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Abstract

Conventional wisdom holds that storage is not a big con-

tributor to application performance on mobile devices.

Flash storage (the type most commonly used today) draws

little power, and its performance is thought to exceed that

of the network subsystem. In this paper we present ev-

idence that storage performance does indeed affect the

performance of several common applications such as web

browsing, Maps, application install, email, and Facebook.

For several Android smartphones, we find that just by

varying the underlying flash storage, performance over

WiFi can typically vary between 100% to 300% across ap-

plications; in one extreme scenario the variation jumped

to over 2000%. We identify the reasons for the strong cor-

relation between storage and application performance to

be a combination of poor flash device performance, ran-

dom I/O from application databases, and heavy-handed

use of synchronous writes; based on our findings we im-

plement and evaluate a set of pilot solutions to address

the storage performance deficiencies in smartphones.

1 Introduction
Mobile phones, tablets, and ultra-portable laptops are no

longer viewed as the wimpy siblings of the personal com-

puter; for many users they have become the dominant

computing device for a wide variety of applications. Ac-

cording to a recent Gartner report, within the next three

years, mobile devices will surpass the PC as the most

common web access device worldwide [38]. By 2013,

over 40% of the enhanced phone installed-base will be

equipped with advanced browsers [57].

Research pertaining to mobile devices can be broadly

split into applications and services, device architecture,

and operating systems. From a systems perspective, re-

search has tackled many important aspects: understanding

and improving energy management [36, 59, 26], network

middleware [53], application execution models [30, 29],

security and privacy [25, 32, 34, 39], and usability [27].

Prior research has also addressed several important issues

centered around mobile functionality [55, 65], data man-

agement [66], and disconnected access [49, 37]. However,

one important component is conspicuously missing from

the mobile research landscape – storage performance.

∗Work done as an intern, now at Georgia Institute of Technology
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Figure 1: Peak throughput of wireless networks. Trends

for local and wide-area wireless networks over past three

decades; y-axis is log base 2.

Storage has traditionally not been viewed as a criti-

cal component of phones, tablets, and PDAs – at least

in terms of the expected performance. Despite the impe-

tus to provide faster mobile access to content locally [40]

and through cloud services [61], performance of the un-

derlying storage subsystem on mobile devices is not well

understood. Our work started with a simple motivating

question: does storage affect the performance of popular

mobile applications? Conventional wisdom suggests the

answer to be no, as long as storage performance exceeds

that of the network subsystem. We find evidence to the

contrary – even interactive applications like web brows-

ing slow down with slower storage.

Storage performance on mobile devices is important

for end-user experience today, and its impact is expected

to grow due to several reasons. First, emerging wireless

technologies such as 802.11n (600 Mbps peak through-

put) [68] and 802.11ad (or “60 GHz”, 7 Gbps peak

throughput) offer the potential for significantly higher net-

work throughput to mobile devices [41]. Figure 1 presents

the trends for network performance over the last sev-

eral decades; local-area networks are not necessarily the

de-facto bottleneck on modern mobile devices. Second,

while network throughput is increasing phenomenally, la-

tency is not [62]. As a result, access to several cloud

services benefits from a split of functionality between the

cloud and the device [29], placing a greater burden on lo-

cal resources including storage [51]. Third, mobile de-
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vices are increasingly being used as the primary comput-

ing device, running more performance intensive tasks than

previously imagined. Smartphone usage is on the rise;

smartphones and tablet computers are becoming a popular

replacement for laptops [23]. In developing economies, a

mobile/enhanced phone is often the only computing de-

vice available to a user for a variety of needs.

In this paper, we present a detailed analysis of the I/O

behavior of mobile applications on Android-based smart-

phones and flash storage drives. We particularly focus on

popular applications used by the majority of mobile users,

such as, web browsing, app install, Google Maps, Face-

book, and email. Not only are these activities available

on almost all smartphones, but they are done frequently

enough that performance problems with them negatively

impacts user experience. Further, we provide pilot solu-

tions to overcome existing limitations.

To perform our analysis, we build a measurement in-

frastructure for Android consisting of generic firmware

changes and a custom Linux kernel modified to provide

resource usage information. We also develop novel tech-

niques to enable detailed, automated, and repeatable mea-

surements on the internal and external smartphone flash

storage, and with different network configurations that are

otherwise not possible with the stock setup; for automated

testing with GUI-based applications, we develop a bench-

mark harness using MonkeyRunner [16].

In our initial efforts, we propose and develop a set of pi-

lot solutions that improve the performance of the storage

subsystem and consequently mobile applications. Within

the context of our Android environment, we investigate

the benefits of employing a small amount of phase-change

memory to store performance critical data, a RAID driver

encompassing the internal flash and external SD card, us-

ing a log-structured file system for storing the SQLite

databases, and changes to the SQLite fsync codepath.

We find that changes to the storage subsystem can sig-

nificantly improve user experience; our pilot solutions

demonstrate possible benefits and serve as references for

deployable solutions in the future.

As the popularity of Android-based devices surges, the

setup we have examined reflects an increasingly relevant

software and hardware stack used by hundreds of millions

of users worldwide; understanding and improving the

experience of mobile users is thus a relevant research

thrust for the storage community. Through our analysis

and design we make several observations:

Storage affects application performance: often in

unanticipated ways, storage affects performance of

applications that are traditionally thought of as CPU or

network bound. For example, we found web browsing

to be severely affected by the choice of the underlying

storage; just by varying the underlying flash storage,

performance of web browsing over WiFi varied by 187%

and over a faster network (setup over USB) by 220%. In

the case of a particularly poor flash device, the variation

exceeded 2000% for WiFi and 2450% for USB.

Speed class considered irrelevant: our benchmarking

reveals that the “speed class” marking on SD cards is

not necessarily indicative of application performance;

although the class rating is meant for sequential perfor-

mance, we find several cases in which higher-grade SD

cards performed worse than lower-grade ones overall.

