance variations in dif-
ferent file system combinations and suggest various
tuning techniques to enable more efficient interac-
tions between guest and host file systems to achieve
better I/O performance.

From our experiments, we have made the follow-
ing interesting observations: (1) for write-dominated
workloads, journaling in the host file system could
cause significant performance degradations, (2) for read-
dominated workloads, nested file systems could even im-
prove performance, and (3) nested file systems are not
suitable for workloads that are sensitive to I/O latency.
We believe that more work is needed to study perfor-
mance implications of file systems in virtualized envi-
ronments. Our work takes a first step in this direction,
and we hope that these findings can help file system de-
signers to build more adaptive file systems for virtualized
environments.

The remainder of the paper is structured as follows.
Section 2 surveys related works. Section 3 presents
macro-benchmarks to understand the performance im-
plications of nesting file systems under different types
of workloads. Section 4 uses micro-benchmarks to dis-
sect the interactions between guest and host file systems
and their performance implications. Section 5 discusses
significant consequences of nested file systems with pro-
posed techniques to improve I/O performance. Finally,
Section 6 concludes the paper.

2 Related Work

Virtualizing I/O, especially storage, has been proven to
be much more difficult than virtualizing CPU and mem-
ory. Achieving bare-metal performance from virtual-
ized storage devices has been the goal of many past
works. One approach is to use para-virtualized I/O de-
vice drivers [26], in which, a guest OS is aware of
running inside of a virtualized environment, and thus,
uses a special device driver that explicitly cooperates
with the hypervisor to improve I/O performance. Ex-
amples include KVM’s VirtIO driver [26], Xen’s para-
virtualized driver [13], and VMware’s guest tools [9].
Additionally, Jujjuri et al. [22] proposed to move the
para-virtualization interface up the stack to the file sys-
tem level.

The use of para-virtualized I/O device drivers is almost
a de-facto standard to achieve any reasonable I/O perfor-
mance, however, Yassouret al. [32] explored an alter-
native solution that gives guest direct access to physical
devices to achieve near-native hardware performance. In
this paper, we instead focus on the scenario where vir-
tual disks are mapped to files rather than physical disks
or volumes. As we will show, when configured correctly,
the additional layers of abstraction introduce only limited
overhead. On the other hand, having these abstractions
can greatly ease the management of VM images.

Similar to nesting of file systems, I/O schedulers are
also often used in a nested fashion, which can result
in suboptimal I/O scheduling decisions. Boutcher and
Chandra [17] explored different combinations of I/O
schedulers in guest and host systems. They demon-
strated that the worst case combination provides only
40% throughput of the best case. In our experiments, we
use the best combination of I/O schedulers found in their
paper but try different file system combinations, with the
focus on performance variations caused only by file sys-
tem artifacts. Whereas, for performance purposes, there
is no benefit to performing additional I/O scheduling in
the host, it has a significant impact on inter-application
I/O isolation and fairness as shown in [23]. Many other
works [18, 19, 25, 27] have also studied the impact of
nested I/O schedulers on performance, fairness, and iso-

2

Figure 2: Setup for macro-level experimentation

lation, and these are orthogonal to our work in the file
system space.

When a virtual disk is mapped to an image file, the
data layout of the image file can significantly affect its
performance. QCOW2 [7], VirtualBox VDI [8], and
VMware VMDK [10] are some popular image formats.
However, as Tang [31] pointed out, these formats unnec-
essarily mix the function of storage space allocation with
the function of tracking dirty blocks. Tang presented
an FVD image format to address this issue and demon-
strated significant performance improvements for certain
workloads. Various techniques [16, 20, 30] to dynam-
ically change the data layout of image files, depending
on the usage patterns, have also been proposed. Suzuki
et al. [30] demonstrated that by co-locating data blocked
used at boot time, a virtual machine can boot much faster.
Bhadkamkaret al. [16] and Huanget al. [20] exploited
data replication techniques to decrease the distance be-
tween temporally related data blocks to improve I/O per-
formance. Sivathanuet al. [29] studied the performance
effect of the image file placed at different locations of a
disk.

I/O performance in storage virtualization can be im-
pacted by many factors, such as device driver, I/O sched-
uler, and image format. To the best of our knowledge,
this is the first work that studies the impact of the choice
of file systems in guest and host systems in a virtualiza-
tion environment.

3 Macro-benchmark Results

To better understand the performance implications
caused by guest / host file system interactions, we take
a systematic approach in our experimental evaluation.
First, we exercise macro-benchmarks to understand the
potential performance impact of nested file systems on
realistic workloads, from which, we were able to ob-
serve significant performance impact. In Section 4, we
use micro-benchmarks coupled with low-level I/O trac-
ing mechanisms to investigate the underlying cause.

3.1 Experimental Setup

As there is no single “most common” or “best” file sys-
tem to use in the hypervisor or guest VMs, we conduct

Hardware Software

Pentium D 3.4GHz, 2GB RAM Ubuntu 10.04 (2.6.32-33)

Host 80GB WD 7200 RPM SATA (sda) qemu-kvm 0.12.3

1TB WD 7200 RPM SATA (sdb) libvirt 0.9.0

Guest Qemu 0.9, 512MB RAM Ubuntu 10.04 (2.6.32-33)

Table 1: Testbed setup

our experiments using all possible combinations of pop-
ular file systems on Linux (i.e., Ext2, Ext3, Ext4, Reis-
erFS, XFS, and JFS) in both the hypervisor and guest
VMs, as shown in Figure 2. A single x86 64-bit machine
is used to run KVM [24] at the hypervisor level, and
QEMU [14] is used to run guest VMs1. To reflect typi-
cal enterprise setting, each guest VM is allocated a single
dedicated processor core. More hardware and software
configuration settings are listed in Table 1.

