
Performance Testing of Combinatorial Solvers
With Isomorph Class Instances

Franc Brglez
Dept. of Computer Science

NC State University
Raleigh, NC, USA

brglez@ncsu.edu

Jason A. Osborne
Dept. of Statistics

NC State University
Raleigh, NC, USA

osborne@stat.ncsu.edu

ABSTRACT
Combinatorial optimization problems expressed as Boolean
constraint satisfaction problems (BCSPs) arise in several
contexts, ranging from the classical unate set-packing prob-
lems to the binate minimum cover problems, including the
Haplotype Inference by Pure Parsimony (HIPP) problem.
These problems are being solved under different formula-
tions and in different formats. Results of experiments that
are reported can be seldom compared and replicated.

This paper is not about ‘the best BCSP solver’. Rather,
it is a case study of how the scientific method can be applied
to comparing the performance of not only BCSP solvers but
also other solvers that address NP-hard problems. The ap-
proach is founded on two premises: (1) the introduction of
instance isomorphs as families of equivalence classes, based
on randomized replicas of a given reference instance, and (2)
the use of isomorph classes for the design of reproducible
experiments with BCSP solvers that includes performance
testing hypotheses. We introduce a number of BCSP ref-
erence instances from different domains, generate isomorph
classes and use various versions of cplex to characterize the
solver performance and the isomorph classes themselves.
This methodology may make it easier to (1) reliably improve
the performance of combinatorial solvers and, (2) report re-
sults of experiments under the proposed schema.

Categories and Subject Descriptors:

G.3 [Probability and Statistics]: Experimental design
General Terms: Algorithms, Scientific Method, Reliability

1. INTRODUCTION
A number of efforts have been made to formalize the experi-
ments and experimental analysis of combinatorial problems,
ranging from guidelines to pitfalls [1, 2, 3, 4, 5, 6, 7, 8].

Reproducibility is one of the main principles of the scien-
tific method, and refers to the ability of a test or experiment
to be accurately reproduced, or replicated, by someone else
working independently. Our approach is analogous to test-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExpCS ’07, 13-14 June 2007, San Diego, CA
Copyright 2007 ACM 978-1-59593-751-3 ...$5.00.

ing the lifetime of hardware components: an equivalence
class of N isomorphs, all derived from the same reference
instance represents a batch of N replicated hardware com-
ponents, a combinatorial solver X that reads and solves each
problem instance represents a controlled operating environ-
ment Y maintained for the lifetime of each hardware com-
ponent, and the empirical cumulative distribution function
(ECDF) represents the solvability function SX(x) while the
reliability or survival function RY (y) represents the comple-
ment of ECDF. Whereas x represents RunTime, y repre-
sents LifeTime. Without loss of generality, we present our
approach on representative instances from the well-known
category of Boolean constraint satisfaction problems (BC-
SPs) [9] that clearly push the limits of the state-of-the-art
combinatorial solver cplex [10]. Typically, such problems
are being solved under different formulations and in differ-
ent formats and the results of experiments that are reported
can be seldom compared and replicated.

An instance of a Boolean constraint satisfaction problem
is given by m constraints applied to n Boolean variables.
The well-known conjunctive-normal-form format (.cnf) cap-
tures such constraints very concisely. However, different
computational problems arise not only from the nature of
constraints but also depend on the goals of the optimization
task – a feature that is not supported by the .cnf format.
We reconcile these issues by using the familiar 0/1 integer
program (IP) formulation that naturally expresses the con-
straints as well as the goals of the optimization task when
formulating an optimization instance. In the Appendix we
show example instances in a simple-to-read .lpx format, a
subset of the cplex format [10] that is also readable by the
public-domain solver lp solve [11, 12].

For years, publications on special purpose BCSP solvers
have been comparing their performance to cplex whose per-
formance was usually dominated by the new special-purpose
solver being published. However, our recent work and com-
parisons with cplex reveals cases where cplex appears to
dominate on a number of instances [13]. It is a given that
the developer of a special purpose BCSP solver expects to
design it in a way that will outperform a general purpose
LP solver such as cplex which may only handle BCSPs on
the side. One of the most important goals of this paper is
to initiate a methodology of performance testing that will
reliably measure and improve the performance of any and
all BCSP solvers, thereby extending the work initiated in
[14]. The paper is organized as follows:

Section2 introduces several classes of the Boolean constraint
satisfaction problem (BCSP) under the 0/1 integer pro-

1

gram (IP) formulation, including examples of transforma-
tions between related unate and binate minimization and
maximization instances.

Section3 formalizes the construction of isomorph classes
from a single reference instance and concludes with a pre-
view of examples of isomorphs that induce significant vari-
ability in RunTime performance of cplex.

Section4 outlines the main elements of the experimental
environment we use, the isomorph classes, and the solvers
to design and to execute a number of experiments on these
classes. This section also includes a table and a brief char-
acterization of hard-to-solve reference instances from differ-
ent domains, assembled and translated into the .lpx format,
including ‘block instances’ of increasing size, each with a
‘hidden solution’. A subset of these instances is used to
induce a number isomorph classes for the experiments re-
ported in the next section.

Section5 defines five experimental designs and reports on
results of experiments for each design. In particular, the
report for each design has three components: (1) a design
goal, linked to a test of hypothesis, (2) discussion of results,
and (3) resolution of hypothesis.

Section 6 and Appendix conclude the paper.

2. INSTANCE FORMULATIONS
We start with basic notation and definitions and and con-
clude with examples that illustrate them.

Notation and Definitions. Unlike textbooks [15], we rep-
resent constraints in both the maximization and the mini-
mization BCSP instance with the ‘>=’ relation, i.e.

max wTx subject to Ax ≥ b, x ∈ {0, 1}
and

min wTx subject to Ax ≥ b, x ∈ {0, 1}
where w is an n-vector in Rn

+ or Zn
+, A is an m × n con-

straint matrix with entries from {0, 1,−1}, and b is an n-
dimensional vector whose entries are no longer 1’s by default.
The entries in b depend on the context of the constraint and
also on the distribution of the ± signs within the constraint,
as we explain next.

Denoting Ip and In as subsets of {1 2 . . . n}, we distinguish
between three classes of constraints:

unate-positive, equivalent to the set cover constraint:X
i∈Ip

(+xi) >= +1

i.e. at least one xi must be set to 1.

unate-negative, equivalent to the set packing constraint:X
j∈In

(−xj) >= −1

i.e. at most one xj can be set to 1. Whenever |In| > 2,
it defines a clique constraint [15] and can be decomposed
into |In|(|In| − 1)/2 equivalent constraints. For example,
the single constraint −x1−x2−x3 >= −1 is equivalent to
the following pair-wise constraints:
−x1 − x2 >= −1, −x1 − x3 >= −1, −x2 − x3 >= −1.

binate, a combination of set cover and packing constraints
with a relaxed right-hand-side:X

i∈Ip

(+xi) +
X
j∈In

(−xj) >= +1− |In|

If Ip ∈ ∅, the constraint
P

j∈In
(−xj) >= 1−|In| is satisfied

for all combinations of values of xj , except for all xj = 1.

If all constraints are unate-positive, the solution of the maxi-
mization instance is trivial, similarly for the minimization of
the instance where all constraints are unate-negative. How-
ever, for the general case, both the maximization and the
minimization can be equally hard.