Slower storage consumes more CPU: we observe

higher total CPU consumption for the same application

when using slower cards; the reason can be attributed to

deficiencies in either the network subsystem, the storage

subsystem, or both. Unless resolved, lower performing

storage not only makes the application run slower, it also

increases the energy consumption of the device.

Application knowledge ensues efficient solutions:

leveraging a small amount of domain or application

knowledge provides efficiency, such as in the case of our

pilot solutions; hardware and software solutions can both

benefit from a better understanding of how applications

are using the underlying storage.

The contributions of this paper are threefold. First, we

describe our measurement infrastructure that enables cus-

tom setup of the firmware and software stack on Android-

devices to perform in-depth I/O analysis; along with the

systems software, we contribute a set of benchmarks that

automate several popular GUI-based applications. Sec-

ond, we present a detailed analysis of storage performance

on real Android smartphones and flash devices; to the

best of our knowledge, no such study currently exists in

the research literature. We find a strong correlation be-

tween storage and performance of common applications

and contribute all our research findings. Third, we pro-

pose and evaluate pilot solutions to address the perfor-

mance issues on mobile devices.

Based on our experimental findings and observations

we believe improvements in the mobile storage stack can

be made along multiple dimensions to keep up with the

increasing demands placed on mobile devices. Storage

device improvements alone can account for significant

improvements to application performance. Device man-

ufacturers are actively looking to bring faster devices to

the mobile market; Samsung announced the launch of a

PCM-based multi-chip package for mobile handsets [60].

Mobile I/O and memory bus technology needs to evolve

as well to sustain higher throughput to the devices. Limi-

tations in the systems software stack can however prevent

applications from realizing the full potential of hardware

improvements; we believe changes are also warranted in

the mobile software stack to complement the hardware.
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Figure 2: Android Architecture. Figure 3: Overview of Android’s Storage Schema.

Partition Function Size and Type

misc Miscellaneous system settings (e.g., Carrier ID, USB config, hardware settings, IMEI number);

persistent shared space for OS and bootloader to communicate

896 KB

recovery Alternative boot-into-recovery partition for advanced recovery and maintenance ops 4 MB, rootfs

boot Enables the phone to boot, includes the bootloader and kernel/initrd 3.5 MB, rootfs

system Contains remaining OS, pre-installed system apps, and user interface; typically read-only 145 MB, yaffs2

cache Android can use it to stage and apply “over the air” updates; holds system images 95 MB, yaffs2

data Stores user data (e.g., contacts, messages, settings) and installed applications; SQLite database

containing app data also stored here. Factory reset wipes this partition

196 MB, yaffs2

sdcard External SD card partition to store media, documents, backup files etc multi-GB, FAT32

sd-ext Additional partition on SD card that can act as data partition, setup is possible through a

custom ROM and data2SD software; non-standard Android partition

Varies

Table 1: Data storage partitions for Android. Partitions on internal flash and external SD card for Nexus One phone.

2 Mobile Device Overview

2.1 Android Overview

We present a brief overview of Android as it pertains to

our storage analysis and development. Figure 2 shows a

simplified Android stack consisting of flash storage, oper-

ating system and Java middleware, and applications; the

OS itself is based on Linux and contains low-level drivers

(e.g., flash memory, network, and power management),

Dalvik virtual machine for application isolation and mem-

ory management, several libraries (e.g., SQLite, libc), and

an application framework for development of new appli-

cations using system services and hardware.

The Dalvik VM is a fast register-based VM provid-

ing a small memory footprint; each application runs as

its own process, with its own instance of the Dalvik VM.

Android also supports “true” multitasking and several ap-

plications run as background processes; processes con-

tinue running in the background when user leaves an ap-

plication (e.g., a browser downloading web pages). An-

droid’s web browser is based on the open-source WebKit

engine [4]; details on Android architecture and develop-

ment can be found on the developer website [2].

2.2 Android Storage Subsystem

Most mobile devices are provisioned with an internal flash

storage, an external SD card slot, and a limited amount of

RAM. In addition, some devices (e.g., LG G2X phone)

also have a non-removable SD partition inside the phone;

such storage is still treated as external.

Figure 3 shows the internal raw NAND and external

flash storage on the Google Nexus One phone. The inter-

nal flash storage contains all the important system parti-

tions, including partitions for the bootloader and kernel,

recovery, system settings, pre-installed system applica-

tions, and user-installed application data. The external

storage is primarily used for storing user content such as

media files (i.e., songs, movies, and photographs), docu-

ments, and backup images. Table 1 presents the function-

ality of the partitions in detail; this storage setup is fairly

typical across Android devices.

Applications can store configuration and data on the de-

vice’s internal storage as well as on the external SD card.

Android uses SQLite [22] database as the primary means

for storage of structured data. SQLite is a transactional

database engine that is lightweight, occupying a small

amount of disk storage and memory; it is thus popular

on embedded and mobile operating systems. Applications

are provided a well defined interface to create, query, and
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manage their databases; one or more SQLite databases are

stored per application on /data.

The YAFFS2 [52] file system managing raw NAND

flash was traditionally the file system of choice for the var-

ious internal partitions including /system and /data;

it is lightweight and optimized for flash storage. Recently,

Android transitioned to Ext4 as the default file system

for these partitions [64]. Android provides a filesystem-

like interface to access the external storage as well, with

FAT32 as the commonly used file system on SD cards for

compatibility reasons.

We believe the storage architecture described in this

section is similar for other mobile operating systems as

well; for example, Apple’s iOS also uses SQLite to store

application data. iOS Core Data is a data model frame-

work built on top of SQLite; it provides applications ac-

cess to common functionality such as save, restore, undo

and redo. iOS 4 does not have a central file storage ar-

chitecture, rather every file is stored within the context

of an application. We focus on Android, since it allows

systems-level development.

3 Android Measurement Setup
Since setting up smartphones for systems analysis and de-

velopment is non-trivial, we describe our process here in

detail; we believe this setup can be useful for someone

conducting storage research on Android devices.

