

A Smaller, Stronger FPGA-based Voting Machine

EVT/WOTE '09 AUGUST 10, 2009

Ersin Öksüzoğlu Dan S. Wallach

Previously on VoteBox

- VoteBox
 - Full featured DRE voting machine
 - Paper in USENIX Security Symposium 2008

VoteBox (Classic)

Pre-rendered user interface

simplifies the graphics subsystem & code size

Network ballot replication

increases the availability of voting records

Challenge option

casts the votes as intended

Elgamal ballot encryption

allows tallying the votes independently

Elgamal Homomorphic Encryption

One way of encryption

$$E(c, r, g^a) = \langle g^r, (g^a)^r f^c \rangle$$

Two ways of decryption

$$D(\langle g^r, g^{ar} f^c \rangle, a) = \frac{g^{ar} f^c}{(g^r)^a}$$

$$D(\langle g^r, g^{ar} f^c \rangle, r) = \frac{g^{ar} f^c}{(g^a)^r}$$

Problems with VoteBox (Classic)

- In a tampered VoteBox, we cannot detect privacy attacks
 - The random number can be used as a subliminal channel
- VoteBox still needs to be smaller

EVM	Language	LOC
Pvote	Python	460
VoteBox	Java	14500
Diebold AccuVote TSX	C++	64000
Sequoia Edge	С	124000

VoteBox Nano: First FPGA-based EVM

Hardware and software hybrid

Pre-rendered GUI

✓ Minimized code size for easier inspection

Challenge option Elgamal Encryption

✓ End to end cryptography

True Random Number Generator

✓ Better random numbers

Session ID Bitstream Readback

✓ Additional <u>tamper-evidence</u> mechanism

FPGA (Field Programmable Gate Array)

- > A blank chip that the user can program on the field
 - Emulate any chip
- Used for prototyping custom silicon
 - Accelerate designs taking the advantage of the parallelism
- Widely deployed in the industry (\$2.75 billion in 2010)
 - Fast time to market
 - Low initial cost
 - Re-programmable hence easy to update

Xilinx Spartan-3E Starter Kit (~\$150)

- 500k gate FPGA Chip
- Flash RAM
- DRAM
- VGA port
- Dot Matrix LCD (2x16)
- A rotary encoder
- RS232 serial ports
- Buttons and switches.
- USB configuration port
- No CPU, GPU, network chip

VoteBox Nano Lacks

- Network replication and storage facilities
 - We have limited space on board
- Ethernet communication module
 - Instead we have RS232 port
- High resolution bitmap based GUI
 - We have character graphics

VoteBox Classic vs. VoteBox Nano

Pre-rendered GUI [Yee]

X Y color text

6 25 15 President and the Vice President of USA

VoteBox Nano

Ballot Definition

JTAG (Joint Test Action Group)

- ▶ IEEE port standard for IC's to:
 - Debug
 - Program
 - Monitor

- Daisy chain connection for all the components on board
 - One wire data in
 - One wire data out

For FPGAs, JTAG is used for

- 1. Bitstream upload and download
- 2. Software upload and download
- 3. Accessing software debugger

Prangram Dratagti 5 Provide (H. Sarstwartel)

Programming FPGA (Software)

Attestation

Interesting Attacks

Upload a new bitstream Session ID Elections Elections Evil End bitstream Start Bitstream verification Session ID Elections Evil Honest Elections bitstream bitstream Start End Bitstream

- Change software
 - JTAG port is monitored
 - Session ID is read-only

verification

Source Code Length (Software)

EVM	Language	LOC
Pvote	Python	460
VoteBox Nano	С	996
VoteBox (Stripped)	Java	~7300
VoteBox (Full)	Java	14500
Diebold AccuVote TSX	C++	64000
Sequoia Edge	С	124000

Comparison

Pvote

VoteBox Nano

Conclusion

We have shown that a very compact EVM can be built using an FPGA with following features:

Externally verifiable attestation

True Random Number Generator Elgamal Encryption and DSA

Challenge Option

Pre-rendered GUI No underlying OS

Cast or Challenge [Benaloh]

At the last step, the voter is given two options

- FPGA only publishes the random numbers, the secret key is still safe
- With a certain amount of challenges, the results are reliable enough

True Random Number Generator

- TRNG has 128 ring oscillators, each consisting of 3 inverters
- f_s is 25 MHz and throughput is 195 kB/s.

FPGA Structure

Trivial Attacks

- Theft of the device
 - No secret data is stored in long term
- Tapping serial port
 - The votes are encrypted
 - Encryption is probabilistic

Hardware Modules

FPGA Area Utilization

Hardware	LOC
Crypto Module	760
TRNG	520
Other	483
Total	1763

JTAG port

TDI: (Test Data In)

TDO: (Test Data Out)

TCK: (Test Clock)

TMS: (Test Mode Select)

FPGA (Field Programmable Gate Array)

- 500k gate FPGA Chip
- Flash RAM (16 MB)
- DRAM (32 MB)
- VGA port
- Dot Matrix LCD (2x16)
- A rotary encoder
- RS232 serial ports
- Buttons and switches
- USB configuration port
- Ethernet Port
- PS/2 port
- 8 LEDs

Xilinx Spartan-3E 500 Starter Kit

JTAG port

TDI: (Test Data In)

TDO: (Test Data Out)

TCK: (Test Clock)

TMS: (Test Mode Select)

JTAG

For FPGAs JTAG is used for

- 1. Bitstream upload and download
- 2. Software upload and download
- 3. Accessing software debugger