REMARK: An instance of a Boolean constraint satisfaction
problem (BCSP) is a maximization or a minimization prob-
lem with any combination of unate-positive, unate-negative,
and binate constraints. Minimum (weighted) binate set
cover, maximum (weighted) unate set packing, minimum
(weighted) vertex cover, (weighted vertex) maximum clique,
etc. are all BCSPs. Min Ones and Max Ones problems are
special cases of unit-weighted BCSPs. Classes of Max CSP
(Min CSP) problems as defined in [9] are also included in
this formulation of BCSP. The next few example illustrate
the structure of some such instances.

Instance examples. We show small examples and solu-
tions of a weighted minimum set cover instance, a weighted
vertex maximum clique instance that is derived directly from
the structure of the set cover instance, and a weighted bi-
nate instance with a maximization objective. We also show
solutions of related instances with the same structure: a
weighted maximum set packing instance and a weighted bi-
nate instance with a minimization objective. Examples of
additional instance transformations (and how they may re-
late) will be introduced in the full-length paper.

A weighted minimum set cover instance.
ObjectiveOpt 70
Solution 1010100
Min

+21x1 + 22x2 + 23x3 + 25x4 + 26x5 + 27x6 + 29x7

st

c1 : +x2 +x3 +x4 >= +1
c2 : +x2 +x5 +x6 >= +1
c3 : +x5 +x6 +x7 >= +1
c4 : +x3 +x7 >= +1
c5 : +x1 +x4 +x7 >= +1
c6 : +x1 +x3 +x6 >= +1

A weighted maximum set packing instance.
This instance is generated from the set packing instance by
(1) flipping the ‘+’ variable signs in each row to ‘-’, (2) re-
placing the right-hand-side with values of -1, and (3) chang-
ing the objective from ‘min’ to ‘max’.
ObjectiveOpt 52
Solution 0001010

A weighted vertex maximum clique instance.
This instance is generated from the set packing instance
by (1) expanding all clique constraints into pair constraints
(one pair on each row), (2) flipping the ‘+’ variable signs in
each row to ‘-’, (3) replacing the right-hand-side with values
of -1, and (4) changing the objective from ‘min’ to ‘max’.
ObjectiveOpt 100
Solution 1010011

2

Max
+21x1 + 22x2 + 23x3 + 25x4 + 26x5 + 27x6 + 29x7

st

c1 : −x3 −x5 >= −1
c2 : −x4 −x5 >= −1
c3 : −x2 −x7 >= −1
c4 : −x4 −x6 >= −1
c5 : −x1 −x5 >= −1
c6 : −x1 −x2 >= −1

A weighted binate instance (obj=max).
ObjectiveOpt 100
Solution 0110101
Max

+21x1 + 22x2 + 23x3 + 25x4 + 26x5 + 27x6 + 29x7

st

c1 : +x2 +x3 +x4 >= +1
c2 : −x2 −x5 −x6 >= −2
c3 : +x5 +x6 −x7 >= 0
c4 : −x3 +x7 >= 0
c5 : −x1 −x4 −x7 >= −1
c6 : −x1 −x3 −x6 >= −1

A weighted binate instance (obj=min).
ObjectiveOpt 22 ; Solution 0100000
This instance is generated from the binate instance above
by simply changing the objective from ‘max’ to ‘min’.

3. CLASSES OF INSTANCE ISOMORPHS
Isomorphs of sat instances have been shown to induce sig-
nificant variability in SAT solvers [14]. In this paper, we
demonstrate that instance isomorphs of BCSP’s (Boolean
constraint satisfaction problems) as defined in the preced-
ing section are also fundamental to exploring performance
variability of combinatorial solvers that take them as input.

Given a (sparse) matrix formulation of the reference in-
stance, an isomorph is generated by applying to the reference
any subset of four primitive operations:

C: random permutation of variables – effectively a permu-
tation of columns in the matrix;

L: random permutation of the variable order in any row of
the matrix;

R: random permutation of rows in the matrix, followed by
permutation of the weight vector (not needed if all weights
have the value of 1);

X: random sign flipping (from positive to negative and vice
versa) of any variable – while maintaining consistency of
the right-hand-side value so that the instance remains a
BCSP and the value of its objective function invariant.

The operation of flipping the variable sign (X) has intrin-
sic merits with SAT solvers and can only be applied to in-
stances of BCSP in special situations. In this paper, we shall
consider isomorphs in two equivalence classes only: LR and
CLR. Two isomorphs from each of the two classes are shown
below, based on LR operations and CLR operations applied
to the same reference instance: the weighted binate instance
in the previous section.

A weighted binate instance (obj=max) – isomorph LR.
ObjectiveOpt 100
Solution 0110101
@VariablePermutationPairs (isomorph,reference)
1,1 2,2 3,3 4,4 5,5 6,6 7,7 0,0

Max
+21x1 + 22x2 + 23x3 + 25x4 + 26x5 + 27x6 + 29x7

st

−x3 −x1 −x6 >= −1
−x1 −x4 −x7 >= −1
−x5 −x2 −x6 >= −2
+x3 +x2 +x4 >= +1
+x7 −x3 >= 0
−x7 +x6 +x5 >= 0

It is clear by inspection that no permutation of variables
took place in the isomorph LR, while rows have been per-
muted (row 1 in the reference instance is now row 4 in the
isomorph). Furthermore, the order of variable positions in
the row 4 in the isomorph is different from the order of vari-
able positions in the row 1 in the reference instance.

On the other hand, column or variable permutation also
took place in the isomorph CLR below: if we know the per-
mutation, the effort to verify that new new instance is in
fact the isomorph of the reference is relatively simple.

A weighted binate instance (obj=max) – isomorph CLR.
ObjectiveOpt 100
Solution 1100011
@VariablePermutationPairs (isomorph,reference)
1,3 2,1 3,2 4,5 5,6 6,4 7,7 0,0

Max
+22x1 + 23x2 + 21x3 + 27x4 + 25x5 + 26x6 + 29x7

st

−x3 −x7 −x5 >= −1
+x1 +x2 +x5 >= +1
−x2 +x7 >= 0
−x3 −x2 −x4 >= −1
−x6 −x1 −x4 >= −2
+x4 +x6 −x7 >= 0

Since one may be tempted to dismiss LR-isomorphs as triv-
ial, we bring forward a 350-variables example described in
more detail later. The name of the isomorph class is f51mb-
350 B 40v 20 20 LR, and its reference instance is in cnf-
format, i00.cnf. Since cplex takes files in .lpx format, we
must translate it. The act of translation alone can induce
instances in LR-class, depending on the implementation of
the translator program. Let the first translator produce an
instance in the ‘reference order’ given by the instance in
the .cnf format and let two more translators rely on some
hashing schemes that result in instances having row orders
that are both different from the row order of the reference
instance. Also, the order in which the variable appear in
each row may be different. Such instances can be found in
the class of 1+32 instances in the web-archive under the di-
rectory f51mb 350 B 40v 20 20 LR, say i00.lpx, i06.lpx, and
i17.lpx. Upon invoking cplex 9.0 on each of these instance,
we get a solution and a proof of optimality, however runtimes
differ dramatically, despite running on the same dedicated
CPU:

translator instance Obj opt RunTime (secs)
T1 i00.lpx 24 114.91
T2 i06.lpx 24 82.55
T3 i17.lpx 24 1801.86

These instances under f51mb 350 B 40v 20 20 LR do not
represent the extreme cases: instance i12 is solved for the
same optimum in 60.37 seconds, while instance i30 times out

3

at 2115.28 seconds without proving that the best objective
reported at 24 is indeed the optimum.

As shown in sections that follow, such solver sensitivity
to the order of data in the instance file is not unusual –
which explains why researchers may report vastly different
performance results with the same instance, on the same
platform, and with the same version of the solver!