3.1 Mobile Device Setup
In this paper we present results for experiments on the

Google Nexus One phone [12]. We also performed the

same or a subset of experiments on the HTC Desire [13],

LG G2X [15], and HTC EVO [14]; the results were simi-

lar and are omitted to save space.

The Nexus One is a GSM phone with a 1 GHz

Qualcomm QSD8250 Snapdragon processor, 512 MB

RAM, and 512 MB internal flash storage; the phone is

running Android Gingerbread 2.3.4, the CyanogenMod

7.1.0 firmware [10] or the Android Open Source Project

(AOSP) [3] distribution (as needed), and a Linux kernel

2.6.35.7 modified to provide resource usage information.

We present a brief description of the generic OS cus-

tomizations, which are fairly typical, and then explain the

storage-specific customization later in this section.

In order to prepare the phones for our experiments, we

setup the Android Debug Bridge (ADB) [1] on a Linux

machine running Ubuntu 10.10. ADB is a command-line

tool provided as part of Android developer platform tools

that lets a host computer communicate with an Android

device; the target device needs to be connected to the host

via USB (in the USB debugging mode) or via TCP/IP. We

subsequently root the device with unrevoked3 [20] to flash

a custom recovery image (ClockworkMod [7]).

For our experiments we needed to bypass some of

the constraints of the stock firmware; in particular, we

needed support for reverse tethering the mobile device

via USB, the ability to custom partition the storage, and

access to a wider range of system tools and Linux util-

ities for development. For example, BusyBox [6] is a

software application that provides many of the standard

Linux tools within a single executable, ideal for an em-

bedded device. CyanogenMod [10] is a custom firmware

that provides these capabilities and is supported on a vari-

ety of smartphones. The Android Open Source Project

(AOSP) [3] distribution provides capabilities similar to

CyanogenMod but is supported only on a handful of

Google-smartphones, including the Google Nexus One.

We used the CyanogenMod distribution for all exper-

iments on non-Nexus phones, and for experiments that

require comparison between a non-Nexus and the Nexus

One phone (not shown in this paper). All Google Nexus

One results presented in this paper exclusively use AOSP;

we equipped both CyanogenMod and AOSP distributions

with our measurement-centric customizations.

An important requirement, specific to our storage ex-

periments, is to be able to compare and contrast applica-

tion performance on different storage devices. Some of

these applications heavily use the internal non-removable

storage. In order to observe and measure all I/O activity,

we change Android’sinit process to mount the different

internal partitions on the external storage. Our approach

is similar to the one taken by Data2SD [19]; in addition,

we were able to also migrate to the SD card the /system

and /cache partitions.

In order to adhere to Android’s boot-time compatibil-

ity tests, we provided a 256 MB FAT32 partition at the

beginning of the SD card, mounted as /sdcard. The

/system, /cache, and /data partitions were format-

ted as Ext3; at the time we conducted our experiments,

YAFFS2 and Ext3 were the pre-installed file systems on

our test phones. We performed a preliminary compari-

son between Ext3 and Ext4 since Android announced the

switch to Ext4 [64], but found the performance differ-

ences to be minor; a detailed comparison across several

file systems can provide more useful data in the future.

Note that this setup is not normally used by end-users

but allows us to run what-if scenarios with storage devices

of different performance characteristics; the internal flash

represents only a single data point in this set.

As part of our experiments, we want to understand the

impact of storage on application performance under cur-

rent WiFi networks, as well as under faster network con-

nectivity (likely to be available in the future). For WiFi,

we set up a dedicated wireless access point (IEEE 802.11

b/g) on a Dell laptop having 2GB RAM and an Intel Core2

processor. Since we do not have a faster wireless network

on the phone, we emulate one by reverse tethering [21] it

over the miniUSB cable connection with the same laptop
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N/W Rx Tx

USB 8.04 7.14

WiFi 1.10 0.53

Table 2: Network

Performance.

Transfer rates for

WiFi and USB

reverse tether link

with iperf (MB/s).

SD Card Speed Cost Performance on desktop (MB/s) Performance on phone (MB/s)

(16 GB) Class US$ Sq W Sq R Rn W Rn R Sq W Sq R Rn W Rn R

Transcend 2 26 4.16 18.03 1.18 2.57 4.35 13.52 1.38 2.92

RiData 2 27 7.93 16.29 0.02 2.15 5.86 11.51 0.03 2.76

Sandisk 4 23 5.48 12.94 0.68 1.06 4.93 8.44 0.67 0.73

Kingston 4 25 4.92 16.93 0.01 1.68 4.56 9.84 0.01 1.94

Wintec 6 25 15.05 16.34 0.01 3.15 9.91 13.38 0.01 3.82

A-Data 6 30 10.78 17.77 0.01 2.97 8.93 13.49 0.01 3.64

Patriot 10 29 10.54 17.67 0.01 2.96 8.83 13.38 0.01 3.72

PNY 10 29 15.31 17.90 0.01 3.56 10.28 14.02 0.01 3.95

Table 3: Raw device performance and cost. Measurements on Desktop with card reader

(left) and on actual phone (right). “Sq” is sequential and “Rn” is random performance.

(allowing the device to access the internet connection of

the host); Table 2 shows the measured performance of our

WiFi and USB RT link using iperf [46].

To minimize variability due to network connections

and dynamic content, we setup a local web server run-

ning Apache on the laptop. The webserver downloads the

web pages that are to be visited during an experiment and

caches them in memory; where available, we download

the mobile friendly version of a web site.

We conducted all experiments on the internal non-

removable flash storage and eight removable microSDHC

cards, two each from the different SD speed classes [17].

Table 3 lists the SD cards along with their specifica-

tions and a baseline performance measurement done on

a Transcend TS-RDP8K card reader1 using the CrystalD-

iskMark benchmark V3.0.1 [9] (shown on the left side).