The entire host OS is installed on a single disk (sda)
while another single disk (sdb) is used for experiments.
We create multiple equal-sized partitions fromsdb, each
corresponding to a different host file system. Each parti-
tion is then formatted using the default parameters of the
host file system’smkfs* command and is mounted using
the default parameters ofmount. In the newly created
host file system, we create a flat file and expose this flat
file as the logical block device to the guest VM, which in
turn, further partitions the block device, having each cor-
responding to a different guest file system. By default,
virtio [26] is used as the block device driver for the guest
VM and we considerwrite-through as a caching mode
for all backend storages. The end result is the guest VM
having access to all combinations of guest and host file
systems. Table 2 shows an example of our setup: a file
created on/dev/sdb3, which is formatted as Ext3, is
exposed as a logical block devicevdc to the guest VM,
which further partitionsvdc into vdc2, vdc3, vdc4, etc.
for different guest file systems. Note that all disk parti-
tions of the hypervisor (sdb*) and the guest (vdc*) are
properly aligned usingfdisk to avoid most of the block
layer interference caused by misalignment problems.

In addition to the six host file systems, we also create
a raw disk partition that is directly exposed to the guest
VM and is labeled asBlock Device (BD) in Table 2. This
allows a guest file system to sit directly on top of a physi-
cal disk partition without the extra host file system layer.
This special case is used as our baseline to demonstrate
how large (or how small) of an overhead the host file sys-
tem layer induces. However, there are some side effects
to this particular setup, and namely, the file systems be-
ing created on outer disk cylinders will have higher I/O
throughput than those created on inner cylinders. For-

1Similar performance variations are observed in the experiments
with other hypervisors including Xen and VMWare, which are shown
in Appendix.

3

Host file system
Devices #Blocks (x106) Speed(MB/s) Type

sdb2 60.00 127.64 Ext2
sdb3 60.00 127.71 Ext3
sdb4 60.00 126.16 Ext4
sdb5 60.00 125.86 ReiserFS
sdb6 60.00 123.47 XFS
sdb7 60.00 122.23 JFS
sdb8 60.00 121.35 Block Device

�
�
��

Guest file system
Device #Blocks x106 Type

vdc2 9.27 Ext2
vdc3 9.26 Ext3
vdc4 9.27 Ext4
vdc5 9.28 ReiserFS
vdc6 9.27 XFS
vdc7 9.08 JFS

Table 2: Physical and logical disk partitions

Services # Files# ThreadsFile size I/O size

File server 50,000 50 128KB 16KB-1MB

Web server50,000 100 16KB 512KB

Mail server50,000 16 8-16KB 16KB

DB server 8 200 1GB 2KB

Table 3: Parameters for Filebench workloads

tunately, as each disk partition created at the hypervisor
level is 60GB, only a portion of the entire disk is utilized
and thus limits this effect. Table 2 also shows the results
of runninghdparm on each disk partition. The largest
throughput difference between any two partitions is only
about 5%, which is fairly negligible.

The choice of I/O scheduler at host and guest levels
can significantly impact performance [17, 21, 27, 28]. As
file system is the primary focus of this paper, we used
CFQscheduler in the host andDeadline scheduler in
the guest as these schedulers were shown to be the top
performers in their respective domains by Boutcher and
Chandra [17].

3.2 Benchmarks

We use Filebench [3] to generate macro-benchmarks
of different I/O transaction characteristics controlled by
predefined parameters, such as the number of files to
be used, average file size, and I/O buffer size. Since
Filebench supports a synchronization between threads
to simulate concurrent and sequential I/Os, we use this
tool to create four server workloads: a file server, a web
server, a mail server, and a database server. The specific
parameters of each workload are listed in Table 3, show-
ing that the experimental working set size is configured
to be much larger than the size of the page cache in the
VM. The detailed description of these workloads is as
follows.

• File server: Emulates a NFS file service. File op-
erations are a mixture ofcreate, delete, append,

read, write, andattribute on files of various
sizes.

• Web server: Emulates a web service. File oper-
ations are dominated by reads:open, read, and
close. Writing to the web log file is emulated by
having oneappend operation peropen.

• Mail server: Emulates an e-mail service. File
operations are within a single directory consist-
ing of I/O sequences such asopen/read/close,
open/append/close, anddelete.

• Database server: Emulates the I/O characteristic
of Oracle 9i. File operations are mostlyread and
write on small files. To simulate database logging,
a stream of synchronouswrites is used.

3.3 Macro-benchmark Results

Our main objective is to understand how much of a per-
formance impact nested file systems have on different
types of workloads, and whether or not the impact can
be lessened or avoided. As mentioned before, we use
all combinations of six popular file systems in both the
hypervisor and guest VMs. For comparison purpose, we
also include one additional combination, in which the hy-
pervisor exposes a physical partition to guest VMs as a
virtual block device. This results in 42 (6×7) different
combinations of storage / file system configurations.