Two questions arise: (1) do instances from a CLR-class
induce solver variability that is equivalent to the variabil-
ity induced by instance in the LR-class, and (2) is a CLR-
isomorph class needed and why. The answer to the sec-
ond question is affirmative – and is based on a few years of
‘lessons-learned’ experience [16, 17].

We do need to perform most if not all experiments with
instances from the CLR-class because we cannot anticipate
when we may encounter a ’smart solver’ that will attempt
to re-order input data in some predetermined fashion, so
that most if not all instances from the LR-class may be re-
ordered with relative ease into an almost equivalent if not
equivalent order1. While this is apparently not the case
(yet) with the cplex solver, we have had the experience with
‘smart’ BDD variable-ordering solvers where the only way to
expose their sensitivity to order requires that we also rename
and permute the variables in each input file instance [17].

4. EXPERIMENTAL ENVIRONMENT
The environment for the series of experiments reported in
this paper is still evolving. The main components include
a schema and utilities to maintain: (1) hierarchies of BCSP
reference instances in a common .lpx format (with transla-
tors to/from .lpx), (2) hierarchies of BCSP isomorphs gen-
erated from each reference instance, (3) BCSP solver encap-
sulators that also process any combination of solver options
and platform specifics into a unique solver ID, (4) hierarchi-
cal archives of BCSP-specific experimental results tagged by
instance ID, instance class, and solver ID. The leaves of ex-
perimental results are directories that contain files with raw
results in a form specific to each solver and each isomorph
class. This includes files with distributions of observed vari-
ables, extracted from raw results and now in a simple tabular
format.

Standard statistical technique are applied to analyze the
distributions of observed variables such as RunTime and
ObjectiveBest. These techniques include resolution of hy-
pothesis tests that have been formulated as the part of the
experimental design, outlined in the section that follows.
For example, we examine hypothesees which address the
branch-and-bound BCSP performance of two solvers, with
and without options, cplex (version 9.0) and cplex (version
10.1).

A substantial number of BCSP instances has been col-
lected, translated into the .lpx format, and run in cplex. A
subset of these instances and runs is summarized as refer-
ence instances in Table 1. A larger set and similar results
are being prepared for a technical report and a web-posting
under http://www.cbl.ncsu.edu/xBed/.

Table 1 summarizes instance categories and current sta-
tus vis-a-vis cplex (version 9.0). As shown in the table,
most instance have not been solved optimally and represent

1Such strategy has also been demonstrated to backfire since
it prevents the solver from ‘seeing’ many input orders that
could improve its average performance.

an on-going challenge for cplex and other BCSP solvers. It
may be of some interest to observe, not only the column on
the sparsity measure (sp) but also the column on the mea-
sure of completeness of the underlying instance graph. For
example, instances in* sc have constraint matrices that are
sparse, but the underlying structure of the graph is highly
’interconnected’ and hard to solve to optimality. Now, the
maximum clique instances in* cliq that have been derived
from from these instances will have complement graphs that
are much less ‘internconnected’ – and these instance have
been solved to optimality in a reasonable time frame. Ad-
ditional highlights from the table follow.

min set cover (unate): Instances ex5.pi and test4.pi repre-
sent column-row reduced versions of the most challenging
unate instances from the LogicSyn91 set [18]. Instances
in* sc have been transformed into set cover instances from
the set packing instances described below.

min set cover (binate): Instances rot.b, alu4, e64.b repre-
sent column-row reduced versions of the most challenging
binate instances from the LogicSyn91 set [18].

max set packing (unate): Instances in* sp are translated ver-
sions of set packing instances kindly submitted by Y. Guo,
as a follow-up on a publication request [19], now updated
in [20]. This a set of 500 random instances in five size cat-
egories, from 500 variables to 1500 variables. We adopted
the first instance in each category as the reference instance
for our experiments with isomorphs. Also, we adopted in-
stance in413 sp as a reference instance of special interest.

max independent set: Instances fr30* are translations of a
subset of unit-weighted independent set instances with hid-
den solution, from http://www.nlsde.buaa.edu.cn/ kexu/
benchmarks/setbenchmarks.htm. The instance dsjc125 is1
a useful test instance floating on the Web, with comments
that point to the original publications [21].

max clique: Instances *cliq and *cliq1 are weighted and unit-
weighted instance of maximum clique problems. They have
been derived from the instances fr30*, dsjc125*, and in* sp
described earlier.

blocks (min vertex cover): Instances in this set represent block
compositions of increasing size (and a hidden solution) of
the minimum vertex cover problem.

blocks (min binate cover): Instances in this set represent
block compositions of increasing size (and a hidden solu-
tion) of the minimum binate cover problem.

A description of instance block composition with hidden so-
lution and controlled overlap used to create instance above
will be provided elsewhere. Some aspects of the method
are available in [23]. Due to space constraints, the report
on results with five experimental designs in next the section
concentrates only on two very different classes, each contain-
ing 32 instances: (1) in401 sp CLR, based on a set packing
reference with 500 variables and 1000 constraints, and (2)
f51mb 350 CLR, based on a binate set cover block compo-
sition reference with 350 variables and 413 constraints. The
name f51mb 350 CLR is an alias for the class

f51mb 0350 B 0040 20 20 CLR
as it is listed in Table 1 and also posted on the Web.

5. EXPERIMENTAL DESIGNS
We executed five experimental designs to gather observa-
tions of RunTime and ObjectiveBest as reported by different
BCSP solvers when applied to several instance classes.

4

Table 1: Introducing a subset of reference instances and basic experiments with cplex090.

Legend:

ObjBest: values of objective function reported for each instance by cplex090
Proof: an indicator variable whether cplex has proven ‘ObjBest’ as optimal
Ones: total number of ‘ones’ in the solution vector

RunTime: runtime in seconds, reported by cplex
n, m: number of variables, number of constraints

cdMax, rdMax: maximum number of non-zero entries in a column, maximum number of non-zero entries in a row
sp(%): a sparsity measure for the constraint matrix (100 * number of non-zeros/(n ∗m))
gc(%): a measure completness of the underlying graph (100 * number of edges/(n ∗ (n− 1))

(number of unique edges is counted after expanding each constraint into a clique)
Notes:

platform: Intel-based processor, 3.2 GHz, 2 GB cache, under RedHat Linux
cplex options: the only option used is the value of timeout (set at 2112 seconds for all instances below)

(experiments with options may produce results that better of worse as the ones shown)
reductions: all matrices that represent the benchmarks in the list below have been reduced to the extent

possible, using standard column and row reduction techniques [22].