The total amount of data written is 100 MB, random I/O

size is 4KB, and we report average performance over 3

runs; observed standard deviation is low and we omit it

from the table. Prices shown are as ordered from Ama-

zon.com and its resellers, and Buy.com (to be treated as

approximate). We also performed similar benchmarking

experiments for the eight cards on the Nexus One phone

itself, using our own benchmark program. Testing con-

figuration is as before with 4KB random I/O size and 128

MB of sequential I/O; results in Table 3 (shown on the

right side) exhibit a similar trend albeit lower performance

than for desktop.

To summarize, read performance of the different cards

is not a crucial differentiating factor and much better over-

all than the write performance. Sequential reads clearly

show little or no correlation with the speed class; sequen-

tial write performance roughly improves with speed class,

but with enough exceptions to not qualify as monotonic.

Random read performance is not significantly different

across the cards. The most surprising finding is for ran-

dom writes: most if not all exhibit abysmal performance

(0.02 MB/s or less!); even when sequential write perfor-

mance quadruples (e.g., Transcend versus Wintec), ran-

dom writes perform several orders of magnitude worse.

1 Note that internal flash could not be measured this way.

In terms of overall write performance including ran-

dom and sequential, Kingston consistently performs the

worst and tends to considerably skew the results; we try

not to rely on Kingston results alone when making a claim

about storage performance. In practice, we find that ap-

plication performance varies even with the other better

cards. Transcend performs the best for random writes, by

as much as a factor of 100 compared to many cards, but

performs the worst for sequential writes; Sandisk shows a

similar trend. A-Data, Patriot, Wintec, and PNY perform

poorly for random, but give very good sequential perfor-

mance. Kingston and RiData suffer on both counts as they

not only have poor random write performance, but also

mediocre sequential write performance (shown in bold in

Table 3); appliation-level measurements in §4 reflect the

consequences of the poor microbenchmark results.

3.2 Measurement Software
We first explain our measurement environment and the

changes introduced to collect performance statistics: (1)

We made small changes to the microSD card driver to

allow us to check “busyness” of the storage device by

polling the status of the /proc/storage usage file.

(2) We wrote a background monitoring tool (Monitor)

to periodically read the proc file system and store sum-

mary information to a log file; the log file is written to

the internal /cache partition to avoid influencing the SD

card performance. CPU, memory, storage, and network

utilization information is obtained from /proc/stat,

/proc/meminfo, /proc/storage usage (busy-

ness) and /proc/diskstats, and /proc/net/dev

respectively. (3) We use blktrace [5] to collect block-

level traces for device I/O.

In order to ascertain the overheads of our instrumen-

tation, we conducted experiments with and without the

measurement environment; we found that our changes in-

troduce an overhead of less than 2% in total runtime.

Since many popular mobile applications are interactive,

we needed a technique to execute these applications in a

representative and reproducible manner; for this purpose

we used the MonkeyRunner [16] tool to automate the ex-

ecution of interactive applications. Our MonkeyRunner

5



App Name Size App Name Size

(Install) (MB) (Launch) (MB)

YouTube 1.95 AngryBird 18.65

Google Maps 6.65 SnowBoard 23.54

Facebook 2.96 Weather 2.60

Pandora 1.22 Imdb 1.38

Google Sky Map 2.16 Books 1.05

Angry Birds 18.65 Gallery 0.58

Music Download 0.70 Gmail 2.14

Angry Birds Rio 17.44 GasBuddy 1.88

Words With Friends 3.75 Twitter 1.36

Advanced Task Killer 0.10 YouTube 0.80

Table 4: Apps for Install and Launch from Android

Market. Install: top Apps in Aug 2011, total size 55.58 MB,

avg size 5.56 MB; Launch: 10 apps launched individually.

setup consists of a number of small programs put together

to facilitate benchmarking with the necessary application;

we illustrate the methodology next.

First, we start the Monitor tool to collect resource uti-

lization information and note its PID. Second, we start

the application under test using MonkeyRunner which de-

fines “button actions” to emulate pressing of various keys

on the device’s touchscreen, for example, browsing for-

ward and backward, zooming in and out with the touch-

screen pinch, and clicking on screen to change display

options. Third, while the various button actions are be-

ing performed, CPU usage is tracked in order to automat-

ically determine the end of an interactive action. A class

function UntilIdle() that we wrote is called from the

MonkeyRunner script to detect the execution status of an

app; it determines idle status using a specified low CPU

threshold and the minimum time the app needs to stay

below the threshold to qualify as idle. Fourth, once the

sequence of actions is completed, we perform necessary

cleanup actions and return to the default home screen.

Fifth, the Monitor tool is stopped and the resource usage

data is dumped to the host computer. Similar scripts are

used to reset the phone to a known state in order to repeat

the experiment (to compute mean and deviation).

3.3 Application Benchmarks

We now describe the Android apps that we use to assess

the impact of storage on application performance; we au-

tomate a variety of popular and frequently used mobile

apps to serve as benchmarks.

WebBench: is a custom benchmark program we

wrote to measure web browsing performance in a non-

interactive manner; it is based on the standard WebView

Java Class provided by Android. WebBench visits a pre-

configured set of web sites one after the other and re-

ports the total elapsed time for loading the web pages.

In order to accurately measure the completion time, we

made use of the public method of WebView class named

onProgressChanged(); when a web page is fully

loaded, WebBench starts loading the next web page on

the list. We ran WebBench to visit the top 50 web sites

according to a recent ranking [8].

AppInstall: installs a set of top 10 Android apps on

Google Android Market (listed in Table 4 on the left),

successively, using the adb install command. App

installation is an important and frequently performed ac-

tivity on smartphones; each application on the phone once

installed is typically updated several times during subse-

quent usage. In addition, often times a user needs to per-

form the install “on the go” based on location or situa-

tional requirements; for example, installing the IKEA app

while shopping for furniture, or the GasBuddy app, when

looking to refuel.