The performance results are shown in Figures 3 and 6,
in terms of I/O throughput and I/O latency, respectively.
Each sub-figure consists of a left and a right side. The
left side shows the performance results when the guest
file systems are provisioned directly on top of raw disk
partitions in the hypervisor. These are expressed in abso-
lute numbers (i.e., MB per second for throughput or mil-
lisecond for latency) and are used as our baseline. The
right side shows the relative performance (to the baseline
numbers) of the guest file systems when they are provi-
sioned as files in the host file system. In these figures,
each column group represents a different storage option

4

 0

 1

 2

 3

 4

 5

 6

 7

 8

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

 5

 6

 7

 8

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

P
e
rc

e
n

ta
g

e
 (

%
)

ReiserFS

 0

 5

 10

 15

 20

 25

 30

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 5

 10

 15

 20

 25

 30

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

P
e
rc

e
n

ta
g

e
 (

%
)

ReiserFS

(A) File server (B) Web server

 0

 0.5

 1

 1.5

 2

 2.5

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 0.5

 1

 1.5

 2

 2.5

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 10

 20

 30

 40

 50

 60

 70

 80

P
e
rc

e
n

ta
g

e
 (

%
)

ReiserFS

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

P
e
rc

e
n

ta
g

e
 (

%
)

ReiserFS

(C) Mail server (D) Database server

Figure 3: I/O throughput for Filebench workloads (higher is better)

in the hypervisor, and each column within the group rep-
resents a different storage option in the guest VM.

3.3.1 Throughput

The baseline numbers (leftmost column group) show the
intrinsic characteristics of various file systems under dif-
ferent types of workloads. These characteristics indicate
that some file systems are more efficient on large files
than small files, while some file systems are more ef-
ficient at reading than writing. As an example, when
ReiserFS runs on top of BD, its throughput under the
web server workload (27.2 MB/s) is much higher than
that under the mail server workload (1.4MB/s). These
properties of file systems are well understood, and how
one would choose which file system to use is a straight-
forward function of the expected I/O workload. How-
ever, in a virtualized environment where nested file sys-
tems are often used, the decision becomes more difficult.
Based on the experimental results, we make the follow-
ing observations:

(1) A guest file system’s performance varies signif-
icantly under different host file systems. Figure 3(B)
shows an example of the database workload. When Reis-
erFS runs on top of Ext2, its throughput is reduced by
67% compared to its baseline number. However, when it
runs on top of JFS, its I/O performance is not impacted at
all. We use coefficient of variance to quantify how differ-
ently a guest file system’ performance is affected by dif-
ferent host file systems, which is shown in Figure 4. For

 0

 10

 20

 30

 40

 50

Fileserver Webserver Mailserver Database

C
o

e
ff

ic
ie

n
t

o
f

v
a
ri

a
n

c
e
 (

%
)

ReiserFS

Figure 4: Coefficient of variance of guest file systems’
throughput under Filebench workloads across different
host file systems.

Figure 5: Total I/O transaction size of Filebench work-
loads

5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

BD

L
a

te
n

c
y

 (
m

s
e

c
)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

BD

L
a

te
n

c
y

 (
m

s
e

c
)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 50

 100

 150

 200

 250

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 50

 100

 150

 200

 250

 300

 350

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

(A) File server (B) Web server

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 50

 100

 150

 200

 250

 300

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

 0

 50

 100

 150

 200

 250

BD

L
a

te
n

c
y

 (
m

s
e

c
)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

(C) Mail server (D) Database server

Figure 6:I/O latency of guest file systems under different workloads (lower is better)

each workload, a variance number is calculated based on
relative performance values of a guest file system when
it runs on top of different host file systems. Our results
show that the throughput of ReiserFS experiences a large
variation (45%) under the database workload, while that
of Ext4 varies insignificantly (4%) under the web server
workload. The large variance numbers indicate that hav-
ing the right guest/host file system combination is critical
to performance, and having a wrong combination can re-
sult in serious performance degradation. For instance,
under the database workload, ReiserFS/Ext2 is a right
combination, but ReiserFS/JFS is a wrong combination.

(2) A host file system impacts different guest file
systems’ performance differently. Similar to the pre-
vious observation, a host file system can have a different
impact on different guest file systems’ performance. Fig-
ure 3(A) shows an example of the file server workload.
When Ext2 runs on top of Ext3, its throughput is slightly
degraded by about 10%. However, when Ext3 runs on
top of Ext3, the throughput is reduced by 40%. Based
on results of coefficient of variance of guest file systems’
throughputs shown in Figure 4, we observe that this bi-
directional dependency between guest and host file sys-
tems again stresses the importance of choosing the right
guest/host file system combination.

(3) A right guest file system/host file system com-
bination can produce minimal performance degrada-
tion. Also based on results shown in Figure 4, one can
also observe how badly performance can be impacted

when a wrong combination of guest/host file system is
chosen. However, it is possible to find a guest file sys-
tem whose performance loss is the lowest. For example,
the results of the mail server workload show that once
Ext2 runs on top of Ext2, its throughput degradation is
the lowest (by 46%).