Dir Instance ObjBest Proof Ones RunTime n m cdMax rdMax sp(%) gc(%)
in101 sc 189316 no 57 2112.85 1000 500 50 77 5.55 68.82

min in201 sc 547921 no 56 2114.91 1000 1000 100 79 5.59 84.99
(unate) in401 sc 593034 no 68 2112.52 500 1000 100 45 5.72 85.57

set in501 sc 589992 no 54 2116.38 1500 1000 150 157 7.85 91.84
cover in601 sc 954508 no 72 2118.01 1500 1500 150 111 5.60 90.88

in101 sp 64408 no 19 2116.68 1000 500 50 77 5.55 68.82
max in201 sp 77596 no 13 2117.8 1000 1000 100 79 5.59 84.99

(unate) in401 sp 77418 yes 12 866.87 500 1000 100 45 5.72 85.57
set in413 sp 74435 no 12 1057.95 500 1000 100 46 5.55 83.65

packing in501 sp 76906 no 15 2118.39 1500 1000 150 157 7.85 91.84
in601 sp 98805 no 15 2119.45 1500 1500 150 111 5.60 90.88
dsjc125 is1 34 yes 34 17.7 125 736 23 2 1.60 9.50

max frb30-15-1 27 no 27 2118.49 450 17827 122 2 0.44 17.65
indep. frb30-15-2 27 no 27 2118.08 450 17874 116 2 0.44 17.69

set frb30-15-3 28 no 28 2118.05 450 17809 122 2 0.44 17.63
frb30-15-4 28 no 28 2118.68 450 17831 110 2 0.44 17.65
frb30-15-5 28 no 28 2119.11 450 17794 128 2 0.44 17.61
dsjc125 cliq1 4 yes 4 0.53 125 7014 119 2 1.60 90.50
frb30-15-1 cliq1 15 no 15 2120.41 450 83198 407 2 0.44 82.35

max frb30-15-2 cliq1 15 no 15 2120.02 450 83151 404 2 0.44 82.31
clique frb30-15-3 cliq1 15 no 15 2118.98 450 83216 400 2 0.44 82.37

frb30-15-4 cliq1 15 no 15 2118.5 450 83194 401 2 0.44 82.35
frb30-15-5 cliq1 15 no 15 2120.63 450 83231 403 2 0.44 82.39
in201 cliq 7265040 yes 361 3.56 1000 74959 572 2 0.20 15.01
in201 cliq1 361 yes 361 235 1000 74959 572 2 0.20 15.01

unate ex5.pi 36 yes 36 19.44 974 686 71 74 2.85 16.79
cover test4.pi 105 no 105 2117.77 5117 1435 54 159 1.36 10.07
min rot.b 84 yes 84 6.34 887 1257 158 79 1.23 7.29

binate alu4 32 yes 32 38.5 481 592 165 74 3.46 20.16
cover e64.b 47 no 47 2117.97 571 920 35 14 1.29 6.08

dsjc 0125 91 yes 91 20.97 125 736 23 2 1.60 9.50
dsjc 0250 182 no 182 2113.14 250 1472 23 2 0.80 4.73

min dsjc 0250 0100 183 no 183 2112.98 250 1572 24 2 0.80 5.05
vertex dsjc 0500 366 no 366 2111.15 500 2944 23 2 0.40 2.36
cover dsjc 0500 0200 368 no 368 2112.45 500 3344 26 2 0.40 2.68

blocks dsjc 1000 736 no 736 2126.75 1000 5888 23 2 0.20 1.18
dsjc 1000 0400 754 no 754 2118.36 1000 7088 29 2 0.20 1.42
dsjc 2000 1480 no 1480 2132.11 2000 11776 23 2 0.10 0.59
dsjc 2000 0800 1511 no 1511 2116.64 2000 14976 30 2 0.10 0.75
f51mb 12 yes 12 0.26 175 187 49 33 7.62 29.37
f51mb 0350 24 yes 24 73.54 350 374 49 33 3.81 14.64

min f51mb 0350 B 0040 20 20 24 yes 24 114.89 350 413 73 33 4.34 26.67
binate f51mb 0525 36 no 36 2119.42 525 561 49 33 2.54 9.75
cover f51mb 0525 B 0060 40 20 36 no 36 2118.11 525 660 94 53 3.45 37.82

blocks f51mb 0700 48 no 48 2120.5 700 748 49 33 1.91 7.31
f51mb 0700 B 0080 60 20 48 no 48 2118.25 700 925 112 73 3.11 50.13
f51mb 1400 96 no 96 2120.55 1400 1496 49 33 0.95 3.65
f51mb 1400 B 0160 80 80 96 no 96 2117.76 1400 2009 271 129 2.16 40.50

5

The two versions of cplex (versions 9.0 and 10.1), each
with two options, -dfs as an alias for depth-first-search op-
tion, and -feas2 as an alias for an option that emphasizes op-
timality over feasibility give rise to six solver IDs: cplex090,
cplex090-dfs, cplex090-feas, cplex101, cplex101-dfs, and
cplex101-feas2. We report the results on four classes of iso-
morphs: in401 sp LR, in401 sp CLR, f51mb 350 LR,
and f51mb 350 CLR. In addition, we also contrast the iso-
morph class in401 sp CLR to a class of random instances
in401 sp RND.

Unless stated explicitly, each version of cplex is run on
each instance in these classes without a timeout restric-
tion; i.e. branch-and-bound solver has sufficient resources
to prove that the returned value of ObjectiveBest is indeed
the global optimum.

Design Goals. We articulate the goals of the five designs
by first linking them to hypotheses that are to be addressed
and resolved. We discuss the results in the subsection that
follows.
Design1 Hypothesis: For the same reference instance, the
isomorph class CLR is equivalent to the isomorph class
LR. Inferences are based on observations of RunTime with
solvers cplex090 and cplex101, applied to instances from
the classes in401 sp LR, in401 sp CLR, f51mb 350 LR, and
f51mb 350 CLR. For a preview of statistics summary, see
Figure 1.

Design2 Hypothesis: The branch-and-bound performance of
solvers cplex090and cplex101, without options, are equiv-
alent. Inferences are based on observations of RunTime
with solvers cplex090 and cplex101, applied to instances
from the classes in401 sp CLRand f51mb 350 CLR. For a
preview of statistics summary, see Figure 2.

Design3 Hypothesis: The branch-and-bound performance of
any two solvers, formed from the list of six solvers above,
are equivalent. Inferences are based on observations of
RunTime with solvers cplex090, cplex090-dfs, cplex090-
feas, cplex101, cplex101-dfs, and cplex101-feas2, applied
to instances from in401 sp CLR and f51mb 350 CLR. For
a preview of statistics summary, see Figure 3.

Design4 Hypothesis: The fixed timeout performance of
solvers cplex090and cplex101, without options, are equiva-
lent. Inferences are based on observations of ObjectiveBest
with solvers cplex090 and cplex101, applied at timeout in-
tervals of 16, 32, and 64 seconds, to instances from the
class in401 sp CLR. For a preview of statistics summary,
see Figure 4.

Design5: Instances from the ‘random class’ in401 sp RND
induce variability in both RunTime and ObjectiveBest even
when cplex is run on each instance without a timeout re-
striction. As a consequence, we cannot articulate a simple
hypothesis as we did for instances in the isomorph classes.
Also, due to large variability in ’difficulty’ of solving a num-
ber of instances from the ‘random class’ in401 sp RND, our
computational resources are insufficient to resolve them.
For a preview of statistics summary with cplex090 and
cplex101, see Figure 5.

Discussion of Results. We first informally discuss the
statistics summaries of five designs in Figures 1 – 5. A sec-
tion that follows addresses the resolution of the hypothesis
tests as formulated earlier for each of these designs.

In Designs 1 – 3 (in Figures 1 – 3), we run cplex as
a branch-and-bound solver that reports the same optimum

value for each instance in its class – what is being observed is
the RunTime to find this optimum. The RunTime statistics
for each class and each solver includes minimum (MinV),
maximum (MaxV), median (MedV), mean (MeanV), stan-
dard deviation (StdV), number of samples (N), and Distri-
bution. The runtime for each reference instance is listed
in a separate column (RefV). We determine the reported
distribution by running a combination of tests on the ob-
served data: ranging from Cramer-Von Mises, Kolmogorov-
Smirnov to χ2 goodness-of-fit-tests [24, 25]. We also plot
empirical cumulative distribution functions (ECDFs) for
classes of most interest (LR vs CLR), and a subset of all
possible solver pairs (e.g. cplex090 vs. cplex101) on the
CLR class. The barcharts illustrate values of RunTime val-
ues reported by specific solvers on instances from a given
isomorph class.