AppLaunch: launches a set of 10 Android apps using

MonkeyRunner listed in Table 4 on the right; the apps are

chosen to cover a variety of usage scenarios: games (An-

gryBird and SnowBoard) take relatively longer to load,

read traffic to storage dominates. Weather and GasBuddy

apps download and show real-time information from re-

mote servers, i.e., network traffic is high. Gmail and

Twitter apps download and store data to local database,

i.e., both network and storage traffic is high. Books and

gallery apps scan the local storage and display the list of

contents, i.e., read to storage dominates. Imdb has no

storage or network traffic due to web cache hits, while

YouTube launch is network intensive.

Facebook: uses the Facebook for Android application;

each run constitutes the following steps: (a) sign into the

author’s Facebook account (b) load the news feed dis-

played initially on the phone screen (c) “drag” the screen

five times to load more feed data (d) sign out.

Google Maps: uses the Google Maps for Android ap-

plication; each run constitutes the following steps: (a)

open the Maps application (b) enter origin and destina-

tion addresses, and get directions (c) zoom into the map

nine times successively (d) switch from “map” mode to

“satellite ” mode (e) close application.

Email: uses the native email app in Android; each run

constitutes the following steps: (a) open the app, (b) input

account information, (c) wait until a list of received emails

appears, and (d) close the application.

RLBench [56]: a synthetic benchmark app that gener-

ates a pre-defined number of various SQL queries to test

SQLite performance on Android.

Pulse News [24]: a popular reader app that fetches

news articles from a number of websites and stores them

locally. Our benchmark consists of the following steps:

(a) open Pulse app, (b) wait until news fetching process

completes, and (c) close the app.

Background: another popular usage scenario is con-

current execution of two or more applications (Android

and iOS are both multi-threaded); several apps run in the

background to periodically “sync” data with a remote ser-
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Figure 4: Runtimes for WebBench on Google Nexus One. Runtime for

WebBench for SD cards and internal flash; each bar represents average over three

trials with standard deviation; lighter bar is over WiFi, darker one for USB RT.

Activity Write (MB) Read (MB)

Sq Rn Sq Rn

WebBench 41.3 32.2 6.8 0.5

AppInstall 123.1 5.6 0.7 0.1

Email 1.0 2.2 1.1 0.1

Maps 0.2 0.3 0 0

Facebook 2.0 3.1 0 0

RLBench 25.6 16.8 0 0

Pulse 2.6 1.0 0 0

Table 5: I/O Activity Breakdown. Ag-

gregate seq. and random, writes and reads

during benchmark; note moderate to high

rand:seq write ratios for WebBench, Email,

Maps, Facebook, and low for AppInstall.

Zero value means no activity during run.
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Figure 5: Runtimes for popular applications. Similar to Fig 4 but for several other apps on WiFi only; I: Internal, T: Tran-

scend, R: RiData, S: Sandisk, K: Kingston, W: Wintec, A: AData, P: Patriot, Y: PNY. Some graphs are plotted with a discontinuous

y-axis to preserve clarity of the figure in presence of outliers like Kingston.

vice or to provide proactive notifications. Our benchmark

consists of the following set of apps in auto sync mode:

Twitter, books, contacts, Gmail, Picasa, and calendar, and

a set of active widgets: Pulse, news, weather, YouTube,

calendar, Facebook, Market, and Twitter.

For many of the above benchmarks (e.g., Facebook,

Email, Pulse, Background), the actual contents and

amount of data can vary across runs; we measure the total

amount of data transferred and normalize the results per

Megabyte. We also repeat the experiment several times to

measure variations; for multiple iterations, the local appli-

cation cache is deleted following each run.

4 Performance Evaluation
In this section we present detailed measurement results

for application runtime performance, application launch

times, concurrent app execution, and CPU consumption.

4.1 Application Runtime Performance

The first set of experiments compare the performance of

WebBench on internal flash and the eight SD cards de-

scribed earlier. Figure 4 shows the runtime of WebBench

for WiFi and USB reverse tethering.

Surprisingly, even with WiFi, we notice a 187% perfor-

mance difference between the internal flash and RiData;

for Kingston, the difference was a whooping 2040%. To

ensure that the Kingston results were not due to a defec-

tive device, we repeated the experiments with two more

new Kingston cards from two different speed classes; we

found the results to be similarly poor. Here onwards, so as

to not rely on Kingston alone when making a claim about

application performance, we mention the difference both

with the second-worst and worst performing card for any

given experiment.

As expected, the faster the network (USB RT) the
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Figure 7: Application Launch. Launch times (secs) for several popular

apps on 8 SD cards, internal flash, and a memory-backed RAMdisk.

App R W Rx Tx

AngryBird 20.69 0.04 4.09 4.44

SnowBoard 20.92 0.02 1.87 0.53

Weather 8.72 0.07 16.11 2.56

Imdb 2.71 0.00 0.08 0.00

Books 2.98 0.00 0.00 0.00

Gallery 1.88 0.00 0.00 0.00

Gmail 3.20 0.05 3.00 0.93

GasBuddy 7.47 0.00 2.28 0.80

Twitter 4.62 0.06 5.63 1.61

YouTube 2.06 0.00 65.47 4.83

Table 6: App Launch Summary. Total data

(MB) read and written to storage and transferred

over the network for the set of apps launched.

higher the impact of storage: 222% difference between

internal and RiData, 2450% for Kingston. We find a sim-

ilar trend for several popular apps; Figure 5 shows the

results over WiFi for AppInstall, email, Google Maps,

Facebook, RLBench, and Pulse. Since the phenomenon

of storage and application performance correlation is

clearly identifiable with existing WiFi networks, we here-

after omit results for the USB network. The differ-

ence between the best and worst case performance varies

from 195% (225%) for AppInstall, 80% (1670%) for

email, 60% (660%) for Maps, 80% (575%) for Facebook,

130% (2210%) for RLBench, and 97% (168%) for Pulse;

Kingston numbers are shown in parentheses.