(4) The performance of nested file systems is af-
fected much more by write than read operations.As
one can see in Figure 3,all the combinations of nested
file systems perform poorly for the mail server workload,
unlike the other three workloads. We study the detailed
disk traces from these workloads by examining request
queuing time, request merging, request size, etc., and
find that the mail server workload is only significantly
different from the others in having a much higher pro-
portion of writes than reads, as shown in Figure 5. We
will use micro-benchmarks in Section 4 to describe the
reasons behind this behavior.

3.3.2 Latency

The latency results are illustrated in Figure 6. Simi-
lar to I/O throughput, latency is also deteriorated when
guest file systems are provisioned on top of host file sys-
tems rather than raw partitions. Whereas the impact to
throughput can be minimized (for some workloads) by
choosing the right combinations of guest/host file sys-
tem, latency is much more sensitive to nesting of file
systems. In comparison to the baseline, the latency of
each guest file system varies in a certain range when it

6

Description Parameters

Total I/O size 5 GB
I/O parallelism 255
Block size 8 KB
I/O pattern Random/Sequential
I/O mode Native asynchronous I/O

Table 4: FIO benchmark parameters

runs on top of different host file systems. Even for the
lowest cases, latency is increased by 5-15% across the
board (e.g., Ext2 guest file system under the web server
workload). Coefficient of variance for latency is similar
to that of throughput shown in Figure 4. However, for
latency sensitive workloads, like the database workload,
such a significant increase in I/O response time could be
unacceptable.

4 Micro-benchmarks Results
We first study nested file systems using a micro-level
benchmarkFIO [4]. Based on the experimental results,
we further conduct an analysis at the block layer on the
guest VM and the hypervisor, respectively, using an I/O
tracing mechanism [2].

4.1 Benchmark

We use FIO as a micro-level benchmark to examine disk
I/O workloads. As a highly configurable benchmark,
FIO defines a test case based on different I/O transaction
characteristics, such as total I/O size, block size, num-
ber of I/O parallelism, and I/O mode. Here our focus
is on the performance variation of primitive I/O opera-
tions, such asread andwrite. With the combination of
these I/O operations and two I/O pattens,random andse-
quential, we design four test cases: random read, random
write, sequential read, and sequential write. The specific
I/O characteristics of these test cases are listed in Table 4.

4.2 Experimental Results

On the same testbed, the experiments are conducted with
many small files, which create a 5GB of total data foot-
print for each workload. Figures 7 and 8 show the per-
formance in both sequential and random I/Os. Based on
the experimental results, we make two observations:

• The performance of those workloads that are
dominated by read operations is largely unaf-
fected by nested file systems.The performance
impact is weakly dependent on guest/host file sys-
tems. More interestingly, for sequential reads, in a
few scenarios, a nested file system can even improve
I/O performance (e.g., by 34% for Ext3/JFS).

• The performance of those workloads that are
dominated by write operations is heavily affected
by nested file systems.The performance impact
varies in both random and sequential writes, with
higher variations in sequential writes. In particu-
lar, a host file system like XFS can degrade the per-
formance by 40% for both random and sequential
writes. As a result, it is important to understand the
root cause of this performance impact, especially on
the sequential write dominated workload.

To interpret these observations, our analysis will focus
on sequential workloads and the performance implica-
tion across certain guest/host file system combinations.
For this set of experiments with micro-benchmark, due
to space constraints, we only concentrate on decipher-
ing the I/O behavior of these representative file system
combinations. Although only a few combinations are
considered, principles used here are applicable to other
combinations as well.

For sequential read workloads, we attempt to uncover
the reasons behind the significant performance improve-
ment on theright guest/host file system combinations.
We select the combinations ofExt3/JFS andExt3/BD
for analysis. For sequential write workloads, we try to
understand the root cause of the significant performance
variations in the scenarios of (1) different guest file sys-
tems running on the same host file system and (2) the
same guest file system operating on different host file
systems. We analyze three guest file system/host file
system combinations:Ext3/ReiserFS, JFS/ReiserFS,
andJFS/XFS. Here Ext3/ReiserFS and JFS/ReiserFS are
used to examine how different guest file systems can af-
fect performance differently on the same host file system,
while JFS/ReiserFS and JFS/XFS are used to examine
how different host file systems can affect performance
differently on the same guest file system.

4.3 I/O Analysis
To understand the underlying cause of the performance
impact due to nesting of file systems, we use blktrace
to record I/O activities at both the guest and hypervisor
levels. The resulting trace files are stored on another de-
vice, thus increasing only 3-4% CPU utilization. There-
fore, the interference with our benchmarks from such an
I/O recoding is negligible. Blktrace keeps detailed ac-
count of each I/O request from start to finish as it goes
through various I/O states (e.g., put the request onto an
I/O queue, merge with an existing request, and wait on
the I/O queue). The I/O states that are of interest to us in
this study are described as follows.

• Q: a new I/O request isqueued by an application.

7

 0

 0.4

 0.8

 1.2

 1.6

 2

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 0.4

 0.8

 1.2

 1.6

 2

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

 0

 20

 40

 60

 80

 100

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 20

 40

 60

 80

 100

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

A B

Figure 7:I/O throughput of guest file systems inreading files. (A): random and (B) sequential

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

 0

 20

 40

 60

 80

 100

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 20

 40

 60

 80

 100

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

A B

Figure 8:I/O throughput of guest file systems inwriting files. (A): random and (B) sequential

• I: the I/O request isinserted into an I/O scheduler
queue.