Designs 1 – 3 emphasize the view of cplex as a branch-
and-bound solver that terminates by proving an optimum
before an externally imposed timeout. However, note that
most instances shown in Table 1 time out within 5% of the
externally imposed limit of 2112 seconds – and all we have
to show for it is a single value of the variable ObjectiveBest.
The purpose of the experimental Design 4 is to produce a
distribution of ObjectiveBest at predetermined timeout in-
tervals. To get a distribution of ObjectiveBest on such in-
stances, at a cost no greater than the cost of a single run
with timeout value of 2112, we now consider instances from
the classes in401 sp CLR and f51mb 350 CLR, pick a time-
out value Tout from a set of {16, 32, 64} seconds, and run
cplex with a timeout of Tout on the reference and all 32
instances. The random variable we observe in this design is
the value of ObjectiveBest. Note that for value of Tout = 64,
the total runtime of the experiments with (1+32) instances
is 2112 seconds – however, we now may have 33 distinct
values of ObjectiveBest in its distribution!

Design1/Figure1: Solvers cplex090, cplex101are applied to
instances from in401 sp LR, in401 sp CLR, f51mb 350 LR,
and f51mb 350 CLR. There are notable differences between
statistics of in401 sp LRand f51mb 350 LR regardless of
the solver, and the differences between in401 sp CLR and
f51mb 350 CLR are similarly notable. Both f51mb 350 LR
and f51mb 350 CLR exhibit heavy-tail distribution. How-
ever, differences between in401 sp LR, in401 sp CLR un-
der the same solver are smaller than the differences between
the solvers themselves, whether both solvers are applied to
in401 sp LR or in401 sp CLR. Differences between solvers
will be analyzed in subsequent designs.

Design2/Figure2: Solvers cplex090 and cplex101are applied
to instances from in401 sp CLR and f51mb 350 CLR. A
mere inspection of the respective barcharts for in401 sp CLR
class reveals non-trivial differences between the two solvers,
with cplex090 emerging as the dominating solver. The
dominance of cplex090 is suggested also by inspection of
the barcharts and statistics for f51mb 350 CLR class.

Design3/Figure3: Solvers cplex090, cplex090-dfs, cplex090-
feas, cplex101, cplex101-dfs, and cplex101-feas2, are ap-
plied to instances from in401 sp CLR and f51mb 350 CLR.
The differences between solvers, with and without options
are striking, for both the in401 sp CLR and f51mb 350 CLR
class. Perhaps remarkably, the same solver, cplex090-feas,
appears to dominate all other solver on both classes. We
postpone the discussion whether this domination has sta-
tistical significance until the next section.

6

RunTime statistics for isomorph classes in401 sp LR and in401 sp CLR.

Solver Class RefV MinV MaxV MedV MeanV StdV N Distribution
cplex090 in401 sp LR 865 412 935 620 639 133 32 uniform
cplex090 in401 sp CLR 865 407 957 638 666 133 32 uniform
cplex101 in401 sp LR 839 608 1236 858 883 158 32 uniform
cplex101 in401 sp CLR 841 625 1316 816 843 142 32 normal

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000

EC
DF

RunTime under cplex090 (seconds)

RunTime_LR@090
RunTime_CLR@090

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

500

1000

Ru
nT

im
e

in401_LR-class under cplex090

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

500

1000

Ru
nT

im
e

in401_CLR-class under cplex090

RunTime statistics for isomorph classes f51mb 350 LR and f51mb 350 CLR.

Solver Class RefV MinV MaxV MedV MeanV StdV N Distribution
cplex090 f51mb 350 LR 115 60.4 2115 110 256 458 32 heavy-tail
cplex090 f51mb 350 CLR 115 71.3 2118 127 232 393 32 heavy-tail
cplex101 f51mb 350 LR 86.6 51.1 2116 113 313 520 32 heavy-tail
cplex101 f51mb 350 CLR 87.3 53.5 2117 159 408 619 32 heavy-tail

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

1000

2000

Ru
nT

im
e

f51mb_350_LR-class under cplex090

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

1000

2000

Ru
nT

im
e

f51mb_350_CLR-class under cplex090

0

0.2

0.4

0.6

0.8

1

50 100 1000 2200

EC
DF

RunTime under cplex090 (seconds)

RunTime_LR@090
RunTime_CLR@090

Figure 1: Branch&bound experiments with LR and CLR classes of isomorphs.

Design4/Figure4: The purpose of this design is to produce
a distribution of ObjectiveBest at predetermined timeout
intervals with solvers cplex090 and cplex101, applied at
timeout intervals of 16, 32, and 64 seconds, to instances
from the class in401 sp CLR. The most noticeable feature
of these results is that there is no appreciable difference
between the two solvers, even at the timeout of 64 seconds.
The most interesting part is the fact that an optimum value
of 77418 has been reached by both solvers already in 64 sec-
onds: on two isomorphs with cplex090, and one isomorph
with cplex101. Hoever, for the branch-and-bound solver to
prove the value of 77418 is indeed an optimum, cplex090
takes on an average of 666 seconds, while cplex101 takes
on an average of 843 seconds (see statistics in Figure 2).

Design5/Figure5: Currently, one of the most common ap-
proaches to evaluate the runtime performance of algorithms
(by computer scientists) is to test them on a large number
of ‘random instances’. The purpose of this design is to il-
lustrate some of the shortcomings for this approach. All in-
stances from the designated ’random class’ in401 sp RND
have 500 variables, 1000 constraints, and as ‘similar’ dis-
tributions of variables over constraints as the generator

that produced them can support – a non-trivial problem
in itself. In contrast, instances from the isomorph class
in401 sp CLR also have 500 variables, 1000 constraints –
but all are isomorphs of the same reference instance. The
striking difference between the two classes is demonstrated
in the two Runtime-vs-ObjectiveBest diagrams in Figure 5:
with in401 sp CLR, the only random variable we can ob-
serve is RunTime, whereas with in401 sp RND, both Run-
Time and ObjectiveBest are random variables. Moreover,
due to large variability in ’difficulty’ of solving a number
of instances from the ‘random class’ in401 sp RND, the re-
sources we need to solve them are much more unpredictable
than for the instances from the class in401 sp CLR. In sum-
mary, to test the performance of two or more solvers on
a class of ‘random instances’, we cannot use the relatively
simple hypothesis tests we proposed for classes of ‘isomorph
instances’.

Resolution of Hypotheses Tests. Statistics summarized
in Figures 1 – 4 provide an initial basis for comparisons of
instance classes and solvers. We now proceed to resolve the
four hypotheses stated initially in this section for each of the
four designs.

7

RunTime statistics for isomorph class in401 sp CLR.

Solver Class RefV MinV MaxV MedV MeanV StdV N Distribution
cplex090 in401 sp CLR 865 407 957 638 666 133 32 uniform
cplex101 in401 sp CLR 841 625 1316 816 843 142 32 normal

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 1200 1400

EC
DF

RunTime on in401_sp_CLR-class (seconds)

RunTime_CLR@090
RunTime_CLR@101

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

500

1000

Ru
nT

im
e

in401_CLR-class under cplex090

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

500
1000
1500

Ru
nT

im
e

in401_CLR-class under cplex101

RunTime statistics for isomorph class f51mb 350 CLR.