To better understand why storage affects application

performance, we present in Table 5 presents a breakdown

of the I/O activity during various workload runs. Amount

of reads is less than writes for all workloads. In the case

of WebBench roughly 1.3 times more data is written se-

quentially than randomly. Since the difference between

sequential and random performance is at least a factor

of 3 for all SD cards (see Table 3), the time to complete

the random writes dominates; the same holds true for the

other applications in the table. Although not shown in the

table, the /data partition receives most of the I/O, with

only a few reads going to the /system partition.

The disparity between sequential and random write

performance is inherent with flash-based storage; our

evaluation results suggest this to be one of the primary

reasons behind the slower performance. However, this

still doesn’t explain the presence of the random writes

and overwrites even for seemingly sequential application

needs. In order to understand this we take a closer look at

the applications and their usage of Android storage.

The storage schema used by the browser application

consists of the cache as the unstructured web cache stor-

ing image and media files and two SQLite database files;

webview.db is a database for application settings and pref-

erences and webviewCache.db stores an index to manage

the web cache. The database files are much smaller in

size compared to the cache; in our setup, the cache con-

sisted of 315 files totaling 6MB whereas the database files

were 34KB and 137KB for webview.db and webview-

Cache.db respectively. Figure 6 shows the write pattern

to the web cache directory and the SQLite database files;

web cache writes are mostly sequential with reuse of the

same address space over time; SQLite exhibits a high

degree of random writes and updates to the same block

addresses. Since by default the database writes are syn-

chronous, each write causes a (often unnecessary) delay.

4.2 Application Launch

Application launch is an important performance met-

ric [47], especially for mobile users. Figure 7 shows the

time taken to launch a number of Android applications on

the various flash storage devices; Table 6 lists those apps

along with a summary of disk I/O reads and writes, and
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Figure 8: Aggregate CPU for WebBench. Stacked bar

shows active, idle, and ioWait times on Nexus One; ioWait cor-

relates with runtimes (Fig 4). Even active times vary across de-

vices showing that some devices burn more CPU for same work!

data transferred over the network during the launch. Most

apps take a few seconds to launch, with games taking up-

wards of 10 seconds. Larger apps (e.g., games) tend to

take a noticeable amount of time to launch, contrary to

the target of “significantly less than 1 second to launch a

new app” [31]. As seen in Figure 7, barring a few excep-

tions, the launch time varies between about 10% (for the

Snowboard game) to 40% (for the Weather app); Twitter

(120%) and Gmail (250%) showed the most variation.

In order to ascertain the upper bound of launch time

improvement through storage, we placed all application

data on a RAMdisk; the test is conducted with the PNY

card storing the /system, /sdcard, /cache par-

titions and the /data partition mounted with tmpfs.

To remove the effects of reading from /system and

/sdcard, we warm the buffer cache; we verify the same

by tracking all I/O to the flash storage. Launch times

do not significantly change even when all data is being

read from memory. Storage is likely not a significant con-

tributor to app launch performance; research to speed up

launch will perhaps benefit by focusing on other sources

of delay such as application think time.

4.3 Concurrent Applications
Figure 10 shows I/O activity for a 7200 second run of the

Background workload; during the period, the phone re-

ceived about 1.6 MB of data over the network. Interest-

ingly, the amount of data written to storage in the same

period is 30 MB (a factor of roughly 20); the majority
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Figure 10: Background I/O pattern. Breakdown of I/O

issued by Background apps in 2 hours.

of writes are for updating application-specific data and

indices to the SQLite databases. Although the storage

throughput requirement is quite low, the additional ran-

dom writes can cause latency spikes for foreground ap-

plications (not shown). With the Android development

team’s desire to minimize application switch time and

provide the appearance of “all applications running all of

the time” [31] (see section: “When does an application

’stop’?”) for mobile devices, handling concurrent appli-

cations and their I/O demands can be an increasingly im-

portant challenge in the future.

4.4 CPU Consumption
Figure 8 shows the breakdown of CPU utilization for

WebBench; the stacked bar chart shows the CPU tick

counts during active, idle, and ioWait periods (a “tick”

corresponds to 10ms on our phone); Figure 9 shows the

CPU utilization and I/O busyness for the same experi-

ment for two SD cards: a fast Transcend, and a slow

Kingston. Since the non-idle, non-ioWait CPU consump-

tion includes not only the contribution of the benchmark

but also all background activities, we also measured CPU

consumption for background activities alone (to subtract

from the total). Note that this is unlike the set of back-

ground activities discussed in Section §3.3 as we turned

off automatic syncing and active widgets; we find that the

share of CPU consumption due to background tasks is less

than 1% of the total.

The graphs reveal the interesting phenomenon that ag-
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gregate CPU consumed for the same benchmark increases

with a slower storage device (by just looking at the “ac-

tive” component). This points to the fact that storage

has an indirect impact on energy consumption by burn-

ing more CPU. Ideally, one would expect a fixed amount

of CPU to be consumed for the same amount of work;

since the results show CPU consumption to be dispropor-

tional to the amount of work, we hypothesize it being due

to deficiencies in either the network subsystem, the stor-

age subsystem, or both. We need to investigate this matter

further to identify the root causes.

Slower storage also increases energy consumption in

other indirect ways; for example, keeping the LCD screen

turned on longer while performing interactive tasks, keep-

ing the WiFi radio busy longer, and preventing the phone

from going to a low-power mode sooner.

5 Pilot Solutions
We present potential improvements in application perfor-

mance through storage system modifications. We start

with a what-if analysis to provide the envelope of perfor-

mance gains and then present a set of pilot solutions.