• D: the I/O request is being served by thedevice.

• C: the I/O request hascompleted by the device.

Blktrace records the timestamp when an I/O request
enters a new state, so it is trivial to calculate the amount
of time the request spends in each state (i.e., Q2I, I2D,
and D2C). Here Q2I is the time it takes to insert/merge
a request onto a request queue. I2D is the time it takes
to idle on the request queue waiting for merging oppor-
tunities. D2C is the time it takes for the device to serve
the request. The sum of Q2I, I2D, and D2C is the total
processing time of an I/O request, which we denote as
Q2C.

4.3.1 Sequential Read Workload

As mentioned in the experimental setup, the logical
block device of the guest VM can be represented as ei-
ther a flat file or a physical raw disk partition at the hy-
pervisor level. However, the different representation of
the guest VM’s block device directly affects the num-
ber of I/O requests served at the hypervisor level. For
the selected combinations ofExt3/JFSandExt3/BD, as

Figure 9 shows, the number of I/O requests served at the
hypervisor’s block layer is significantly lower than that at
the guest’s block layer. More specifically, if JFS is used
as a host file system, it greatly reduces the number of
queued I/O requests sent from the guest level, resulting
in much fewer I/O requests served at the hypervisor level
than those at the guest level. If a raw disk partition is
used instead, although there is no reduction on the num-
ber of queued I/O requests, the hypervisor level’s block
layer also lowers the number of served I/O requests by
merging queued I/O requests.

There are two root causes for these I/O behaviors:
(1) the file prefetching technique at the hypervisor level,
known asreadahead, and (2) the merging activities at the
hypervisor level introduced by the I/O scheduler. The de-
tailed descriptions of these root causes are given below.

First, there are frequent accesses to both files’ con-
tent and metadata in a sequential read dominated work-
load. To expedite this process, readahead I/O requests
are issued at the kernel level of both the guest and the hy-
pervisor. Basically, readahead I/O requests populate the
page cache with data already read from the block device,
so that subsequent reads from the accessed files do not
block on other I/O requests. As a result, it decreases the
number of accesses to the block device. In particular, at
the hypervisor level, a host file system issues readahead

8

Figure 9: Disk I/Os under sequential read workload

Figure 10: Cache hit ratio under sequential read work-
load.

requests and attempts to minimize the frequent accesses
on the flat file by caching the subsequently accessed con-
tents and metadata in the physical memory. Therefore,
the I/Os served at the hypervisor level are much fewer
than those at the guest level.

However, when accessing a raw disk partition, there
is no readahead. Thus, for sequential workloads, a host
file system outperforms a raw disk partition due to more
effective caching. This discrepancy of data caching at the
hypervisor level is clearly shown in Figure 10.

Second, to optimize I/O requests being served on the
block device, the hypervisor’s block layer attempts to
reduce the number of accesses into the block device
by sorting and merging queued I/O requests. However,
when many I/O requests are sorted and merged, they
need to stay longer in the queue than normal. For JFS
(host file system), as shown in Figure 9, due to the ef-
fective caching, much fewer I/O requests are sent to the
disk, and thus much fewer sorting/merging activities oc-
cur at the I/O queue. However, when a raw partition is
used, much more I/O requests need to be sorted/merged.
The sorting/merging activities cause a higher idle time
(I2D) for I/O requests being served on the block device
than those on the JFS (host file system). This behavior is
depicted in Figure 11 (hypervisor level).

Remark: When a flat file is used as a guest VM’s log-
ical block device, sequential read dominated workloads

Figure 11: I/O times under sequential read workload.

can take advantage of the readahead at the hypervisor,
achieving effective data caching. In contrast, when a disk
partition is used, there is no readahead and data caching.
Therefore, for all file systems, to gain high I/O perfor-
mance, we recommend cloud administrators to select a
flat file over raw partitions for services dominated by se-
quential reads.

4.3.2 Sequential Write Workload

Our investigation uncovers the root causes of the nested
file systems’ performance dependency under a sequential
write workload in two cases: (A) two file system combi-
nations hold the same host file system, and (B) two com-
binations hold the same guest file system. The analysis
detailed below focuses on two principal factors: sensitiv-
ity of an I/O scheduler and effectiveness of block alloca-
tion mechanisms.

A. Different guests (Ext3, JFS) on the same host
(ReiserFS) As shown in Figure 8 (B), we can see that
the I/O performance of Ext3/ReiserFS is much worse
than that of Ext3/BD, while the I/O performance of
JFS/ReiserFS is much better than JFS/BD. At the guest
level, we analyze the performance dependency of Ext3
and JFS based on the comparison of their I/O character-
istics. The details of this comparison are shown in Fig-
ure 13.

Figure 13 (A) shows that most I/Os issued from Ext3
and sent to the block layer are well merged at the guest
level’s I/O scheduler. The effective merging of I/Os sig-
nificantly reduces the number of I/Os to be served on
Ext3 (guest). Meanwhile, Figure 13 (B) shows that 99%
I/Os of Ext3 are in small size (8K) and those of JFS is
68%. Apparently, merging multiple small size I/Os in-
curs additional overhead. This is because the small re-
quests have to be waited longer in the queue in order to
be merged, thus, increasing their idle times. This behav-
ior is illustrated in Figure 13 (C).