Solver Class RefV MinV MaxV MedV MeanV StdV N Distribution
cplex090 f51mb 350 CLR 115 71.3 2118 127 232 393 32 heavy-tail
cplex101 f51mb 350 CLR 87.3 53.5 2117 159 408 619 32 heavy-tail

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

1100

2200

Ru
nT

im
e

f51mb_350_CLR-class under cplex090

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

1100

2200

Ru
nT

im
e

f51mb_350_CLR-class under cplex101

0

0.2

0.4

0.6

0.8

1

50 100 1000 2200

EC
DF

RunTime on f51mb_350_CLR-class (seconds)

RunTime_CLR@090
RunTime_CLR@101

Figure 2: Branch&bound experiments with two CLR isomorph classes and two solvers.

Design1 Resolution: With solver cplex090, RunTime values
are observed on 32 instances generated using rule LR, and
on 32 instances generated using rule CLR. Similarly, with
solver cplex101, RunTime values are observed for another
set of 64 instances, generated using the two rules. Such an
arrangement of solvers and rules constitutes a balanced,
2 × 2 factorial experiment. Since diagnostic plots indi-
cate that RunTime distributions are roughly normally dis-
tributed with constant variance, an analysis of variance
(ANOVA) is carried out to investigate the effects of solver
and rule. The ANOVA table below indicates that while
there is a highly significant solver effect, there is no evi-
dence of any difference in RunTime mean due rule.

Sum of Mean
Source DF Squares Square F p-value
rule 1 1474 1474 0.1 0.7875
solver 1 1416808 1416808 70.1 < .0001
rule*solver 1 36565 36565 1.8 0.1810
Error 124 2505820 20208
Total 127 3960669

The analysis above pertains to instance class in401 sp LR.
A similar experiment involving another 128 runtimes was
carried out with the instance class f51mb 350 LR. The dis-
tributions of these four samples are decidedly non-normal,
displaying a long right tail, with some observations trun-

cated at the timeout of 2112 seconds so that the F -test
from ANOVA is not appropriate. The log-rank test, a non-
parametric statistical procedure commonly used for relia-
bility or survival analysis, may be used to investigate the
hypothesis that RunTime distributions, under the LR and
CLR, are the same. For both solvers, we find no signifi-
cant difference in RunTime between the two rules: χ2 =
0.0187, p = 0.8913, df = 1 for cplex090, χ2 = 1.08, p =
0.2976, df = 1 for cplex101. The medians from the two dis-
tribution are similar for the two rules: MedVLR = 110.4,
MedVCLR = 127.4 with cplex090 and MedVLR = 112.6,
MedVCLR = 159.5 with cplex101. According to the log-
rank test, these differences are consistent with chance vari-
ability among instances and are not due to the rule used
to generate them. Other non-parametric statistical proce-
dures such as the Wilcoxon test for comparing distributions
under truncated sampling, lead to the same conclusion re-
garding no differences due to rule.

Design2 Resolution: With two solvers, cplex090 and cplex101,
RunTime values are again observed independently and with
truncation at t = 2112 seconds on 32 randomly selected in-
stances from two classes: first on in401 sp CLR, followed
by f51mb 350 CLR.

To investigate the hypothesis that the two solvers have
the same RunTime distributions for the conceptual popu-
lation of instances, the log-rank test is used again. The re-

8

RunTime statistics for isomorph class in401 sp CLR.

Solver Class RefV MinV MaxV MedV MeanV StdV N Distribution
cplex090 in401 sp CLR 865 407 957 638 666 133 32 uniform
cplex101 in401 sp CLR 841 625 1316 816 843 142 32 normal

cplex090-dfs in401 sp CLR 798 411 748 574 576 85.7 32 uniform
cplex101-dfs in401 sp CLR 678 592 1200 904 925 149 32 normal

cplex090-feas2 in401 sp CLR 451 321 493 413 416 38.9 32 uniform
cplex101-feas2 in401 sp CLR 1491 950 1987 1496 1510 247 22 normal

0

0.2

0.4

0.6

0.8

1

200 600 1000 1400 1800 2200

EC
DF

RunTime on in401_sp_CLR-class (seconds)

RunTime_CLR@090-feas2
RunTime_CLR@101-feas2

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

500

1000

Ru
nT

im
e

in401_CLR-class under cplex090-feas2

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

1100

2200

Ru
nT

im
e

in401_CLR-class under cplex101-feas2

RunTime statistics for isomorph class f51mb 350 CLR.

Solver Class RefV MinV MaxV MedV MeanV StdV N Distribution
cplex090 f51mb 350 CLR 115 71.3 2118 127 232 393 32 heavy-tail
cplex101 f51mb 350 CLR 87.3 53.5 2117 159 408 619 32 heavy-tail

cplex090-dfs f51mb 350 CLR 102 60.1 2117 225 388 526 32 near-exponential
cplex101-dfs f51mb 350 CLR 179 89.2 2116 227 441 585 32 exponential

cplex090-feas2 f51mb 350 CLR 115 49.2 446 94.2 113 69.8 32 near-exponential
cplex101-feas2 f51mb 350 CLR 99.1 58.1 2118 127 316 591 32 heavy-tail

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

1100

2200

Ru
nT

im
e

f51mb_350_CLR-class under cplex101-feas2

i0
0

i0
2

i0
4

i0
6

i0
8

i1
0

i1
2

i1
4

i1
6

i1
8

i2
0

i2
2

i2
4

i2
6

i2
8

i3
0

i3
20

500

1000

Ru
nT

im
e

f51mb_350_CLR-class under cplex090-feas2

0

0.2

0.4

0.6

0.8

1

50 100 1000 2200

EC
DF

RunTime on in401_sp_CLR-class (seconds)

RunTime_CLR@090-feas2
RunTime_CLR@101-feas2

Figure 3: Branch&bound experiments with two CLR isomorph classes and six solvers.

sults indicate a highly significant difference (χ2 = 19.2, p <
0.0001) for instance class in401 sp CLR, but nearly signif-
icant difference for instance class f51mb 350 CLR (χ2 =
3.32, p = 0.0683). In both cases, solver cplex090 runtimes
are generally lower, as seen in the table below, which gives
95% confidence intervals for the median runtime among the
four populations of instances.

Instance cplex sample approx. 95%
class solver median confidence interval

in401 sp CLR 090 638.4 (605.3, 730.1)
in401 sp CLR 101 816.3 (790.3, 857.7)

f51mb 350 CLR 090 127.43 (105.6, 148.8)
f51mb 350 CLR 101 159.35 (110.4, 237.3)

Design3 Resolution: Design3 observes RunTime values from
32 instances within each of six solver classes, arranged in
a 2 × 3 factorial layout, with the two-level factor solver

and a second factor, factor2 taking three values: none, dfs
and feas2. Here, the values none, dfs and feas2 refer to
solver configuration with no options (default), and options
-dfs, -feas2 as explained in the earlier section. The solver
combinations are observed under two instance classes of
isomorphs; in401 sp CLR and f51mb 350 CLR, which are
analyzed separately.

In the experiment with in401 sp CLR, an ANOVA indi-
cates a highly significant interaction between solver and
factor2 (F = 169.1, p < 0.0001, df = 2, 176). The six solver
means are given in the table below. Using the Tukey-
Kramer adjustment to control the experimentwise error
rate at .05 in all pairwise comparisons among the means,
all 15 pairs differ significantly, with one minor exception,
the difference between none and dfs using solver cplex090,
which is nearly significant. These significant differences in-
dicate that there are both solver effects and factor2 effects,

9

ObjectiveBest statistics for isomorph class in401 sp CLR.

Here, branch&bound times out at 16, 32, 64 seconds and returns the best objective value for each instance.

See Fig. 2 for RunTime statistics observed wth cplex090 and cplex101 on the same class, executed without time-out constraint.