5.1 What-If Analysis
The detailed analysis of storage performance gave in-

sights into the performance problems faced by applica-

tions, but before proposing actual solutions we wanted

to understand the scope for potential improvements. We

performed a set of what-if analyses to obtain the upper

bounds on performance gains that could be achieved, for

example, by storing all data in memory. For comparison

sake, we performed experiments with both memory as the

backing store (using RAMdisk) and SD cards as the back-

ing store; in the different analysis experiments we placed

different kinds of data on the RAMdisk, for example, the

cache, or the database files. Figure 11 compares the rel-

ative benefits of the various approaches, as measured for

the WebBench and Facebook workloads for the RiData

card and a RAMdisk; the trends for the other SD cards

were similar, although the actual gains were of course dif-

ferent with every card.

Placing the entire “cache” folder on RAM (bars B)

does improve performance, but not by much (i.e., 5% for

WebBench and 15% for Facebook). Placing the SQLite

database on RAM (bars C) however improves perfor-

mance by factors of three and two for WebBench and

Facebook respectively; placing both the cache and the

database on RAM (bars D) does not provide significant

additional benefit. Transforming the cache and database

writes to be asynchronous (bars E) recoups most of the

performance and performs comparably to the SQLite on

RAM solution.

The performance evaluation in the previous section and

the what-if analysis lead to the following conclusions:

First, the key bottleneck is the “wimpy” storage preva-

lent today on mobile devices; even while the internal flash

and the SD cards are increasingly being used for desktop

like-workloads, their performance is significantly worse

than storage media on laptops and desktops. Second,

the Android OS exacerbates the poor storage performance

through its choice of interfaces; the synchronous SQLite

interface primarily geared for ease of application develop-

ment is being used by applications that are perhaps better

off with more light-weight consistency solutions. Third,

the SQLite write traffic itself is quite random with plenty

of synchronous overwrites to the flash storage causing fur-

ther slowdown. Finally, apps use the Android interfaces

oblivious to performance. A particularly striking example

is the heavy-handed management of application caches

through SQLite; the web browser writes a cache map to

SQLite significantly slowing down the cache writes.

We implement and evaluate a set of pilot solutions to

show the potential for improving user experience through

improvements in the Android storage system; while not

rigorous enough to serve as deployable solutions, these

can evolve into robust and detailed solutions in the future.

We classify the solution space into four categories:

• Better storage media for mobile devices to provide

baseline improvements

• Firmware and device drivers to effectively utilize

existing and upcoming storage devices

• Enhancements to mobile OS to avoid the storage

bottlenecks and provide new functionality

• Application-level changes to judiciously use the

supplied storage interfaces

Figure 12 shows the improvements through the pilot so-

lutions for WebBench and Facebook using Kingston and

RiData; as with the what-if analysis, trends for other SD
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cards were similar but actual gains varied. Bars A in Fig-

ure 12 represent the baseline performance, while bars F

are meant to represent an upper bound on performance

with all data stored in RAM.

5.2 Storage Devices Not Wimpy Anymore

An obvious solution is to improve the performance of the

storage device, i.e., using better flash storage or a faster

non-volatile memory such as PCM. Indeed, flash fabrica-

tion technology itself is improving at a fair pace; scaling

trends project flash to double in capacity every two years

until the year 2016 [45]. However, when it comes to per-

formance, cost pressures in the consumer market are driv-

ing manufacturers to move away from the more reliable,

higher performing SLC flash to the less reliable, lower

performing MLC or TLC flash; this makes it harder to rely

solely on improvements due to flash scaling. Our findings

reveal that performance of a relatively small fraction of

I/O traffic is responsible for a large fraction of overall ap-

plication performance. A more efficient solution is thus

to use the faster storage media as a persistent write buffer

for the performance-sensitive I/O traffic: a small amount

of PCM to buffer writes issued by the SQLite database

can improve the performance.

We built a simple PCM emulator for Android to evalu-

ate our solution; the emulator is implemented as a pseudo

block-device based on the timing specifications from re-

cent work [28], using memory as the backing store. The

PCM buffer can be used as staging area for all writes or as

the final location for the SQLite databases; our emulator

can be configured with a small number of device-specific

parameters. Figure 12 (bars E) show the performance im-

provements by using a small amount (16 MB) of PCM; in

this experiment, PCM is used as the final location for only

the database files.

An alternative approach, as envisioned by Pocket

Cloudlets [51], is to rely on substantial augmentation

of existing flash storage capabilities on mobile devices
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Figure 13: Explanation of RAID Speedup. Variation in

throughput for SD cards with increasing write address range.

and/or full replacement of flash with PCM or STT-

MRAM [43]. In reality, storage-class memory may be

placed in different forms on the mobile system, for ex-

ample, on the CPU-memory bus, or as backing store for

the virtual memory. Our intent here was two-fold (a) un-

derstand the approximate benefits of using such a persis-

tent buffer, and (b) demonstrate that even with a relatively

small amount of PCM, significant gains can be made by

judiciously storing performance-critical data; a deployed

solution can certainly incorporate PCM in the storage hi-

erarchy in better ways.

5.3 RAID over SD

Another solution is to leverage the I/O parallelism already

existent on most phones: an internal flash drive and an ex-

ternal SD card. We built a simple software RAID driver

for Android with I/O striped to the two devices (RAID-

0) in 4 KB blocks. Note that a deployable solution will

require more effort: (a) it would need to handle storage

devices of potentially differing speeds (b) handle acciden-

tal removal of the external SD card.

While for some SD cards we obtained the expected im-

provements as in Figure 12 (bars B), i.e., greater than 1X
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and less than 2X, for others we obtained a speedup greater

than 2X (not shown); we suspected that this could be due

to the idiosyncrasies of the FTL on the card. As many con-

sumer flash devices employ the log-block wear-leveling

scheme [48], their performance is sensitive to the write

footprint; a reduction in the amount of random writes re-

duces the overhead of the garbage collection, improving

the performance.

To verify our hypothesis, we performed another exper-

iment. Figure 13 shows the throughput obtained for an

increasing address range with random writes; the I/O size

is 4KB and number of requests is 2048, totaling 8 MB

of writes. In order to minimize the effects of FTL state

being carried forward from the previous experiment, we

sequentially write 1 GB of data before every run.