To understand the root cause of merging happened on
Ext3 and JFS (guest), we perform a deep analysis by
monitoring every issued I/O activities at the guest level.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 256 512 768 1024

C
D

F
 o

f
d

is
k

 I
/O

s

Request size (4K-block)

Ext3
JFS

A B C

Figure 13: I/O characteristics atguest level: (A) disk I/Os, (B) I/O size, and (C) average I/O time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
d

is
k

 I
/O

s

Normalized seek distance

ReiserFS
XFS

A B C

Figure 14: I/O characteristics athypervisor level: (A) disk I/Os, (B) average I/O time, and (C) disk seeks.

Figure 12: Extra I/O for journal log and metadata updates
under sequential write workload.

What we found is that the block allocation mechanism
causes this performance variation. To minimize disk
seeks, Ext3 issues I/Os to allocate blocks of data on disk
close to each other. The data includes regular data file, its
metadata, and journal logs of metadata. This allocation
scheme makes most I/Os beback merged. A back merge
behavior denotes that a new request sequentially falls be-
hind an exiting request on an order of the start sector, as
they are logically adjacent. Note that two I/Os are logi-
cally adjacent when the end sector of one I/O is logically
located next to the begin sector of the other I/O. As we
can see, clustering adjacent I/Os facilitates the data ac-
cess. However, it requires the issued I/Os to be waited
longer in the queue for being processed.

JFS is more efficient than Ext3 in journaling. For reg-
ular data file written into disk, both Ext3 and JFS effec-
tively coalescence multiple write operations to reduce the
number of I/O committed into disk. However, for meta-
data and journal logs, instead of independently commit-
ting every single concurrent log entry as Ext3, JFS re-

quires multiple concurrent log entries to be coalesced as
one commit. For this reason, as shown in Figure 12, JFS
has less I/Os spent for journaling, resulting in less per-
formance degradation.

Remarks: The efficiency provided by the I/O sched-
uler’s optimization is no longer valid for all nested file
systems. Since file systems allocate blocks on disk dif-
ferently, nested file systems have different impacts on
performance when one particular I/O scheduler is used.
Therefore, a nested file system should be chosen based
on the effectiveness of underlying I/O scheduler’s opera-
tions on its block allocation scheme.

B. Same guest (JFS) on different hosts (ReiserFS,
XFS) Based on results of sequential writes shown in
Figure 8 (B), JFS (guest) performs better on ReiserFS
than on XFS. We analyze I/O activities of these host file
systems to uncover differences of their block allocation
mechanisms. The detailed analysis is given below.

The analysis of I/O activities reveals that the I/O
scheduler processes ReiserFS’ I/Os similarly to those of
XFS. As shown in Figure 14 (A), the number of host file
systems’ I/Os to be queued and served are fairly simi-
lar in ReiserFS and XFS. However, Figure 14 (B) de-
notes that XFS’ I/Os are executed slower than those of
ReiserFS. A further analysis is needed to explain this be-
havior. In general, file systems allocate blocks on disk
differently, thus, resulting in a different execution time
for I/Os. For this reason, we perform an analysis on the
disk seeks. Based on the results shown in Figure 14 (C),
we find that long distance disk seeks on XFS cause high
overhead and reduce its I/O performance. Note that in

10

Figure 15: Extra data written into disk under the same
workload from JFS (guest).

Figure 14 (C), the x-axis is represented as a normalized
seek distance and1 denotes the longest seek distance of
the disk head, from one end to the other end of the parti-
tion.

With respect to the case of one host file system allo-
cates disk blocks more effectively than another under the
same workload, we analyze the mechanisms to allocate
disk blocks of ReiserFS and XFS and find that XFS in-
duces an overhead because of a multiple journal logging.
The detailed explanations are as follows:

A multiple logging mechanism of metadata also incurs
an overhead on XFS. Basically, XFS is able to record
multiple separate changes occurred on the metadata of a
single file and store them into journal logs. This tech-
nique effectively avoids such changes to be flushed into
disk before another new change will be logged. How-
ever, every change of metadata can be range from 256
Bytes to 2 KB in size, while the default size of the log
buffer is only 32 KB. Under an intensive write dominated
workload, this small log buffer causes multiple changes
of the file metadata to be frequently logged. As shown
in Figure 15, this repeatedly logging produces extra data
written into disk, thus, resulting in a performance loss.

Remarks: (1) An effective block allocation of one
particular file system no longer guarantees a high per-
formance when it runs on top of another file system. (2)
Under an intensive write dominated workload, an update
of journal logs on disk should be carefully considered to
avoid performance degradation. Especially for XFS, the
majority of its performance loss is attributed to not only a
placement of journal logs, but also a technique to handle
updates of these logs.

5 Discussion
Despite various practical benefits in using nested file sys-
tems in a virtualized environment, our experiments have
shown the associated performance overhead to be signifi-
cant if not configured properly. Here we offer five advice
on choosing theright guest/host file system configura-
tions to minimize performance degradation, or in some
cases, even improve performance.

Figure 16: (hypervisor level) Extra data written into disk
under a write-dominated workload from guest VM.

Advice 1 For workloads that are read-dominated (both
sequential and random), using nested file systems has
minimal impact on I/O throughput, independent of guest
and host file systems. For workloads that have a signifi-
cant amount of sequential reads, nested file systems can
even improve throughput due to the readahead mecha-
nism at the host level.