Solver Class RefV MinV MaxV MedV MeanV StdV N Distribution
cplex090@16 in401 sp CLR 65086 59852 71797 65992 66080 3721 32 uniform
cplex101@16 in401 sp CLR 65662 59196 73626 66676 65964 3782 32 uniform

cplex090@32 in401 sp CLR 66826 60658 75114 69240 68548 3351 32 uniform
cplex101@32 in401 sp CLR 73626 59196 75114 68946 68217 3593 32 uniform

cplex090@64 in401 sp CLR 66826 64451 77418 70260 69829 3450 32 uniform
cplex101@64 in401 sp CLR 73626 64377 77418 69193 69219 2813 32 normal

60000

65000

70000

75000

80000

10 100 1000 1600

O
bj

ec
tiv

eB
es

t
(u

ni
ts

)

RunTime under cplex090 (seconds, on in401_sp_CLR-class)

ObjectiveBest@16 secs

ObjectiveBest@32 secs

ObjectiveBest@64 secs

ObjectiveBest@BB
0

0.2

0.4

0.6

0.8

1

55000 60000 65000 70000 75000 80000

EC
DF

ObjectiveBest under cplex090 (on in401_sp_CLR-class)

TimeOut=16

TimeOut=32

TimeOut=64

60000

65000

70000

75000

80000

10 100 1000 1600

O
bj

ec
tiv

eB
es

t
(u

ni
ts

)

RunTime under cplex101 (seconds, on in401_sp_CLR-class)

ObjectiveBest@16 secs

ObjectiveBest@32 secs

ObjectiveBest@64 secs

ObjectiveBest@BB

0

0.2

0.4

0.6

0.8

1

55000 60000 65000 70000 75000 80000

EC
DF

ObjectiveBest under cplex101 (on in401_sp_CLR-class)

TimeOut=16

TimeOut=32

TimeOut=64

Optimum=77418

Optimum=77418

Figure 4: Timeout and branch&bound experiments with isomorph class in401 sp CLR and two solvers.

and the effects of one factor depend on the level of the other
factor. One characterization of the interaction of these fac-
tors is that the solver effect varies across levels of factor2;
it is more pronounced for the feas2 level of factor2 than for
dfs or none, as may be seen by inspection of difference Diff
shown in the bottom row of the table below.

Instance class in401 sp CLR
cplex Factor2 (solver options)
solver none dfs feas2
090 666.1 576.2 416.0
101 843.3 925.2 1510.2
Diff 177.2 349.0 1094.2

Inspection of diagnostic plots of residuals versus predicted
values, not included here, indicates inhomogeneity of vari-
ance in RunTime values; the larger the RunTime , the
more variability, with the variance increasing linearly with
the mean. A square root transformation stabilizes the vari-
ance and the statistics above are computed from an analysis
of the transformed data.

A similar analysis may be carried out for the data observed
from the f51mb 350 CLR class, though some accomodation
would have to be made to accomodate for the truncation
due to timeout. Descriptively, the table of RunTime means

suggests a different interaction between solver and factor2
for the f51mb 350 CLR class than was observed for the
in401 sp CLRclass. In particular, the solver effect is most
pronounced for the feas2 level of factor 2 for both instance
classes, in401 sp CLR and f51mb 350 CLR.

Instance class f51mb 350 CLR
cplex Factor2 (solver options)
solver none dfs feas2
090 231.6 388.2 113.2
101 408.3 440.8 315.8
Diff 176.7 52.6 202.6

In an analysis of all twelve combinations of solver, fac-
tor2 and instance class, this would be classified as a three-
factor interaction, though, for simplicity of exposition, such
a three-factor analysis is not undertaken here.

Design4 Resolution: As shown in Figure 2, the main pur-
pose of Design4 is to produce a distribution of ObjectiveBest
at predetermined timeout intervals with solvers cplex090
and cplex101. An independent samples t-statistics of Ob-
jectiveBest reveals no significant difference between the two
solvers, even at the timeout of 64 seconds. This is in
marked contrast to the resolution of Design2, where we re-
port a significant difference between the two solvers. The

10

RunTime statistics for an isomorph class in401 sp CLR and a ‘random class’ in401 sp RND.

Solver Class RefV MinV MaxV MedV MeanV StdV N Distribution
cplex090 in401 sp CLR 865 407 957 638 666 133 32 uniform
cplex101 in401 sp CLR 841 625 1316 816 843 142 32 normal

cplex090∗∗ in401 sp RND 541 455 1058 969 894 177 32 incomplete
cplex101∗∗ in401 sp RND 696 602 1058 1058 979 139 32 incomplete

∗∗Due to system constraints, a timeout of 1056 seconds must be imposed to complete branch&bound runs with the ‘random class’.

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 1200 1400

EC
DF

RunTime (seconds, on in401_CLR class)

RunTime_CLR@090

RunTime_CLR@101

60000

65000

70000

75000

80000

400 600 800 1000 1200 1400

O
bj

ec
tiv

eB
es

t

RunTime (cplex101 on in401_CLR and in401_RND classes)

ObjectiveBest_in401_sp_CLR

ObjectiveBest_in401_sp_RND

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 1200 1400

EC
DF

RunTime (seconds, on in401_RND "class")

RunTime_RND@090

RunTime_RND@101

60000

65000

70000

75000

80000

400 600 800 1000 1200 1400

O
bj

ec
tiv

eB
es

t

RunTime (cplex090 on in401_CLR and in401_RND classes)

ObjectiveBest_in401_sp_CLR

ObjectiveBest_in401_sp_RND

TimeOut=1056 secs

TimeOut=1056 secs

Figure 5: Contrasting branch&bound two-solver experiments with an isomorph class and a ‘random class’.

message is thus clear: we need to allow for a larger time-
out value for each solver if we are to detect a significant
difference between solvers by only observing values of Ob-
jectiveBest at fixed timeout intervals.

6. CONCLUSIONS
This paper is not about ‘the best BCSP solver’. Rather, it
is a case study of how the scientific method can be applied
to comparing the performance of not only BCSP solvers
but also other solvers that address NP-hard problems. Re-
producibility is one of the main principles of the scientific
method, and refers to the ability of a test or experiment
to be accurately reproduced, or replicated, by someone else
working independently.

This paper demonstrates that a class of instance isomorphs
can induce solver RunTime variability that may span or-
ders of magnitude. We may thus experimentally observe
RunTime distributions, produced by different solvers on the
same instance class, that may range from uniform, normal,
exponential, to heavy-tail. Such observations not only pro-
vide a reliable mechanism to measure, with statistical sig-
nificance, differences between two or more solvers, they also
provide a method to reliably design and improve a new gen-
eration of combinatorial solvers.

See http://www.cbl.ncsu.edu/xBed/ for more information.

Acknowledgments. This work benefited a great deal from
discussions, over the years, with Matt Stallmann and Xiao
Yu Li. In particular, Matt Stallmann helped with the scripts

that facilitated invocations of cplex. Eric Sills, from the
NCSU High Performance Computing (HPC) facility with
fast dedicated processors, assisted in a number of ways to
maintain continuous access to computing resources and its
environment. We also thank Peter Notebaert for providing
the background on the origins and citations related to the
.lpx format, and Y. Guo for readily sharing reprints of his
papers and the 500-instance benchmark set that now has a
new life in a number of settings, all in the .lpx format.

7. REFERENCES
[1] J.N. Hooker. Needed: An empirical science of algorithms.

Operations Research, pages 42(2):201–212, 1994.
[2] R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, and

W.R. Stewart. Designing and reporting on computational
experiments with heuristic methods. J. of Heuristics,
1(1):9–32, 1995.