For Kingston, Wintec, A-Data, Patriot, and PNY, as

the address range increases, the throughput drops signif-

icantly and then stabilizes at the low level; for RiData,

throughput drops but not as sharply, while for Transcend

the throughput remains consistently high (we do not have

an explanation for the slight increase, multiple measure-

ments gave similar results). Sandisk exhibits more than

one regime change, dropping first around the 32 MB mark

and then around the 1024 MB mark.

To explain our surprising performance improvements,

in a log-block FTL, a small number of physical blocks are

available for use as log blocks to stage an updated block;

a one-to-one correspondence exists between logical and

physical blocks. Since the amount of data written to one

disk in a 2-disk RAID-0 array is roughly half of the total,

the disk write footprint reduces and block address range

shrinks; the RAID scheme simply pushes the operating

regime of an SD card towards the left, and depending on

the actual footprint, provides super-linear speedup! While

we came across this performance variation in course of

our RAID experiments, the implications are more generic;

one can design other solutions centered around the com-

paction of the write address range.

5.4 Using a Log-structured File System
Log-structured file systems provide good performance

for random writes [58]; another solution to alleviate

the effects of the random writes is thus to place the

database files on a log-structured file system. We used

the Nilfs2 [50] file system on Android since it works

with block devices; we created a separate partition on the

phone’s flash storage to store the entire SQLite database.

Figure 12 (bars C) show the benefits of log-structuring;

SQLite on Nilfs2 improves the performance of WebBench

and Facebook by more than a factor of 4 for Kingston, and

over 20% for RiData.

5.5 Application Modifications
Finally, several solutions are possible if one is able to

modify either the SQLite interface or the applications

themselves. We demonstrate the benefits of such tech-

niques with a simple modification to SQLite: providing

the capability to perform selective sync operations based

on application-specific requirements; in our current im-

plementation, we simply turn off sync for the database

files that are deemed asynchronous as per our analysis (for

example, the WebView database file serving as the index

for the web cache). Figure 12 (bars D) compare the ben-

efits of the selective sync operation with other previously

proposed solutions, providing noteworthy benefits espe-

cially for Facebook.

Another potential technique to improve performance at

the application level is through the use of larger transac-

tions, amortizing the overhead of the SQLite sync inter-

face. A careful restructuring of the application program-

ming interface can perhaps lead to significant gains for

future apps, but is beyond the scope for this paper; the in-

terface discussion is a classic chicken-and-egg problem in

the context of storage systems [54, 63]. Recently a new

backend for SQLite has been proposed that uses write-

ahead logging [18]; such techniques have the potential to

ameliorate the random write bottleneck without requiring

changes to the API.

5.6 Summary of Solutions
Through our investigation of the solution space we notice

several avenues for further performance improvements

in the storage subsystem on mobile devices, and conse-

quently the end-user experience. Our analysis reveals that

a small amount of domain or application knowledge can

improve performance in a more efficient way; through our

pilot solutions we demonstrate the potential benefits of ex-

plicit and implicit storage improvements.

Programmers tend to heavily use the general-purpose

“all-synchronous” SQLite interface for its ease of use but

end up suffering from performance shortcomings. We

posit that a data-oriented I/O interface would be one that

enables the programmer to specify the I/O requirements

in terms of its reliability, consistency, and the property of

the data, i.e., temporary, permanent, or cache data, with-

out worrying about how its stored underneath. For ex-

ample, a key-value store specifically for cache data does

not need to provide ultra-reliability; a web browser can

use the cache key-value store as its web cache in a more

performance-efficient manner than SQLite.

6 Related Work
We found little published literature on storage perfor-

mance for mobile devices. One of the earliest works on

storage for mobile computers [33] compares the perfor-

mance of hard disks and flash storage on an HP Omni-

Book; remarkably, many of their general observations are

still valid. Datalight [11], provider of data management

technologies for mobile and embedded devices to OEMs,
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make an observation similar to ours with reference to their

proprietary Reliance Nitro file system. According to their

website, lack of device performance and responsiveness is

one of the important shortcomings of the [Windows] Mo-

bile platforms; OEMs using an optimized software stack

can improve performance. Our results also reaffirm some

of the recent findings for desktop applications on the Mac

OS X [42]: lack of pure sequential access for seemingly

sequential application requests, heavy-handed use of syn-

chronization primitives, and the influence of underlying

libraries on application I/O.

A recent study of web browsers on smartphones [67]

examined the reasons behind slow web browsing per-

formance and found that optimizations centering around

compute-intensive operations provide only marginal im-

provements; instead “resource loading” (e.g., files of vari-

ous types being fetched from the webserver) contributes

most to browser delay. While this work focuses more

specifically on the browser and the network, it reaffirms

the observation that improvements in the OS and hard-

ware are needed to improve application performance.

Other related work has focused on the implications

of network performance on smartphone applications [44]

and on the diversity of smartphone usage [35]. Finally,

there is extensive work in developing smarter, richer, and

more powerful applications for mobile devices, far too

much to cite here. We believe the needs of these appli-

cations are in turn going to drive the performance require-

ments expected of hardware devices, including storage, as

well as the operating system software.

7 Conclusions

Contrary to conventional wisdom, we find evidence that

storage is a significant contributor to application perfor-

mance on mobile devices; our experiments provide insight

into the Android storage stack and reveal its correlation

with application performance. Surprisingly, we find that

even for an interactive application such as web browsing,

storage can affect the performance in non-trivial ways; for

I/O intensive applications, the effects can get much more

pronounced. With the advent of faster networks and I/O

interconnects on the one hand, and a more diverse, pow-

erful set of mobile apps on the other, the performance re-

quired from storage is going to increase in the future. We

believe the storage system on mobile devices needs a fresh

look and we have taken the first steps in this direction.
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