Advice 2 On the other hand, for workloads that are
write-dominated, one should avoid using nested file sys-
tems in general due to i) one more layer to pass through
and ii) additional metadata update operations. If one
must use nested file systems, journaled file systems in the
host should be avoided. Journaling of both metadata and
data can cause significant performance degradation, and
therefore, is not practical to use for most workloads, and
if only metadata is journaled, a crash can corrupt a VM
image file easily, thus, giving no benefit to metadata-only
journaling mode in the host. As shown in Figure 16, the
additional metadata writes to the journal log can result in
significantly more I/O traffic. Performance is even more
impacted if the location of the log is placed far away from
either the metadata or the data locations.

Advice 3 For workloads that are sensitive to I/O la-
tency, one should also avoid using nested file systems.
As shown in Figure 6, even in the best case scenarios,
nested file systems could increase I/O latency by 10-30%
due to having an additional layer of file system to traverse
and one more I/O queue to wait for.

Advice 4 In a nested file system, data and metadata
placement decisions are made twice, first in the guest file
system and then in the host file system. Guest file system
uses various temporal and spatial heuristics to place re-
lated metadata and data blocks close to each other. How-
ever, when these placement decisions reach the host file
system, it can no longer differentiate between data and
metadata and treats everything as data. As a result, the
secondary data placement decisions made by a host file
system are both unnecessary and less efficient than those
made by a guest file system. Ideally, the host file sys-
tem should simply act as a pass-through layer such as
VirtFS [22].

11

Advice 5 In our experiments, we used the default set of
formatting and mounting parameters in all the file sys-
tems. However, just like in a non-virtualized environ-
ment, these parameters can be tuned to improve perfor-
mance. There are more benefits in tuning the host file
system’s parameters than guest’s as it is ultimately the
layer that communicates with the storage device.

One should tune its parameters in such a way that the
host file system most resembles a “dumb” disk. For ex-
ample, when a disk is instructed to read a small disk
block, it will actually read the entire track or cylinder
and keep them in its internal cache to minimize mechan-
ical movement for future I/O requests. A host file system
can emulate this behavior by using larger block sizes.

Metadata operations at host file system is another
source of overhead. When a VM image file is accessed
or modified, its metadata often has to be modified, thus,
causing additional I/O load. Parameters such asnoat-
ime and nodiratime can be used to avoid updating the
last access time without losing any useful information.
However, when the image file is modified, there is no
option to avoid updating the metadata. As the image file
will stay constant in size and ownership, the only field in
the metadata that needs to be updated is the last modi-
fied time, which for an image file is just pure overhead.
Perhaps this can be implemented as a file system mount
option. Note that journaling, as mentioned previously, in
the metadata-only mode has very little usage in the host
level.

Lastly, using more advanced file system features to
configure block groups and B+ trees to perform intelli-
gent data allocation and balancing tasks will most likely
be counter-productive. This is because these features will
cause guest file system’s view of disk layout to deviate
further from the reality.

6 Conclusion

Our main objective is to better understand performance
implications when file systems are nested in a virtual-
ized environment. The major finding is that the choice
of nested file systems on both hypervisor and guest lev-
els has a significant performance impact on I/O perfor-
mance. Traditionally, a guest file system is chosen based
on the anticipated workload, regardless of the host file
system. By examining a large set of different combina-
tions of host and guest file systems under various work-
loads, we have demonstrated the significant dependency
of the two layers on performance, and hence, system ad-
ministrators must be careful in choosingboth file systems
in order to reap the greatest benefit from virtualization.
In particular, if workloads are sensitive to I/O latency,
nested file systems should be avoided or host file sys-
tems should simply perform as a pass-through layer in

certain cases.
The intricate interactions between host and guest file

systems represent an exciting and challenging optimiza-
tion space for improving I/O performance in virtualized
environments. Our preliminary investigation on nested
file systems will help researchers to better understand
critical performance issues in this area, and shed light on
finding more efficient methods in utilizing virtual stor-
age. We hope that our work will motivate system design-
ers to more carefully analyze the performance gap at the
real and virtual boundaries.

Acknowledgements

We are grateful to the anonymous referees and our shep-
herd, Andrea Arpaci-Dusseau, for their detailed feed-
back and guidance. This work was partially supported
by NSF grant 0901537 and ARO grant W911NF-11-1-
0149.

References

[1] Amazon Elastic Compute Cloud - EC2.http://aws.
amazon.com/ec2/ [Accessed: Sep 2011].

[2] blktrace - generate traces of the I/O traffic on block
devices. git://git.kernel.org/pub/scm/
linux/kernel/git/axboe/blktrace.gitbt
[Accessed: Sep 2011].

[3] Filebench.www.solarisinternals.com/wiki/
index.php/FileBench [Accessed: Sep 2011].

[4] FIO - Flexible I/O Tester. http://freshmeat.
net/projects/fio [Accessed: Sep 2011].

[5] IBM Ccloud Computing. http://www.ibm.com/
ibm/cloud/ [Accessed: Sep 2011].

[6] Nested svm virtualization for kvm. http:
//avikivity.blogspot.com/2008/09/
nested-svm-virtualization-for-kvm.
html [Accessed: Sep 2011].