[3] J. Hooker. Testing heuristics: We have it all wrong. J. of
Heuristics, pages 1:33–42, 1996.

[4] F. Brglez. Design of Experiments to Evaluate CAD
Algorithms: Which Improvements Are Due to Improved
Heuristic and Which Are Merely Due to Chance? Technical
Report 1998-TR@CBL-04-Brglez, Computer Science,
NCSU, Raleigh, NC 27695, April 1998.

[5] H. H. Hoos and T. Stuetzle. Evaluating Las Vegas
Algorithms – Pitfalls and Remedies. In UAI-98, pages
238–245. Morgan Kaufmann Publishers, 1998.

[6] C. C. McGeoch. Experimental Analysis of Algorithms. In
P. Pardalos and E. Romeijn, editor, Handbook of Global
Optimization, Volume 2: Heuristic Approaches. Kluwer
Academic Publishers, 2001.

11

[7] D. S. Johnson. A Theoretician’s Guide to the Experimental
Analysis of Algorithms. In M. H. Goldwasser and D. S.
Johnson and C. C. McGeoch, editor, Fifth and Sixth
DIMACS Implementation Challenges, pages 215–250. Am.
Math. Society, 2002.

[8] D. G. Feitelson. Experimental Computer Science: The
Need for a Cultural Change, 2005. Manuscript, from
http://www.cs.huji.ac.il/ feit/pub.html.

[9] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson.
The approximability of constraint satisfaction problems.
SIAM J. Comput., 30(6):1863–1920, 2000.

[10] Home page for cplex, 2007.
http://www.ilog.com/products/cplex/.

[11] Home page for lp solve, 2007.
http://lpsolve.sourceforge.net/5.5/.

[12] About cplex and lp solve file formats, 2007.
http://lpsolve.sourceforge.net/5.5/CPLEX-format.htm.

[13] X. Y. Li, M. F. M. Stallmann, and F. Brglez. Effective
bounding techniques for solving unate and binate covering
problems. In DAC, pages 385–390, 2005.

[14] F. Brglez, X. Y. Li, and M. F. M. Stallmann. On SAT
instance classes and a method for reliable performance
experiments with SAT solvers. Ann. Math. Artif. Intell.,
43(1):1–34, 2005.

[15] G. L. Nemhauser and L,A, Wolsey. Integer and
Combinatorial Optimization. John Wiley, 1988.

[16] J. E. Harlow and F. Brglez. Design of Experiments in BDD
Variable Ordering: Lessons Learned. In Proceedings of the
International Conference on Computer Aided Design.
ACM, November 1998.

[17] J. E. Harlow III and F. Brglez. Design of experiments and
evaluation of BDD ordering heuristics. International
Journal on Software Tools for Technology Transfer
(STTT), 3(2):193–206, May 2001. Springer-Verlag
Heidelberg. http://springerlink.metapress.com/, ISSN:
1433-2779 (Paper) 1433-2787 (Online).

[18] S. Yang. Logic synthesis and optimization benchmarks user
guide. Technical Report 1991-IWLS-UG-Saeyang, MCNC,
Research Triangle Park, NC, January 1991.

[19] Y. Guo, A. Lim, B. Rodrigues, and Y. Zhu. Heuristics for a
brokering set packing problem. In Eighth International
Symposium on Artificial Intelligence and Mathematics,
January 4-6, 2004, Fort Lauderdale, Florida, USA. ACM,
January 2004.

[20] Y. Guo, A. Lim, B. Rodrigues, and Y. Zhu. Heuristics for a
bidding problem. Comput. Oper. Res., 33(8):2179–2188,
2006.

[21] D. S. Johnson, R. Aragon C, L. A. McGeoch, and
C. Schevon. Optimization by simulated annealing: An
experimental evaluation; part ii, graph coloring and number
partitioning. Operations Research, 39:378–406, 1991.

[22] G.D. Hachtel and F. Somenzi. Logic Synthesis and
Verification Algorithms. Kluwer Academic Publishers, 1996.

[23] M. F. M. Stallmann and F. Brglez. High-contrast algorithm
behavior: Observation, conjecture, and experimental
design. In ACM-FCRC, 2007. Proceedings of Workshop on
Experimental Computer Science, Part of ACM FCRC, San
Diego, 13-14 June 2007.

[24] K. A. Brownlee. Statistical Theory and Methodology In
Science and Engineering. Krieger Publishing, 1984.
Reprinted, with revisons, from second edition, 1965.

[25] L. J. Bain and M. EngelHardt. Introduction to Probability
and Mathematical Statistics. Duxbury, 1987.

APPENDIX
In order to capture any instance of a BCSP in an easy to
read and an easy to understand form, we advocate the fa-
miliar 0/1 integer program (IP) formulation that naturally
expresses the constraints as well as the goals of the optimiza-
tion task. The .lpx format as illustrated by way of two small

examples below is a subset of the cplex format [10] that is
also readable by the public-domain solver lp solve [11, 12].
However, also note that the lp formats of these two solvers
are not equivalent in general!

We keep the emphasis on keeping the extension .lpx as
a reminder that all variable names are always prefixed with
‘x’, followed by a number in range [1, n] – a feature we rely on
to post-process the respective solver outputs. Unfortunately,
the acronym ’lpx’ is overloaded, and the number of hits from
a web search engine, in response to a query about lpx, is
huge and none of the current listing have the context that
is relevant. May be with time, a search on ‘.lpx’ will point
to examples such as the ones shown below.

A. SMALL EXAMPLES IN .LPX FORMAT
The two small examples in the .lpx format below illustrate
all constraint categories we may find in a BCSP instance.
Both examples will be read by both lp solve as well as by
cplex and both solvers will produce correct results.

In the first file, the constraint lines are labeled explicity,
a feature that is useful for a reference instance. However,
as the second example shows, the constraint lines need not
be labeled – a feature we find convenient when writing out
an isomorph instance (in which rows and variables are ran-
domly permuted by a morphing tool).

\ @file exA_spb_max.lpx
\ @date 2007-02-01-20-26-19
\
\ ObjectiveBest 100 ; SolutionProvedOptimal 1
\ SolutionCoordinates 0110101
\
Max

obj: +21x1 +22x2 +23x3 +25x4 +26x5
+27x6 +29x7

st
c1: +x2 +x3 +x4 >= +1
c2: -x2 -x5 -x6 >= -2
c3: +x5 +x6 -x7 >= 0
c4: -x3 +x7 >= 0
c5: -x1 -x4 -x7 >= -1
c6: -x1 -x3 -x6 >= -1

Binary
x1 x2 x3 x4 x5
x6 x7

End

\ @file exA_spb_max_morph_CLR.lpx
\ @date 2007-02-14-16-39-47
\ @remark see comments about the origin of this file
\ --
\ @VariablePermutationPairs (isomorph,reference --
\ terminated with 0,0)
\ 1,3 2,1 3,2 4,5 5,6 6,4 7,7 0,0
\
\ ObjectiveBest 100 ; SolutionProvedOptimal 1
\ SolutionCoordinates 1100011
\
Max

obj: +22x1 +23x2 +21x3 +27x4 +25x5 +26x6 +29x7
st

-x3 -x7 -x5 >= -1
+x1 +x2 +x5 >= +1
-x2 +x7 >= 0
-x3 -x2 -x4 >= -1
-x6 -x1 -x4 >= -2
+x4 +x6 -x7 >= 0

Binary
x1 x2 x3 x4 x5 x6 x7

End

12