[7] The QCOW2 Image Format. http://people.
gnome.org/ ˜ markmc/qcow-image-format.
html [Accessed: Sep 2011].

[8] VirtualBox VDI. http://forums.virtualbox.
org/viewtopic.php?t=8046 [Accessed: Sep
2011].

[9] VMware Tools for Linux Guests. http:
//www.vmware.com/support/ws5/doc/
ws_newguest_tools_linux.html [Accessed:
Sep 2011].

[10] VMWare Virtual Disk Format 1.1. http:
//www.vmware.com/technical-resources/
interfaces/vmdk.html [Accessed: Sep 2011].

[11] Window Azure - Microsoft’s Cloud Services
Platform. http://www.microsoft.com/
windowsazure/ [Accessed: Sep 2011].

[12] Xen Hypervisor Source. http://xen.org/
products/xen_archives.html [Accessed: Sep
2011].

12

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

 0

 1

 2

 3

 4

BD

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Ext2 Ext3 Ext4 ReiserFS XFS JFS
 0

 20

 40

 60

 80

 100

 120

 140

P
e

rc
e

n
ta

g
e

 (
%

)

ReiserFS

XEN hypervisor VMWare hypervisor

Figure 17: Other hypervisors show variation of relativeI/O throughput of guest file systems under database workload
(higher is better)

[13] Xen source - progressive paravirtulization.
http://xen.org/files/summit_3/
xen-pv-drivers.pdf [Accessed: Sep 2011].

[14] F. Bellard. QEMU, a fast and portable dynamic transla-
tor. In USENIX ATC’05, April 2005.

[15] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The Turtles Project: Design and Imple-
mentation of Nested Virtualization. InUSENIX OSDI’10,
October 2010.

[16] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Lip-
tak, R. Rangaswami, and V. Hristidis. BORG: Block-
reORGanization for Self-optimizing Storage Systems. In
USENIX FAST’09, February 2009.

[17] D. Boutcher and A. Chandra. Does virtualization make
disk scheduling passé? InUSENIX HotStorage’09, Oc-
tober 2009.

[18] L. Cherkasova, D. Gupta, and A. Vahdat. When virtual
is harder than real: Resource allocation challenges in vir-
tual machine based IT environments, Feburary 2007.

[19] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time
(bvt) scheduling: supporting latency-sensitive threads in
a general-purpose scheduler. InProceedings of the seven-
teenth ACM symposium on Operating systems principles,
SOSP ’99, Charleston, SC, USA, 1999.

[20] H. Huang, W. Hung, and K. G. Shin. FS2: dynamic data
replication in free disk space for improving disk perfor-
mance and energy consumption. InProceedings of the
twentieth ACM symposium on Operating systems princi-
ples, SOSP ’05, Brighton, United Kingdom, 2005.

[21] K. Huynh and S. Hajnoczi. KVM/QEMU Storage Stack
Performance Discussion. InProposals of Linux Plumbers
Conference, Cambridge, MA, USA, November 2010.

[22] V. Jujjuri, E. V. Hensbergen, and A. Liguori. VirtFS - A
virtualization aware File System pass-through. InPro-
ceedings of the Ottawa Linux Symposium, 2010.

[23] M. Kesavan, A. Gavrilovska, and K. Schwan. On
Disk I/O Scheduling in Virtual Machines. InUSENIX
WIOV’10, Pittsburgh, PA, USA, March 2010.

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the linux virtual machine monitor. InProceedings
of the Linux Symposium, 2007.

[25] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling I/O
in virtual machine monitors. InProceedings of the
fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’08, Seattle,
WA, USA, 2008.

[26] R. Russell. virtio: towards a de-facto standard for vir-
tual I/O devices.SIGOPS Oper. Syst. Rev., 42(5):95–103,
2008.

[27] S. R. Seelam and P. J. Teller. Virtual I/O scheduler: a
scheduler of schedulers for performance virtualization.
In ACM VEE’07, June 2007.

[28] P. J. Shenoy and H. M. Vin. Cello: A Disk Scheduling
Framework for Next Generation Operating Systems. In
Proceedings of ACM SIGMETRICS Conference, 1997.

[29] S. Sivathanu, L. Liu, M. Yiduo, and X. Pu. Storage Man-
agement in Virtualized Cloud Environment.IEEE Cloud
Computing’10, 2010.

[30] K. Suzaki, T. Yagi, K. Iijima, N. A. Quynh, and Y. Watan-
abe. Effect of readahead and file system block realloca-
tion for lbcas. InProceedings of the Linux Symposium,
July 2009.

[31] C. Tang. Fvd: a high-performance virtual machine
image format for cloud. InProceedings of the 2011
USENIX conference on USENIX annual technical con-
ference, Portland, OR, 2011.

[32] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman. On
the DMA mapping problem in direct device assignment.
In SYSTOR’10: The 3rd Annual Haifa Experimental Sys-
tems Conference, Haifa, Israel, May 2010.

Appendix

We have conducted experiments with the database work-
load to verify if the I/O performance of nested file sys-
tems is hypervisor-dependent. The chosen hypervisors
are architecturally akin to KVM, such as VMware Player
3.1.4 with guest tools [9], and Xen 4.0 with Xen para-
virtualized device drivers [12]. Figure 17 shows that the
I/O performance variations of guest file systems on Xen
and VMware are fairly similar to those on KVM.

13

